CP Nature Of Higgs Bosons From Decays To τ Leptons

 \mathcal{M} ałgorzata \mathcal{W} orek

Institute of Nuclear Physics, Cracow, Poland

G. Bower (SLAC), K. Desch (Hamburg U.), A. Imhof (DESY)

T. Pierzchała (Silesia U.) and Z. Wąs (Cracow, INP & CERN)

Points:

- Interface of TAUOLA τ -lepton decay library with complete spin effects for τ leptons originating from spin zero particle.
- $\tau^{\pm} \rightarrow \pi^{\pm} \bar{\nu_{\tau}}(\nu_{\tau})$ decay channel.
- Physical observable used to distinguish between scalar and pseudoscalar Higgs boson in $\tau^{\pm} \rightarrow \rho^{\pm} \bar{\nu}_{\tau}(\nu_{\tau})$ decay.
- au flight direction as a probe to optimize the method.
- Properties of the density matrix for $H_{mix} \rightarrow \tau^+ \tau^-$ decay.
- Definition of the observable in $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$ decay chain.
- Monte Carlo set-up.
- Results with an idealized detector set-up and with realistic assumptions.
- Summary and Outlook.

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

\mathcal{M} ain \mathcal{R} eferences

- Published Papers:
 - T. Pierzchała, E. Richter-Wąs, Z. Wąs, M. Worek. Acta Phys. Polon. B32, 1277 (2001).
 - Z. Wąs, M. Worek. Acta Phys. Polon. **B33**, 1875 (2002).
 - G. R. Bower, T. Pierzchała, Z. Wąs, M. Worek. Phys. Lett. B543, 227 (2002).
 - K. Desch, Z. Wąs, M. Worek. Eur. Phys. J. C29, 491 (2003).
- Article In Press:
 - K. Desch, A. Imhof, Z. Wąs, M. Worek.
 "Probing the CP nature of the Higgs boson at linear colliders with tau spin correlations; the case of mixed scalar-pseudoscalar couplings".
 Phys. Lett. B.

Workshop On Higgs Physics At Future Colliders

8

Workshop On Higgs Physics At Future Colliders

 \mathcal{M} . Worek (Cracow, INP)

Parity Of Higgs Boson

• H/A parity information can be extracted from the correlations between τ^+ and τ^- spin components in the plane transverse to the $\tau^+\tau^-$ axes.

$$\Gamma(H/A^0 \to \tau^+ \tau^-) \sim 1 - s_{\parallel}^{\tau^+} s_{\parallel}^{\tau^-} \pm s_{\perp}^{\tau^+} s_{\perp}^{\tau^-}$$

• s^{τ} is the τ polarization vectors.

• \parallel / \perp denote components parallel / transverse to the Higgs boson momentum.

$$wt = \frac{1}{4} \left(1 + \sum_{ij=1}^{3} R_{ij} h^i h^j \right)$$

$$R_{33} = -1, \quad R_{11} = \pm 1, \quad R_{22} = \pm 1$$

Components respectively for scalar and pseudoscalar Higgs boson.

 $\mathcal{M}.$ Worek (Cracow, INP)

Warsaw University, 21 November 2003

 \mathcal{W} arsaw \mathcal{U} niversity, 21 \mathcal{N} ovember 2003

Workshop On Higgs Physics At Future Colliders

$$\tau^{\pm} \to \pi^{\pm} \bar{\nu}_{\tau}(\nu_{\tau}) \mathcal{D}ecay$$

- Case of $\tau \to \pi \nu_{\tau}$ decay, $\mathcal{BR}(\tau \to \pi \nu_{\tau}) = 11\%$.
- Sensitivity to the parity of the Higgs reflected in angular correlations of secondary decay products.
- The polarimeter vector in the τ rest frame is given by the formula $\tilde{h} = -\tilde{n}_{\pi}$ where \tilde{n} denotes the unit vector into the direction of flight of the pion.

• Useful observable is the angle δ between the two charged pions in the Higgs rest frame (acollinearity distribution of $\pi^+\pi^-$ from τ^{\pm} decays).

Monte Carlo Set-up

- Monte Carlo samples \implies TAUOLA τ lepton decay library.
- Production of the τ lepton pairs \implies PYTHIA.
- Production process $\implies e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-(q\bar{q})H.$
- Higgs boson mass $\implies m_H = 120 \ GeV$.
- CMS energy $\implies \sqrt{s} = 350 \ GeV.$
- The effects of ISR \implies in PYTHIA generation.
- τ lepton pair decay with full spin effects in decay chain $H \to \tau^+ \tau^-, \ \tau^\pm \to \pi^\pm \bar{\nu}_\tau(\nu_\tau) \Longrightarrow$
 - \implies UNIVERSAL INTERFACE FOR TAUOLA PACKAGE.
- Detector effects ⇒ Gaussian spreads of the measured quantities with respect to the generated ones ⇒ verified with SIMDET.

