Motto: "waiting for Higgs"

Higgs Physics at Future Colliders

Maria Krawczyk and Filip Żarnecki

UW - acad. year 2003/2004 in collaboration with IPJ, UJ/IFJ-Kraków, UŚ-Katowice, UŁ-Łódź!

- Standard Model
- 2 Higgs Doublet Model and Minimal Supersymmetric Standard Model
- Direct searches
- Precision measurements or indirect searches
- High energy colliders: LEP, TEVATRON, HERA, ...LHC, LC, PLC
- Low energy experiments: g-2...

Organization

```
meetings each Friday
video connections to Kraków/Katowice/Łodz
common meetings with Kraków/Katowice/Łodz - once in semester?
a few theoretical talks
details of ongoing analyses
```

Zaliczenie: obecność + krótkie opracowanie jakiegoś tematu (plakat)
Możliwość włączenia się w aktualnie prowadzone analizy

Conveners (main interests):

```
Piotr Zalewski IPJ - LEP, LHC
```

Grzegorz Wrochna IPJ - LHC

Filip Żarnecki IFD UW - HERA, PLC

Maria Krawczyk IFT UW - Theory, HERA, PLC

.

STANDARD MODEL

Symmetry \rightarrow basic idea of modern particle physics

STANDARD MODEL

$$\mathsf{SM} = \mathsf{SU}(2)_{I_{weak}} \times \mathsf{U}(1)_{Y_{weak}} \times \mathsf{SU}(3)_{color}$$

- Origin of masses of elementary particles:
- → spontaneous symmetry breaking
- Higgs mechanism in SM and beyond (MSSM, 2HDM,...):
 Higgs Part icle (s) predicted
- Higgs sector- a clue to further understanding of matter

THE THEORY OF MATTER ⇔ STANDARD MODEL

F. Wilczek, LEPFest, Nov.2000 (hep-ph/0101187)

Theory of Matter =
$$SU(2)_{I_{weak}} \times U(1)_{Y_{weak}} \times SU(3)_{color}$$

Theory of Matter refers to the core concepts

- quantum fiel theory
- gauge symmetry
- spontaneous symmetry breaking
- asymptotic freedom
- •the assignments of the lightest quarks and leptons

Standard Models:

Choose the number of Higgs (scalar) doublets.

Standard Models

 $SM = 1HDM \Rightarrow one Higgs SU(2) doublet$

Basic parameter $oldsymbol{v}$ - vacuum expecation value of scalar field one Higgs boson

one unknown parameter describing whole sector: mass or selfcoupling

nteraction with gauge bosons: $M_V \sim gv$, coupling $\sim M_V$

Yukawa interaction with fermions: $m_f \sim g_f$

Direct searches: $M_{H_{SM}}$ larger than 114.4 GeV.

$2HDM \Rightarrow two Higgs SU(2) doublets$

- CP conservation: Higgs sector: h,H,A, H^\pm ; $\tan \beta = v_2/v_1$ nany parameters: masses M_h, M_H, M_A, M_{H^\pm} , mixing between (h,H) α + ...
- CP violation: mixing between h_1, h_2, h_3 , more angles
- nteraction with gauge bosons Higgs bosons share obligations various models of Yukawa interaction with fermions:

 Eg Model II where one scalar doublet couples to up-type quarks, other
- to down-type quarks and charged leptons
- Higgs sector of MS-SM has structure of 2HDM (II)!
- (CP conservation, number of independent parameters :2
- n more general case all couplings treated as effective ones like in 2HDM(II))

What that means: SM in agreement with data?

2HDM (II) - in agreement with data even in such extreme cases:

with the lightest Higgs boson

- very light, with mass eg. few GeV,
 and with very weak (or no) coupling to Z/W
- SM-like, with mass eg. 115 GeV, couplings as for H_{SM} (relative couplings $\chi_V, \chi_u, \chi_d = 1$)

Challenge ightarrow SM-like scenarios in the extensions of the SM

HAVE FUN JOIN US FUTURE BELONGS TO YOU