Neutrina (2)

Elementy fizyki cząstek elementarnych

Wykład IX

- Oscylacje neutrin atmosferycznych i słonecznych
- Eksperyment K2K
- Eksperyment Minos
- Eksperyment Kamland
- Perspektywy badań neutrin

Neutrina atmosferyczne

Eksperyment Super-Kamiokande

Japonia, w starej kopalni, 1 km pod górą Kamioka, komora o wysokości 40 m i średnicy 40 m, wypełniona wodą

11'000 fotopowielaczy (50 cm średnicy!) rejestruje przechodzące cząstki

rejestrowane jest

promieniowanie Czerenkowa

emitowane w kierunku ruchu przez cząstki poruszające się z prędkością większą od prędkości światła (w wodzie)

Super-Kamiokande

Wyniki

Zależność liczby obserwowanych przypadków elektronowych i mionowych od kierunku (przypadki typu FC) ⇒

- Zgodnie z oczekiwaniami tyle samo neutrin elektronowych leci do dołu $(\cos \theta > 0)$ i do góry $(\cos \theta < 0)$.
- Neutrin mionowych **mniej** niż oczekujemy (czerwona linia) !
- Wyraźnie mniej ν_{μ} lecących od dołu niż z góry !
- zielona linia dopasowanie modelu oscylacji

Super-Kamiokande

Wyniki

Przedstawione wyniki Super-Kamiokande (i innych pomiarów neutrin atmosferycznych) można wytłumaczyć przyjmując, że ν_{μ} "znikają" na skutek oscylacji w inny rodzaj neutrina.

Oscylacje w ν_e wykluczamy (strumień zgodny z modelem)

⇒ najlepszym kandydatem neutrino taonowe
 Dopasowanie parametrów mieszania
 do wszystkich danych:

$$\sin^2 2\theta_{23} = 1.00$$

 $\Delta m_{23}^2 = 0.0021 \ eV^2$

Zgodne wyniki dla różnych próbek

S

Oscylacje neutrin

Prawdopodobieństwo przejścia

Prawdopodobieństwo, że po czasie t wyprodukowana cząstka ν_{μ} oddziała jako ν_{μ} , zakładając, że masy i różnice mas są małe ($\Delta m \ll m_1 \sim m_2 \ll E_{\nu}$):

$$P_{\nu\mu\to\nu\mu}(t) = 1 - \sin^2(2\theta_{23}) \sin^2\left(1.27 \cdot \Delta m_{23}^2 \frac{L}{E}\right)$$

gdzie L = ct [km], Δm^2 [eV²] i E [GeV].

W funkcji odległości:

W funkcji energii neutrina:

SNO

Eksperyment SNO (Sudbury Neutrino Observatory)

- ogromny zbiornik wypełniony
 7000 t wody (H₂0)
- w środku kula wypełniona
 1000 t ciężkiej wody (D₂0)
- promieniowanie Czerenkowa mierzone przez ok. 9500 fotopowielaczy.
- całość umieszczona na głębokości ponad 2000 m

Wyniki (Phase I + Phase II)

Z łącznego dopasowania (w jednostkach $10^6 \ cm^{-2} s^{-1}$):

$$\Phi_{CC} = 1.68 \pm 0.06 \pm 0.09 = \Phi_{\nu_e}$$

$$\Phi_{ES} = 2.35 \pm 0.22 \pm 0.15$$

$$= \Phi_{\nu_e} + \varepsilon (\Phi_{\nu_\mu} + \Phi_{\nu_\tau})$$

$$(SK: 2.32 \pm 0.09)$$

$$\Phi_{NC} = 4.94 \pm 0.21 \pm 0.36$$

 $= \Phi_{\nu_e} + \Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}$

Przewidywania SSM (nowe)

$$\Phi^{SSM}(\nu_e) = 5.82 \pm 1.34$$

Oscylacje neutrin

Podsumowanie (I)

Stany fizyczne neutrin są mieszankami stanów o ustalonym zapachu.

Prowadzi to do oscylacji neutrin, które zostały dokładnie zmierzone w dwóch "sektorach":

• neutrina atmosferyczne

 $u_{\mu} \leftrightarrow v_{\tau}$: $\Delta m_{\mu\tau}^2 \sim 0.002 \ eV^2$

• neutrina słoneczne

 $u_e \leftrightarrow \nu_\mu$ (?): $\Delta m_{e\mu}^2 \sim 0.00006 \ eV^2$

Widmo mas (jedna z możliwości):

Doświadczenia z "długą bazą"

Wyniki pomiarów neutrin atmosferycznych obarczone są różnymi niepewnościami (promieniowanie kosmiczne, skład i gęstość atmosfery, struktura Ziemi)

Dlatego ostatecznego rozstrzygnięcia szukamy w doświadczeniach z "długą bazą" Obserwacja oscylacji w dobrze kontrolowanych warunkach:

Wiązka neutrin kierowana do oddalonego detektora.

Odpowiednio dobierając odległość i energię wiązki powinniśmy zaobserwować efekt oscylacji...

K2K

Eksperyment K2K

Pierwszym eksperymentem z "długą bazą" był K2K (KEK to Kamiokande).

Wiązka ν_{μ} z laboratorium KEK ($\langle E_{\nu} \rangle \sim 1 \text{ GeV}$) skierowana została do odległego o 250 km detektora Super-Kamiokande.

Aby dobrze zmierzyć parametry wiązki oraz lepiej zrozumieć działanie detektora SK na początku wiązki ustawiono "miniaturę" Super-Kamiokande + detektor elektroniczny

Wykład IX

GPS

Korelacja czasowa

T_{spill}

Przypadki rejestrowane w Super-Kamiokande pochodzące z wiązki KEK rozpoznawane są na podstawie kierunku i korelacji czasowej z impulsami akceleratora:

TOF~1msec

Wyraźnie widoczna korelacja czasowa, zaniedbywalne tło.

Wyniki

Wyniki pomiarów przeprowadzonych w okresie od czerwca 1999 do maja 2004:

$$N_{obs} = 108$$

 $N_{exp} = 150.9^{+11.6}_{-10.0}$ (bez oscylacji)

Prawdopodobieństwo fluktuacji statystycznej: $\sim 10^{-4}$

Także kształt rozkładu energii wskazuje na oscylacje \Rightarrow

Rozkład energii (po normalizacji)

Wyniki

Dopasowanie parametrów mieszania:

 $\sin^2 2\theta_{23} = 1.5$ $\Delta m_{23}^2 = 0.0022 \ eV^2$

Ograniczając się do wartości $\sin^2 2\theta_{23} \le 1$: $0.0019 \ eV^2 < \Delta m_{23}^2 < 0.0036 \ eV^2$

W bardzo dobrej zgodności z wynikami SK.

Porównanie wyników SK i K2K

MINOS

Nowy eksperyment z "długą bazą".

- Uruchomiony 4 marca 2005 !
- Wiązka neutrin z Fermilab

z rozpadów pionów powstających w zderzeniach protonów o energii 120 GeV skierowana do detektora w odległej o 735 km kopalni Soudan, Minesota

Drugi detektor o tej samej konstrukcji umieszczony bezpośrednio za układem tworzącym wiązkę.

A.F.Żarnecki

Produkcja neutrin

Ruchoma tarcza pozwala na zmienianie energii wybieranych pionów \Rightarrow energii neutrin

Detektory

Far Detector

"Daleki"

masa 5.4 kiloton

 $8 \times 8 \times 30 \text{ m}$

484 płyt stalowych / warstw scyntylatora

Near Detector

"Bliski"

masa 1 kiloton $3.8 \times 4.8 \times 15m$ 282 płyty stalowe + 153 warstwy scynt.

Przypadki

 long µ track+ hadronic activity at vertex

 short event, often diffuse $V_{\rm e}$ CC Event

 short, with typical EM shower profile

$$E_{v} = E_{shower} + P_{\mu}$$

$$55\%/\sqrt{E} = 6\% \text{ range, } 10\% \text{ curvature}$$

Wyniki 30 marca 2006 !

Wszystkie przypadki CC: 298±15 oczekiwanych (ν_{μ} i $\bar{\nu}_{\mu}$), 204 obserwowane (69%) ν_{μ} poniżej 10 GeV: 177±11 oczekiwanych, 92 obserwowane (52%) - efekt 5 σ !

Rozkłady energii:

Wyniki

Wyniki SK i SNO wskazują, że obserwowany deficyt neutrin słonecznych jest rezultatem oscylacji - "przemiany" ν_e w inne rodzaje neutrin (ν_μ i ν_τ).

Chcielibyśmy jednak sprawdzić obserwowany efekt w warunkach "laboratoryjnych", podobnie jak w przypadku neutrin atmosferycznych (doświadczenia z "długą bazą").

Intensywną "wiązkę" anty-neutrin elektronowych otrzymujemy z reaktorów jądrowych (z rozpadów neutronów).

Strumień neutrin jest proporcjonalny do mocy reaktora i można go dość dokładnie wyliczyć.

Wyniki eksperymentu $CHOOZ \Rightarrow$

Eksperyment Kamland

"Wymarzonym" miejscem na tego typu eksperyment jest Japonia - "mocarstwo" energetyki atomowej.

Eksperyment Kamland został zbudowany w miejscu starego eksperymentu Kamiokande, poprzednika Super-Kamiokande.

