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CMSCMS
SM Higgs Search in CMS

Explorable mass range at   s =14 TeV with 105 pb-1
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W ±H0 Channel
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� cross sections:

σW±H0 ×BRH0→bb̄ = 1.28 - 0.54 pb
m

H0 = 110 - 130 GeV/c2

σW±Z0 = 18.2 pb
σW±jj = 27.1 nb
σtt̄ = 569 pb
σtb̄ = 318 pb

� event generator + fragmentation: PYTHIA (for S + B)

� observation only at high luminosity ⇒ pile up is included

� detector simulation: fast CMS response simulation “CMSJET”

� trigger: 1 isol. e± or µ± (pT > 20 GeV ) and 2 jets (ET > 30 GeV )

� 2 tagged jets , jet veto , reconstruct mT (W±) , ET balance
signal to background ratio analysed with cut method

� mass window around the minv.(b, b̄) peak



H →  bb in WH

H →  bb signal and backgrounds
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W ±H0
SM → l±νbb̄

mH0 = 115 GeV/c2
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� 97 < m < 130 GeV/c2:

NH115 = 1610
NW±Z0 = 1198
NW±jj = 27565
Ntt̄ = 36089
Ntb̄ = 6096
NBG = 70948

⇒ results (stat.):

S/B = 2.3%

S/
√
B = 6.0

∆gW W H

gW W H
= 8.4%

∆m/m = 2.3%

� signal over background is low ⇒ need to subtract the background



H →  bb in WH
Signal after background subtraction
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Sensitivity for W ±H0
SM → l±νbb̄
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� S/B is low

and decreases with

increasing mH0

� S/√B ≥ 5 for

mH0 ≤ 123 GeV/c2

and Lint = 300 fb−1



tt̄H0 Channel
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� cross sections:

σtt̄H0 ×BRH0→bb̄ = 0.78 - 0.32 pb
m

H0 = 110 - 130 GeV/c2

σtt̄Z0 = 0.65 pb
σtt̄bb̄ = 3.28 pb
σtt̄jj = 507 pb

⇒ get ktt̄qq̄ = 1.9 , introduce ktt̄H0,tt̄Z0 = 1.5

� generator for signal + BGs: CompHEP , fragmentation: PYTHIA

� detector simulation: fast CMS response simulation “CMSJET”
with parametrisations based on detailed GEANT simulations

� trigger: 1 isol. e± or µ± (pT > 10 GeV ) and min. 6 jets (ET > 20 GeV )

� tag b-jets , reconstruct resonances (+ some kinematic cuts)
maximum likelihood method is used for S / B optimisation

� mass window around the minv.(b, b̄) peak



tt̄H0
SM → l±νqq̄bb̄bb̄

mH0 = 115 GeV/c2
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Sensitivities for tt̄H0
SM → l±νqq̄bb̄bb̄
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BG subtraction
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H → γγ

H → γγ, mH = 100 GeV, σ*BR :   86.1 fb 
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Irreducible γγ backgrounds (at mγγ = 100 GeV) :

Main reducible  backgrounds from γ + jet ( with "jet" = "π0" = "γ")
                 † 15 % of irreducible γγ background

qq → γγ 92 fb / GeV

gg → γγ 167 fb / GeV
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irre ducible backgrounds :
D

_D
_1

26
4c

 

Backgrounds:

Signal:
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The Compact Muon Solenoid

Higgs to 4 leptons (140 < M
H
< 700 GeV) 
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MHiggs= 170 GeV
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Higgs production via Weak Boson Fusion

Motivation:
•Additional potential for Higgs
boson discovery at low masses
•Important for the measurement
of Higgs boson parameters

Several papers by D.Zeppenfeld et al.. Phys.Rev.D60:113004,1999;
Phys.Lett.B454:297-303,1999; Phys.Rev.D59:014037,1999,
Phys.Rev. D62 (2000)
σ = 4 pb (20% of total cross section for mH = 120 GeV)

however: - two high PT forward jets

- small jet activity in the central region

(couplings to bosons, fermions (taus), total width)

H�WW*->ll +X mH=150-180 GeV
sensitivity above 4.5σ for 5fb-1
very good S/B ratio, observe excess of events in the

transverse mass

H->ττ - > l h, l l + X mH = 120-140 GeV

requires 30 fb-1 and combination of both modes

mass reconstruction of the ττ system possible.

