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Introduction

Why do we need Photon Collider ?
Photon-photon collisions:

production of a charged particle pairs vy — PP~
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Introduction

Why do we need Photon Collider ?
Photon-photon collisions:

production of a charged particle pairs vy — PP~
cross sections much higher than in ete™ !
production of a neutral particle pairs, vy — Z°Z°
loop contributions from ALL charged particles !
resolved photon interactions

QCD test ground

production of single C' = + states (eg. Higgs)
resonant Higgs production  similarto Z° inete™
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Introduction

Why do we need Photon Collider ?
Comparison of SM Higgs boson production cross sections:
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Higgs boson at PC

Two-photon width of the Higgs boson I, is sensitive to all massive
and charged particles in the loop:

| A]
1282 7 )

L(h =) =

where:
A = Aw (Mw) + Efj N.Q3As(My) + ...
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Phase

M,, = 120. GeV | Im(A)
amplitude A is real ‘
Imaginary contribution from light
fermions - very tiny
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Phase

For my < 2mw M, = 160. GeV Im(A)
amplitude A is real l

— Sum Re(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

M,, = 165. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

M, = 170. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 180. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 200. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 220. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 250. GeV | Im(A)

' Photon Collider

é - p.7/35



Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 300. GeV | Im(A)
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Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M,, = 330. GeV | Im(A)

' Photon Collider

é - p.7/35



Phase

For myg < 2my
amplitude A is real

For myg > 2mw
W contribution Is complex

A =|A|- e - phase ¢, # 0
[y ~ Im(A)? + Re(A)?

M, = 350. GeV

Im(A)
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Phase

For my < 2mw M, = 400. GeV Im(A)
amplitude A is real l

For mg >2myw \/ ,,,,,,,,,,,,,,,,

W contribution is complex — Sum Re(A)
— W |

A =|A|-e? -phase ¢, # 0 t

[y ~ Im(A)? + Re(A)?
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Phase

For my < 2mw M;, = 450. GeV Im(A)
amplitude A is real l

For myg >2my \/ fffffffffffffffff

W contribution is complex — Sum Re(A)
— W |

A =|A|-e? -phase ¢, # 0 t

[y ~ Im(A)? + Re(A)?
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Phase

For my < 2mw M;, =500. GeV Im(A)
amplitude A is real l

For myg >2my \/ fffffffffffffffff

W contribution is complex — Sum Re(A)
— W |

A =|A|-e? -phase ¢, # 0 t

[y ~ Im(A)? + Re(A)?
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New particles

Expected contribution from new heavy particle - real

M,, = 160. GeV | Im(A)
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New particles

Expected contribution from new heavy particle - real

For mg < 2mwy M, = 160. GeV | 1m(a)
change inI’,, only ¢, =0 M, = 800. GeV
ffffffffffffffffffffffffff ) —
— SM Re(A)
— W
t
— L
= Sum
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New particles

Expected contribution from new heavy particle - real

For my < 2mw M, =350. GeV | |m(A)
changein ., only ¢, =0 T

For myg > 2mwy
both I, and ¢,, sensitive to
new particles o Re(A)

for M; ~350 GeV
amplitude mostly imaginary:
Re(A) ~ 0
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New particles

Expected contribution from new heavy particle - real

For my < 2my M, =350.GeV | |m(a)
change in I, only ¢, =0 M_ = 800. GeV

For myg > 2mwy
both I, and ¢,, sensitive to
new particles

—_— SM Re(A)
— W
t
for M; ~350 GeV — L
amplitude mostly imaginary: Tosum
Re(A) ~ 0
= I, little sensitive to new particles !!!
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New particles

Expected contribution from new heavy particle - real

For mg < 2mwy M, = 350. GeV | Im(a)
change inI’,, only ¢, =0 M, =800. GeV

both I, and ¢,, sensitive to
new partices

— SM Re(A)
— W
t
for M;, ~350 GeV — L
. . . . = Sum
amplitude mostly imaginary: S

Re(A) ~ 0
= I, little sensitive to new particles !!!
= measure ¢, ?
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New particles

Contribution to [

~800

FVJFSM

1.2

GeV

14

H* (2HDM)

Significant
deviations in I,
for small M,

Small effects for

-, from new heavy charged particles with mass

0.8 | — D (Q=-1) M;, ~ 350 GeV
* U (Q=+7y)
— L (Q=-1)
0.6 [
100 ‘2(‘30‘ — ‘3(‘30‘ — ‘4(‘30‘ — ‘5(‘30‘
M, [GeV]
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New particles

Contribution to ¢, from new heavy charged particles with mass
~800 GeV

No deviations in ¢, for light

0.5 .
g | H (HDm) e | H19gs
' [ — D (Q=-",)
T 0l T o) My, < 160 GeV.
[ — L Q=

Large effects
expected for

01 heavy Higgs
100 200 300 400 500

M, [Gevy  F1OW can we

measure It?
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Photon Collider

High energy, high intensity photon beam can be obtained using
Compton backscattering of laser light off the high energy electrons

Compton scattering:

electron "\'5"’{"'1
bunch /\f‘f\j\ e
Y e /
e
: 1P . v\/\/\‘

— fle)
E'-,/ 1) A=) 7 ~ANN Y

b backscattering:
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Photon Collider

High energy, high intensity photon beam can be obtained using
Compton backscattering of laser light off the high energy electrons

%
electron ot electron
bunch /f‘f\/\ ”“\_,\/\/\ bunc
: PP .
e W, =y s O AT R

TN

PC: natural extension of all eTe™ linear collider projects including
TESLA
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~ [hoton Colliders — The marriage of
lasers and electron linear colliders

NLC Electron Beam Format |
e
101 1 Detector - Laser]
NLC Laser Format
7 N &~ 4 =TT
- IP \
| ) e = —
\ cpP / i Final Focus
T \"* re Quadrupole

."i\ I:l..-'f'
< / Incoming
"~/ Laser beams
o 1aV i T o

=,

- .
B ( | NLC Laser
500 Gev —
. ~ 1 Joule/bunch
N 5 mm [ 5 mm } 95 1-ps bun:h_eafpulse
Conversion Interaction Conversion 2.8 nsec spacing
Point (CP) Point (IP) Point (CP)
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Laser requirements

e Laser pulses of
~5J pulse energie

e have to match the TESLA bunch-structure
e 2820 bunches/train

~ 1-3ps pulse duration (FWHM) e 337ns spacing

~ 14 pum  spotsize (1/e?)
~ 1 um wavelength

2.5° —4° e -IR crossing angle

Requires:
e high peak power (= 2TW)

e HHz repetition rate

2820 bunches 5 bunchtrains / sec

1 msec 0.2 sec 1 msec

e high average power (= 70kW)
e precise timing, low jitter (1 ps)

One solution:

e Pulsed laser with the correct timestructure and relaxed power requirements
feeds a resonant cavity for enhancement of power
e telescopic active or passive ring resonator

<
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Layout of the Beams

Electrons Out

Electrons Out

Laser

lectrons In
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How to meet the length control requirement

Use of 2 lasers: e weak cw-laser for prealignement of the cavity - length control
(Pound-Drever-Hall scheme: frequency side-bands)

e mode-locked high-power laser for compton process
(deformable mirrors controlled by wavefront sensor)

principle scheme of a passive cavity with deformable mirrors:

feedback control
of deformable mirrors

l and of the resonator length
coupling Hllgh-poyver_laser puls_es
mirror circulating in the cavity

@ detector
—_—

beam pipe
detector

| >

short pulses
from laser

electron beam

focussing
mirror

beam pipe focussing

mirror

‘ 12 m ‘
35m

final focus: M4, MS5: off-axis paraboloid =8 no beam magnification (V=1)
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Laser: Ring Resonator

feedback control
of deformable mirrors
and of the resonator length

‘I& coupling
Y mirror

deformable .
mirror & >

| > Piezo-driven
h | deformable
short pulses mifror
from laser

electron beam

[

beam pipe

)3

focussing
mirror

deformable
mirror

High-power laser pulses
circulating in the cavity

pump source
of moderate power
(2 ms pulse length)

|

deformable amplifying
mirror mirror
detector -
focussing
mirror
] beam pipe
detector

@A‘

feedback control
of deformable mirrors
and of the resonator length
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IR design... Gronberg et.al

3
- s < -+ Light Path
4 V2]
M1
| i
Final !