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Detector Effects

- Gaussian spreads of 'measured' quantities with respect to generated ones. For charged pion momentum we assume 0.1% spread on its energy and direction.
- Higgs rest frame reconstructed in Higgsstrahlung production process, $e^+e^- \rightarrow HZ$ — when Z boson decays either into a charged lepton pair or hadronically.
- Reconstructed Higgs boson momentum difference of the sum of beam momenta and momenta of all visible particles, decay products of Z and all radiative photons of $|\cos \theta| < 0.98$.
- Spread of $2 \ GeV$ with respect to transverse momentum of reconstructed Higgs boson momentum, and $5 \ GeV$ for longitudinal component, to mimic beamstrahlung effect.

Workshop On Higgs Physics At Future Colliders

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Monte Carlo Set-up

- Monte Carlo samples \implies TAUOLA τ lepton decay library.
- Production of the τ lepton pairs \implies PYTHIA.
- Production process $\implies e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-(q\bar{q})H.$
- Higgs boson mass $\implies m_H = 120 \ GeV$.
- CMS energy $\implies \sqrt{s} = 500 \ GeV.$
- The effects of ISR \implies in PYTHIA generation.
- τ lepton pair decay with full spin effects in decay chain $H \to \tau^+ \tau^-, \ \tau^{\pm} \to \rho^{\pm} \bar{\nu_{\tau}}(\nu_{\tau}), \ \rho^{\pm} \to \pi^{\pm} \pi^0 \Longrightarrow$ \implies UNIVERSAL INTERFACE FOR TAUOLA PACKAGE.
- Numerical results \implies confirmed with second simulation using PANDORA.

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Workshop On Higgs Physics At Future Colliders

Workshop On Higgs Physics At Future Colliders

 $\mathcal{M}.$ Worek (Cracow, INP)

Summary And Outlook

- Extended standard universal interface of the TAUOLA with the complete spin effects for τ leptons originating from the spin zero particle is now available.
- Interface works with any Monte Carlo generator providing Higgs boson production, and subsequent decay into a pair of τ leptons.
- Little hope for the elegant method to check Higgs boson parity using its decay to $\tau^{\pm} \rightarrow \pi^{\pm} \bar{\nu}_{\tau}(\nu_{\tau})$.
- The ρ⁺ρ⁻ decay products' acoplanarity distribution clearly distinguish the different parity states – measurable using typical properties of a future detector at an e⁺e⁻ linear collider.

Summary And Outlook

- For $500 \ fb^{-1}$ of luminosity at a $\sqrt{s} = 500 \ GeV \ CP$ of a $120 \ GeV$ Higgs boson can be measured to a confidence level greater than 95%.
- To confirm the method we have used two distinct Monte Carlo programs.
- This technique is both model independent and independent of the Higgs production mechanism. Depends only on good measurements of the Higgs decay products.
- This method may be applicable to other production modes including those available at proton colliders as well as at electron colliders.

the cone closest to the PCA- π plane is taken.

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Details Of Observable

- Acoplanarity of the ρ^+ and ρ^- decay planes:
 - Reconstructed four-momenta of π^+ and π^0 are combined to yield the ρ^+ four-momentum. The same is done for the ρ^- .
 - All reconstructed four-momenta are boosted into the $\rho^+\rho^-$ rest frame.
 - The angle φ between the planes of the ρ^+ and ρ^- decay products in this frame is the acoplanarity.
- Normalized energy differences:
 - Events are divided into two classes depending on value of $y_1 y_2$.

$$- y_1 = rac{E_{\pi^+} - E_{\pi^0}}{E_{\pi^+} + E_{\pi^0}}; \quad y_2 = rac{E_{\pi^-} - E_{\pi^0}}{E_{\pi^-} + E_{\pi^0}}.$$

– The energies of π^{\pm}, π^{0} are to be taken in respective τ^{\pm} rest frames.

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

 \mathcal{D} etails \mathcal{O} f \mathcal{O} bservable

Higgs boson rest frame:

- Higgs boson rest frame can be reconstructed in the Higgsstrahlung production process $e^+e^- \rightarrow ZH$; $Z \rightarrow \mu^+\mu^-(q\bar{q})$; $H \rightarrow \tau^+\tau^-$.
- Reconstructed Higgs boson momentum as the difference of the sum of beam momenta and momenta of all visible particles, decay products of Z and all radiative photons of $|\cos \theta| < 0.98$.
- au energy:
 - In reconstructed Higgs boson rest frame τ four-momenta are estimated in a crude way by assuming the direction of the respective ρ 's and an energy of $m_H/2$.
 - The τ momenta are boosted back to laboratory frame and their energies are taken to be reconstructed energies of τ leptons.