Results on couplings measurement still not completed....
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qqH →qqWW →qq lν lν

Counting experiment
10 fb-1

For 5 fb –1 expect:

mH = 130 150 170
S = 5 14 22
B = 4 4 5

Sig. = 2.0 4.7 6.5

)cos-(1Ep2m miss
TTT ϕ∆= ll

qqH → qq ττ → qq lνν lνν
tau reconstruction possible using colinear approximation

For 30 fb –1 expect:
(e, mu)

30 fb-1

mH = 120 130 140
S = 7 5 3
B = 3 2 2

Sig. = 3.2 2.5 1.8

all final states

S=17, B=11



Karl Jakobs ECFA/DESY workshop, St.Malo,April 2002

ATLAS Higgs discovery potential for 30 fb-1

• Vector boson fusion channels improve the
sensitivity significantly in the low mass region

• Several channels available over the full mass range

(important for Higgs boson parameter determination)
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Chapter 7

 Physics

7.1 General introduction
The physics of central collisions is the physics of the Quark Gluon Plasma. Apart from projects like the search
for new physics at very high rapidities (see the CASTOR subproject at ALICE for a search for Centauro events at
the LHC), “Non QGP Physics” may be defined as the physics of peripheral collisions, which includes the effects
of coherent photons and diffraction effects (Pomeron exchange). It is our aim to show that CMS can address very
interesting physics topics in a rather clean way.

Central collision events are characterized by a very high multiplicity. Conversely, the multiplicity in peripheral col-
lisions is comparatively low. The ions do not interact directly with each other and move on essentially undisturbed
in the beam direction. The only possible interaction are therefore due to the long range electromagnetic interaction
and diffractive processes. Due to the coherent action of all the protons in the nucleus, the electromagnetic field
is very strong and the resulting flux of equivalent photons is large, proportional to Z2, where Z is the nuclear
charge. Due to the very short interaction times the spectrum of these photons extends up to about 100 GeV in the
laboratory system. The coherence condition limits the virtuality of the photon to very low values of Q2 < 1=R2,
where R = 1:2 A1=3fm is the nuclear radius.

Hard diffractive processes in heavy ion collisions have also been studied. These are interesting processes on their
own, but they are also a possible background to photon-photon and photon-hadron interactions. The physics po-
tential of such kind of collisions is discussed in Section 7.2, in an extension of CMS note1998/009. It ranges from
studies in QCD and strong field QED to the search for new particles like a light Higgs. This kind of physics is
strongly related to  physics at e+e� colliders with increased luminosity. In view of the strong interaction back-
ground, experimental conditions will be somewhat different from the  physics at e+e� colliders. A limitation
of the heavy ions is that only quasireal but no highly virtual photons will be available in the AA collisions.

Another interesting possibility is the study of photon-hadron interactions, extending the p interaction studies at
HERA/DESY to A interactions, and reaching higher invariant masses than those possible at HERA.

At the STAR (Solenoidal Tracker At RHIC) detector – which began operations in June 2000 – a similar program
of photon and Pomeron interaction studies exists. At RHIC the photon flux will be of the same order of magnitude
but the spectrum is limited to about 3 GeV.

7.2 Photon-photon and photon-hadron physics
The parton model is very useful to study scattering processes at very high energies. The scattering is described as
an incoherent superposition of the scattering of the various constituents. For example, nuclei consist of nucleons
which in turn consist of quarks and gluons, photons consist of lepton pairs, electrons consist of photons, etc..
We note that relativistic nuclei have photons as an important constituent, especially for low enough virtuality
Q2 = �q2 > 0 of the photon. This is due to the coherent action of all the charges in the nucleus. The virtuality of
the photon is related to the size R of the nucleus by

Q2 <� 1=R2 (7.1)

136



Table 7.2: Parameters A and B (see Eq. (7.30)) and the resulting total cross sections for the bound-free pair
production for RHIC and LHC. The parameters are taken from Ref. [291].

Ion A B �( = 106) �( = 2950)
Pb 15:4b �39:0b 115 b 222 b
Au 12:1b �30:7b 90 b 173 b
Ca 1:95mb �5:19mb 14 mb 27.8 mb
O 4:50�b �12:0�b 32 �b 64.3 �b

We note that the electron and positron can also form a bound state, positronium. This is in analogy to the 
production of mesons discussed in Section 7.2.3. With the known width of the parapositronium
�((e+e�)n=1

1S0 ! ) = mc2�5=2, the photon-photon production of this bound state was calculated [300].
The production of orthopositronium, n = 13S1 was also calculated recently [301]. As discussed in Section 7.2.3
the production of orthopositronium is only suppressed by the factor (Z�)2 which is not very small. Therefore
one expects that both kind of positronium are produced in similar numbers. Detailed calculation show that the
three-photon process is indeed not much smaller than the two-photon process [301, 302].

7.2.7 Event rates at CMS

An overview of the expected event rate for a number of different photon-photon reactions to either discrete states
or continuum states is given in the following figures. The y axis on the right hand sides show both the number of
events per second and per 106 s. We use beam luminosities of 1026cm�2s�1 for Pb+Pb and 4 � 1030cm�2s�1

for Ca+Ca. The resonances have been calculated using the masses and photon-decay widths given in Table 7.2.4.
For the calculation of the rate for a standard model Higgs boson, we use the approach discussed in Ref. [259]. H 0

denotes a nonstandard Higgs as given in the “general two-Higgs doublet model” [263]. Because its photon-photon
decay width is rather weakly dependent on its mass in the relevant mass region, we have used a constant value of
0.1 keV in our calculations.