— Faocus it T
i Mirror |

= ij 2 ‘é 4 5

ki \___‘ . Extracﬁnn Line

2 \ I

1‘\_____‘_ _

Z (meters fram IP)
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Beam Steering: e-e- IP

fast feed-back system Problems:
- disrupted beam has large tails
- large apperture of BPMs

| || solution?
| | | undisrupted Pilot bunches
for beam steering ?
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Interferometric Alignment System
Testbed Under Construction

: Waveplate
Beamsplitter :
Interference pattern of Co::ie:lr;lon
aligned system 532nm ; ™ A R
===« == ey

Focusing assemblies

Interferometry (depicted as lenses)

cCcb

- =~ — - ey =

1.047 microns

e Half-scale prototype of optics / alignment system
1s currently under construction
— Optics fabricated, currently being coated
— Alignment system being assembled
— Operation in September 2002
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Test optical cavity
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Photon Collider

To get very high v+ luminosity we need very powerful lasers and
strongly focused electron beams.
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Photon Collider

To get very high v+ luminosity we need very powerful lasers and
strongly focused electron beams.
Higher order processes become important.
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Photon Collider

To get very high v+ luminosity we need very powerful lasers and

strongly focused electron beams.
Higher order processes become important.

s12= 500 GeV L=0

[] simulation (V.T.)

— Compton formula

#events

4000 | A = 1.05 um

2000

0 | | | | | |
200 400
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for:

[] simulation (V.T.)

#events

= Compton formula

10000

5000

0 50 100 150 200 250
E, [GeV]
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for: 9
] é [] simulation (V.T.)
nonlinear o —  modified Compton
effects 10000
5000
0 | | | |

0 50 100 150 200 250
E, [GeV]
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for: o
o I simulation (V.T.)
nonlinear é —  modified Compton
effects 10000 |-
angular
correlations 5000 |

0 50 100 150 200 250
E, [GeV]
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for:

I simulation (V.T.)

#events

nonlinear
effe CtS 10000 = — ey-ey

angular
correlations 5000 |

— modified Compton

two photon
scattering

0 50 100 150 200 250
E, [GeV]
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for:

#events

nonlinear
effects 10000 |-

angular
correlations 5000 |

two photon
scattering

simulation (V.T.)
modified Compton
ey- ey

Scattering on secondary e

electron
rescattering

<
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

s22= 500 GeV

corrected for:

simulation (V.T.)

#events
|

nonlinear
effe CtS 10000 = — ey-ey

Scattering on secondary e

— modified Compton

angular N
correlations 5000

two photon
scattering

electron
rescattering

= CompAZ
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CompAZ

TESLA Photon Collider luminosity spectra parametrization
Very good description of the high energy part

~~ invariant mass polarization
U) Selg: 500 GeV L=0 A Seléz: 500 GeV
) N
o [] simulation (V.T.) <, 1F [ simulation (V.T.)
> <
:(t]t) = Compton formula v — CompAz

4000 =— CompAZ

2000
. | | | | | | B
0 200 400 0 200 400
WW [GeV] WW [GeV]
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Beam energy correlations

There are large correlations between energies of two beams

energies normalized to uncorrelated supperposition

1.5

[GeV]

1.4
«~ 200

E

1.3

1.2

1.1

100 100

1

0.9

0.8

0.7
0 100 200

E, [GeV]
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Beam energy correlations

L=0 s¥2= 500 GeV Full MC/CompaZ
— 250
> —
2 L =03W, 15
~ O
1.3
150
1.2
= 1.1
100
— 1
50 -1 0.9
— 0.8
0 L
0 50 100 150 200 250

E. [GeV]

CompAZ describes well correlations in high energy part of the spectra
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Luminosity and Polarization

J=2 > >
_ 0.72 pb
o=
Sy [TeV]
\NAANNZY
L T T J — O :><:
- 0:86pb 8 mj
Syy [TeV] Sy

Tagged Photons

vy=> ffy
c=0 ford=0,2
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Bl " Luminosity Measurement . [N

+ Proposals Moenig,Marfin, Telnov
_ R e mm— BARR) ARARS RS RARSF
- ee > ee (up)/ not for J=0 G (E, ) > € Ey), pb
- ee — eey (WvW) [ Ty e'e (W), 0,=2)(noy)
- ee — 4 leptons 0
—— ; W_=2E =400 GeV
- Precision ~0.1% (stat) -\ 0, =02 rad
- For Higgs (J=0) e.g. ee — eey LI 1
TESLA luminosity: | O e H) Vg 1, =2)
[:(v’«.’ > 0.8/s! ) = 5.3 10%cm %! 10 3 e ‘-{;"“E}) .
L(my £ l GeV) = 38- 10%2em =21 wld'“u
. | IV T SO T DU R |ﬁ|‘:¢. o
with P ~ 90% 10 01702 03 04 05 nﬁ 07 08 09 1
e=E,../Ey

. (=7
= in a 2 years run (2- 10°s):

For ey collisions
- ey > ey
- ey — eee

14
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Luminosity Simulation (CAIN)

w/ JLC 7YY parameter

%3 t@

XI_OI I I'| I I I | I I I I | I I I I | I I I I
L Ly, ALY . 1.37%x107%
YY
— L Le}/ 7]
> L — L i
ce 33
83__ /;LZ{:ZAXIO
o | N ]
> F no 33
o, Lll_\_ h 1LY 0.7x10
lE B . a1 _':
o i -H-I""'-LI _|-I : j
l_-ll __ -LL--"I_L - = '-—I -: ;
[ == =] eo 34
' :'h - L7 :1.18%x10
i l..L.r'!"'l'“l““l““l”-”:I“[I“l lIIll‘I-IIrlnr”l;“Il”“l”“II“,IIL”:III- | | ] —2 _1
0 100 200 300 400 500 cm S

\/;(GeV)
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vy Engineering Test Facility at SL.C
Revive SLC and install beampipe with optics
to produce yy luminosity

. ¢

Beam Energy 30 GeV
DR e, , (m-rad) 1100 /50
FF 1e, , (m-rad) | 1600 /160 - e
B,/ By 8/0.1 mm B _& A
o 0.1- 1.0 mm 2

z a” Uium]:lﬁ_gr

..-|l"'

o, y 1500/55nm ", . /7 Fositran. q‘ﬁ“' |i
T 6.0E - _i: :‘; ._. t et EiEi:‘-"l'llﬂ_l ! %*? _Wi

'*‘-H.J- _.-"

Pusi'l‘lnh Wi
Snull:c R

,..-f Positrans -

-,':'

ot

| Magnets

S5LD Detectuf
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SLC Photon collider requires upgrade of beam pipe and
installation of optics, laser and alignment system

Alignment laser
system buy and

Interaction
region optics
+ mechanical

install l

Control and data
‘ Compton guide acq. systems

design and p tube
fabrication P refurbishment
‘/ Compton
(mercury)
laser buy

and install

Clean room
Facility preparation refurbishment
and installation at
SLD
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Compton backscattering at 30 GeV
with a low power laser

Comparison of CAIN with a simple
PANDORA parameterization. Laser
pulse of 0.1 Joule

e (.1 Joule laser pulses produce
measurable Yy luminosity

— 25% of incoming electrons 10E8,
Compton scatter

— Maximum photon energy 1/3 of
incoming electron energy

— Electron energy cuts off at 20
GeV

* Low energy tail from multiple
scatters

e The vy, ey and ee events can be

NN

(av]
LEELELEP { I L T 1 1
T |
/5—‘

3.0E10

|

(W]

All Photons affter CP Right going electron

|
|
f
A {
j.‘ T ]
in

sc?parateq splely wiFh their I Sy -

kinematic information L - | M

— Identify two hit events in the L H .

calorimeter ™ || I sl . [

— No tracking required 0 - & a0
E(GeV)

— Run ~1 day for a spectrum
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Disruption of Spent Electrons

20

15

10

®@ cc lbeam

S

® cte—leam
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Neutron background: mask design

Option 3: “hybrid” cylinder with tunnel and
sandwich absorber”

Water 10cm Vacuum 20cm
AW

D5m

Beam dump D1m

EE?;
=
m—— 7
—
>
o
o

D10m
—
=
=

Z='130m Z='100m Z=_90m

Scoring plane Interaction

' Photon Collider
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Conclusions

Strongly motivated option for Future Linear Collider
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Conclusions

Strongly motivated option for Future Linear Collider

Seems feasible, promissing results of first studies.
Many technical details still to be studied
for all projects (TESLA, NLC, GLC):

Powerfull and very “precise” laser

Optical cavity

Influence on detector design

Background reduction

Luminosity and polarisation measurement
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