- τ direction:
 - τ direction in the laboratory system is constrained by two requirements.
 - It has to lie on a cone around the ho direction with opening angle ψ :

$$\cos \psi = \frac{2E_{\tau}E_{\rho} - m_{\tau}^2 - m_{\rho}^2}{2\vec{p_{\tau}}\vec{p_{\rho}}},$$

- It has to lie in the plane spanned by the vector pointing from PP to PCA and the π^+ momentum.
- Impact parameter improved replacement τ -rest frame:
 - With the help of τ energy and τ momentum new impact parameter improved replacement τ rest frame can be defined.
 - Alternative way of estimating difference of π^{\pm} , π^{0} energies in τ^{\pm} rest frames.

Monte Carlo Set-up

- Monte Carlo samples \implies TAUOLA τ lepton decay library.
- Production of the τ lepton pairs \implies PYTHIA.
- Production process $\implies e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-(q\bar{q})H.$
- Higgs boson mass $\implies m_H = 120 \ GeV$.
- CMS energy $\implies \sqrt{s} = 350 \ GeV.$
- The effects of ISR \implies in PYTHIA generation.
- τ lepton pair decay with full spin effects in decay chain $H \to \tau^+ \tau^-, \ \tau^{\pm} \to \rho^{\pm} \bar{\nu}_{\tau}(\nu_{\tau}), \ \rho^{\pm} \to \pi^{\pm} \pi^0 \Longrightarrow$ \Longrightarrow UNIVERSAL INTERFACE FOR TAUOLA PACKAGE.
- Detector effects ⇒ Gaussian spreads of the measured quantities with respect to the generated ones ⇒ verified with SIMDET.

Workshop On Higgs Physics At Future Colliders

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

- Measurement of impact parameter can be helpful in determination of Higgs boson parity at a future linear collider, using $H/A \rightarrow \tau^+ \tau^-$; $\tau^{\pm} \rightarrow \rho^{\pm} \bar{\nu_{\tau}}(\nu_{\tau})$ cascade decay.
- Separation between scalar and pseudoscalar for $120~{\rm GeV}$ Standard Model Higgs boson $\sim 4.5\sigma$.
- Angular resolution of vector pointing from PP to PCA has been found to be approximately 25° .

• Higgs boson Yukawa coupling expressed with the help of the scalar–pseudoscalar mixing angle ϕ

$$\bar{\tau}N(\cos\phi + i\sin\phi\gamma_5)\tau$$

• Components of the spin density matrix

$$R_{11} = R_{22} = \frac{\cos \phi^2 \ \beta^2 - \sin \phi^2}{\cos \phi^2 \ \beta^2 + \sin \phi^2} \qquad R_{12} = -R_{21} = \frac{2 \cos \phi \sin \phi \ \beta}{\cos \phi^2 \ \beta^2 + \sin \phi^2}$$

• In the obvious limit $\beta \to 1$ — the components of the rotation matrix coincide with matrix for rotation by an angle -2ϕ around z axis:

$$R_{11} = R_{22} = \cos 2\phi \qquad R_{12} = -R_{21} = \sin 2\phi$$

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Monte Carlo Set-up

- Monte Carlo samples \implies TAUOLA τ lepton decay library.
- Production of the τ lepton pairs \implies PYTHIA.
- Production process $\implies e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-(q\bar{q})H.$
- Higgs boson mass $\implies m_H = 120 \ GeV$.
- CMS energy $\implies \sqrt{s} = 350 \ GeV.$
- The effects of ISR \implies in PYTHIA generation.
- τ lepton pair decay with full spin effects in decay chain $H \to \tau^+ \tau^-, \ \tau^{\pm} \to \rho^{\pm} \bar{\nu}_{\tau}(\nu_{\tau}), \ \rho^{\pm} \to \pi^{\pm} \pi^0 \Longrightarrow$ \Longrightarrow UNIVERSAL INTERFACE FOR TAUOLA PACKAGE.
- Detector effects ⇒ Gaussian spreads of the measured quantities with respect to the generated ones ⇒ verified with SIMDET.

Precision on $\phi \sim 6^{\circ}$ for $1000 \ fb^{-1}$ and $\sqrt{s} = 350 \ {\rm GeV}$

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Summary And Outlook

- Prospects for measurement of pseudoscalar admixture in $h\tau\tau$ coupling to a Standard Model Higgs boson.
- Specific angular distributions in $h \to \tau^+ \tau^-$, $\tau^{\pm} \to \rho^{\pm} \bar{\nu}_{\tau}(\nu_{\tau})$ decay chain can be used to probe mixing angles of scalar–pseudoscalar $h\tau\tau$ couplings.
- Precision on mixing angle ϕ of approximately 6° can be anticipated for a \mathcal{SM} Higgs cross section using typical properties of a future detector at an e^+e^- linear collider.

• The cross section for the process

 $e^+(p_1)e^-(p_2) \to \tau^+(q_1,s_1)\tau^-(q_2,s_2)$ $d\sigma = |A|^2 (1 + R_{\mu\nu} s_1^{\mu} s_2^{\nu}) dLips(p_1 + p_2; q_1, q_2)$ • The partial width for the τ^{\pm} decay is given by $\tau^+(q_1) \to \bar{\nu}_{\tau}(k_1)\nu_e(k_2)e^-(k_3)$ $d\Gamma_e = \frac{1}{2M} |\bar{\mathcal{M}}|^2 (1 + h_{1\mu} s_1^{\mu}) dLips(q_1; k_1, k_2, k_3)$ $\tau^{-}(q_2) \rightarrow \nu_{\tau}(k_1') \bar{\nu}_e(k_2') e^+(k_3')$ $d\Gamma_{e} = \frac{1}{2M} |\bar{\mathcal{M}}'|^{2} (1 + h_{2\mu} s_{2}^{\mu}) dLips(q_{2}; k_{1}', k_{2}', k_{3}')$ The cross section for the combined production and decay process $d\sigma = |A|^2 |\bar{\mathcal{M}}|^2 |\bar{\mathcal{M}}'|^2 (1 + R_{\mu\nu} h_1^{\mu} h_2^{\nu})$ $dLips(p_1 + p_2; q_1, q_2) dLips(q_1; k_1, k_2, k_3) dLips(q_2; k_1^{'}, k_2^{'}, k_3^{'})$

General Formalism For Semileptonic τ Decays

• The matrix element for $\tau(P,s) \rightarrow \nu_{\tau}(N) + X$

$$\mathcal{M} = \frac{G}{\sqrt{2}}\bar{u}(N)\gamma^{\mu}(v+a\gamma_5)u(P)J_{\mu}$$

• The squared matrix element reads:

$$|\mathcal{M}|^{2} = G^{2} \frac{v^{2} + a^{2}}{2} (\omega + H_{\mu} s^{\mu})$$

$$\omega = P^{\mu} (\Pi_{\mu} - \gamma_{va} \Pi_{\mu}^{5}) \qquad H_{\mu} = \frac{1}{M} (M^{2} \delta^{\nu}_{\mu} - P_{\mu} P_{\nu}) (\Pi^{5}_{\nu} - \gamma_{va} \Pi_{\nu})$$

$$\Pi_{\mu} = 2 \left((J^{*} \cdot N) J_{\mu} + (J \cdot N) J^{*}_{\mu} - (J^{*} \cdot J) N_{\mu} \right) \qquad \Pi^{5\mu} = 2\epsilon^{\mu\nu\rho\sigma} \mathcal{I}m J^{*}_{\nu} J_{\rho} N_{\sigma}$$

$$\gamma_{va} = -\frac{2va}{v^{2} + a^{2}}$$

• When $\gamma_{va}=1$ and $v^2=a^2$ the polarimeter vector h in the au rest frame reads: $h_{\mu}=\frac{H_{\mu}}{-1}$

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)

Beamstrahlung Effects

	TESLA	NLC/JLC
$E_{\rm CM}~({ m GeV})$	500	500
RF frequency (GHz)	1.3	11.4
Repetition rate (Hz)	5	120
Luminosity $(10^{34} \text{ cm}^{-2} \text{sec}^{-1})$	3.4	2.2
Bunch separation (ns)	337	1.4
Effective gradient (MV/m)	22	50.2
Beamstrahlung (%)	3.3	4.6
Linac length (km)	31	10.8

Table 1: Parameters of TESLA and NLC/JLC accelerator designs.

- At linear colliders with center of mass energies of $350 \ GeV$ and above, beamstrahlung will become of significant physical interest.
- Occurs when particles of first beam, or radiating beam, are deflected by electromagnetic field of second (target) beam and emit synchrotron radiation.
- Beamstrahlung may carry away substantial fraction of primary beam energy and lead to degradation of effective center of mass energy

 $\mathcal{M}.$ \mathcal{W} orek (Cracow, INP)