The total hadronic cross section �(hadron) is parameterized as [251]

�(hadron) = A(s=s0)
� + B(s=s0)

�� (7.31)

with s0 = 1 GeV2, � = 0:079, � = 0:4678, A = 173 nb and B = 519 nb. For dilepton and q�q production via ,
we have used the lowest order QED expression for point-like fermions. The heavy quark masses aremc = 1:1GeV
and mb = 4:1 GeV.

7.2.8 Selecting  events

The  luminosities are rather large but the  ! X cross sections are small compared to their hadronic counter-
parts, therefore, e.g., the total hadronic production cross section for all events is still dominated by hadronic events.
This makes it necessary to have an efficient trigger to distinguish photon-photon events from hadronic ones.

There are some characteristic features that make such a trigger possible.  events are characterized by the fact
that both nuclei remain intact after the interaction. Therefore a  event will be characterized by a low multiplicity
in the central region and no event in the very forward or backward directions (corresponding to fragments of the
ions). The momentum transfer and energy loss for each ion are too small for the ion to leave the beam. It should
be noted that in a  interaction with an invariant mass of several GeV leading to hadronic final states, quite a few
particles will be produced, see, e.g., Ref. [251]

A second characteristic is the small transverse momenta of the produced system due to the coherence condition
q? < 1=R � 50 MeV. If one is able to make a complete reconstruction of the momenta of all produced particles
with sufficient accuracy, this can be used as a very good suppression at grazing collisions. As the strong interaction
is short ranged, it has normally a much broader distribution in the transverse momenta. A calculation using the
PHOJET event generator [303] to study processes in central and grazing collisions by Pomeron-exchange found
an average transverse momentum of � 450 MeV, about a factor of 10 larger than the  events. In a study for the
STAR experiment [304] it was also found that triggering for small transverse momenta is an efficient method to
reduce the background coming from grazing collisions.

Another question that has to be addressed is the importance of diffractive events, that is, e.g. photon-Pomeron
and Pomeron-Pomeron processes in ion collisions. From experiments at HERA one knows that the proton has a
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Measurements of Higgs couplings

• Without theoretical input only measurment of the ratios of
couplings possible

i) Ratio between couplings to bosons

• Direct measurement

(QCD corrections cancel)

• Indirect measurement

(Use proportionality between ΓW and Γγ, 

needs theoretical input, 10% uncertainty assumed)

Results for 30 fb-1 and 300 fb-1 per experiment



E. Richter-Was
LHC Workshop, Warsaw,

February 2002 14

Ratios of boson/fermion couplings



WWH Coupling
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Top Higgs Yukawa Coupling
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Width

•Direct
•Mass peak width for mH > 200 GeV 

(ΓH > Γexp. in SM)
•Limited by radiative decays (1.5%)
•MSSM : possible for A/H → µµ

Higgs self-coupling

•Indirect
•From rates of
qqH in γγ, ττ, 
WW
•Assume BR in 
cc, non-
standard < 10%

– for SM   HH → WWWW → lν jj lν jj

(under study, seems very difficult)



*U]HJRU] :URFKQD

�:H ZLOO DQRXQFH LW WR WKH ZRUOG�

�:H ZLOO FHOHEUDWH RXU JUHDW YLFWRU\�

� 7KHUH ZLOO EH ODXUHO ZUHDWKV IRU KHURHV �1REHO�
DQG IHVWLYLWLHV IRU WKH FURZG�

� 79 VKRZV DQG QHZVSDSHU FRYHUV ���

%XW WKLV ZLOO EH WKH EHJLQLQJ RI WKH HQG ���

:H ZLOO EH OHIW ZLWK

� WKH 6WDQGDUG 0RGHO ZKLFK ZRUNV SHUIHFWO\�
EXW ZH GR QRW XQGHUVWDQG ZK\�

� WKH +LJJV PHFKDQLVP
ZKLFK ZH GR QRW NQRZ ZKHUH LW FRPHV IURP�

� QRQXQLILHG IRUFHV� UDQGRP V\PPHWULHV�
DQG a�� DUELWUDU\ SDUDPHWHUV�

� ZLWK QR KLQW ZKDW LV EHKLQG�

� QR LGHD ZKDW WR GR QH[W ���

�������
����������������


�

,PDJLQH� WKDW ZH WXUQ RQ /+& DQG ZH ILQG MXVW 60 KLJJV�
:H ZLOO EHKDYH OLNH 7URMDQV ILQGLQJ WKH :RRGHQ +RUVH�




