High Energy Physics Roadmap

LEP / LEP2

- e⁺ e⁻ collider at CERN
- $\sqrt{s} = 91 \text{ GeV} (1989 1995)$ $\sqrt{s} \rightarrow 209 \text{ GeV} (1996 - 2000)$
- Four experiments:
 ALEPH, DELPHI, L3, OPAL

Integrated luminosities in pb^{-1}								
	ALEPH	DELPHI	L3	OPAL	LEP			
$\sqrt{s} \ge 189~{ m GeV}$	629	608	627	596	2461			
$\sqrt{s} \ge 206~{ m GeV}$	130	138	139	129	536			
$\sqrt{s} \geq$ 208 GeV	7.5	8.8	8.3	7.9	32.5			

DESY Hamburg

Fermilab

W-Mass Tevatron Run I Result

- Lum at Runl: 110 pb⁻¹
- 2003 Goals:
- >~200 pb⁻¹ for Fall
- 10 pb ⁻¹/week by the end of the year
- Achieved
- ➤~9.2 pb⁻¹ best week

Both detectors upgraded

New Main Injector:

- Final goal: 30 fb⁻¹ by 2010 (?)
- Improve p-bar production
- Recycler ring: .
 - Reuse p-bars Not used yet

Current Higgs mass constraint MSSM 80.6

Higgs Searches at the LHC

Start hopefully 2007

The energy and luminosity challenges for a future e+e- linear collider:

Linear Collider Parameter Overview

	NLC/JLC	TESLA	CLIC	SLC
f / GHz	11.4	1.3	30	2.9
E-cms / GeV	500 - 1000	500 - 800	3000 —	100
			5000	
g / MV/m	50	23 – 35	150	~20
Lumi / 10 ³⁴	2-3	3.4 – 5.8	~10	.0003
Power p. beam	6.9 – 13.8	11.2 – 17	~15	0.04
/ MW				
σ _y at IP / nm	2.7 – 2.1	5 – 2.8	1	500
Beamstrahlung	3.2 – 4.3	3.4 – 7.5	21	<0.1
δΒ / %				
Site length / km	30	33	~35	3.5
Site power /	195 – 350	140 - 200	~400	
MW				
Cost [§] (stage-I)	~3.5B\$	3.14B€+7k p.y.		?

§ numbers quoted at Snowmass 2001, no pre-operation, escalation and contingency included

Stanford

NLC proposal

X-band technology (SLAC/KEK & coll. Inst.)

SLC-like 20MV/m, 3 GHz 50MV/m (65 unloaded), 11.4GHz

Test Structure Run History (T-Series 2003, not final version for linac)

Time with RF On (hr)

500 (1800) GeV e+e- Linear Collider

Based on superconducting linac technology

TESLA

The Superconducting Electron-Positron Linear Collider with an Integrated X-Ray Laser Laboratory Technical Design Report

H.Welse 3/2000

Why superconducting?

- High efficiency ACBeam (>20%, ~10% normal c.)
- Low frequency:
 - Long pulses with low RF peak power
 - Small beam perturbations from wakefields
 - Intra-train feedback on beam orbit, energy, luminosity...
- First proposed in 1960s (M. Tigner)... show stopper was too low acc. Gradient, too high cost

Accelerating gradient on test stand reached 25 MV/m on average for 1999/2000 cavity production

Higher performance cavities: energy reach B00 GeV

1st step: no add. investment, 2nd step: add cryo+RF power

CHECHIA test in pulsed mode

CLIC two-beam accelerator approach CERN & coll. Inst.

Luminosity stability: "Start-to-end" simulations, including ground motion

Ground motion: varies form "quiet" (model A) to "noisy" (model C), depending on site

There are a number of subtle effects in LC beam dynamics... e.g. the *banana effect* (amplification of bunch deformations during collision): (TESLA beam-beam simulation)

Photon Colliders - The marriage of lasers and electron linear colliders

Photon Collider at TESLA

Photon beam energy spectra

Photon Collider mass reach:

μ + μ - collider project:

Main problem:

luminosity

Ionization Cooling