A.F.Żarnecki

Detektor Kamland

Budowa podobna do SNO:

- zewnętrzny zbiornik wypełniony 3200 t wody
- wewnętrzny kulisty zbiornik wypełniony 2000 t oleju
- w środku balon wypełniony 1000 t ciekłego scyntylatora
- pomiar przy użyciu ok. 2100 fotopowielaczy.
- całość umieszczona na głębokości ok. 2700 m ("water-equivalent")

Detektor Kamland zbiornik wewnętrzny

Selekcja przypadków

W oddziaływaniach antyneutrin

$$\bar{\nu_e} + p \rightarrow e^+ + n$$

spodziewamy się:

- natychmiastowej emisji γ z anihilacji e^+
- opóźnionej emisji γ z wychwytu neutronu

 $n+p \rightarrow d+\gamma$

Cięcie na energii fotonu z wychwytu neutronu:

Oczekujemy $E_2^\gamma pprox$ 2.2 MeV

Wyraźny sygnał, zaniedbywalne tło

Wyniki

Liczba zarejestrowanych przypadków oddziaływania anty-neutrin elektronowych po 2 latach działania detektora

- oczekiwana: 365.2 ±23.7
- w tym tła: 17.8 \pm 7.3
- zmierzona: 258

 $\frac{N_{obs} - N_{BG}}{N_{exp}} = 0.658 \pm 0.044 \ (stat) \\ \pm 0.047 \ (sys)$

Wyniki

Wyraźne oscylacje widoczne w stosunku mierzonego do oczekiwanego rozkładu L/E ⇒

Dopasowanie:

 $\Delta m^2 = 7.9 \cdot 10^{-5} eV^2$ $\tan^2 \theta = 0.46$

Wyniki

Łączna analiza danych KamLAND i pomiarów neutrin słonecznych

Badania neutrin

Perspektywy

W ciągu ostatnich kilka lat dokonała się "rewolucja" w naszym spojrzeniu na neutrina.

Okazało się, że neutrina maja masę (niezbędny warunek oscylacji) i mieszają się łamiąc zachowanie liczby leptonowej.

Choć wszystkie wyniki można wciąż opisać w ramach Modelu Standardowego (wprowadzając odpowiednią liczbę nowych parametrów), może to być także sygnał jakiejś "nowej fizyki"...

Dlatego planowane i przygotowywane są kolejne, liczne i różnorodne doświadczenia związane z fizyką neutrin (słonecznych, atmosferycznych, reaktorowych, akceleratorowych).

Nowe eksperymenty

AMANDA

(Antarctic Muon And Neutrino Detector Array)

677 modułów na 19 "strunach", 1500–2000 m pod lodem (biegun południowy)

promieniowanie Czerenkowa mierzone przez skierowane do dołu fotopowielacze

Obszar aktywny: ok. 40 mln. ton lodu (!)

Rejestracja mionów o energiach \geq 50 GeV.

Przypadek mionu z oddzłaływania wysokoenergetycznego neutrina

A.F.Żarnecki

Wykład IX

Primary Channels

Size scaling: Lin <22

<53 <58 <62

<26

<31 <:

<67 <7

AMANDA

<u>Badania</u>

Duże odległości między licznikami powodują, że detektor czuły jest tylko na neutrina o bardzo wysokiej energii wyprodukowane w ich oddziaływaniach cząstki muszą mięć zasięg porównywalny z rozmiarami detektora.

Poszukiwanie neutrin stowarzyszonych z:

- wybuchami supernowych
- błyskami gamma (GRB)
- gwiazdami neutronowymi

IceCube

"Następca" AMANDY
 Sensory mają wypełnić obszar 1 km³ lodu
 ⇒ 1 gigatonowy detektor

Przygotowywane eksperymenty

W niedalekiej przyszłości powinny zostać uruchomione eksperymenty OPERA i ICARUS na wiązce ν_{μ} z CERN do Gran Sasso (735 km, jak w MINOS).

OPERA: detekcja τ poprzez połączenie detektorów śladowych z odczytem elektronicznym i emulsji.

ICARUS: detektor śladowy oparty na ciekłym argonie.

Eksperyment następnej generacji: T2K (2008?)

Przygotowywane eksperymenty

Rozbudowa eksperymentu reaktorowego Chooz, Francja \Rightarrow Double Chooz (2007?)

Proponowane eksperymenty

Wodne detektory promieniowania Czerenkowa nowej generacji:

Hiper-Kamiokande (0.5 megatony) \Rightarrow

Frejus, Francja (1 megatona) \Rightarrow

Fabryki neutrin

Pomysł "wiązek β", 2001: wiązka neutrin uzyskiwana z rozpadów jąder promieniotwórczych (np. ⁶He lub ¹³⁸Ne) krążących w pierścieniu akumulacyjnym

⇒ produkcja czystej wiązki ν_e lub $\overline{\nu}_e$ o dobrze określonej energii.

Fabryki neutrin (2)

Rozpady mionów krążących w pierścieniu akumulacyjnym ⇒ intensywne źródło neutrin

Proste odcinki pierścienia ⇒ "laser" neutrinowy

- - b. dobra kolimacja
 - wysoka intensywność
 - wysoka energia $E_{\nu} \sim E_{\mu}$

⇒nowe era w badaniach neutrin

Dużo łatwiejsze do zbudowania niż akcelerator (collider) $\mu^+\mu^-$

A.F.Żarnecki