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Introduction
Why do we need Photon Collider ?

Photon-photon collisions:

production of a charged particle pairs

cross sections much higher than in !

production of a neutral particle pairs,

loop contributions from ALL charged particles !

resolved photon interactions

QCD test ground

production of single states (eg. Higgs)

resonant Higgs production similar to in
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Comparison of SM Higgs boson production cross sections:

cross section order of magni-
tude higher

expected luminosity similar to
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Higgs boson at PC

Two-photon width of the Higgs boson

� � � is sensitive to all massive
and charged particles in the loop:

� � � � � � � �

��� � � ��

�� 	 � 
 � �

 
 � γ

γ

h

X

where:

� �
� � � � �

�
��� � � � � � � � � ��� � �

two-photon amplitude
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Phase

For

amplitude is real
imaginary contribution from light
fermions - very tiny

For
contribution is complex

- phase

Mh = 120. GeV Im(A)

Re(A)Sum
W
t
b ×100
c ×100
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New particles

Expected contribution from new heavy particle - real

For
change in only

For
both and sensitive to
new particles

Mh = 160. GeV Im(A)

Re(A)SM
W
t

for 350 GeV
amplitude mostly imaginary:

little sensitive to new particles !!!
measure ?
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New particles

Contribution to

� � � from new heavy charged particles with mass

�800 GeV
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New particles

Contribution to

� � � from new heavy charged particles with mass

�800 GeV

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500

Mh [GeV]

φ γγ
-φ

S
M

H+  (2HDM)
D  (Q= -1/3)
U  (Q= +2/3)
L  (Q= -1)

NZK
.

No deviations in

� � � for light
Higgs

� � �� �
GeV.

Large effects
expected for
heavy Higgs

How can we
measure it?
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Photon Collider

High energy, high intensity photon beam can be obtained using
Compton backscattering of laser light off the high energy electrons

Compton scattering:

γ e

γ

e

backscattering:

e

e

γ
γ

PC: natural extension of all linear collider projects including
TESLA
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Test optical cavity
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Photon Collider
To get very high � � luminosity we need very powerful lasers and
strongly focused electron beams.

Higher order processes become important.
Compton formula fails to describe the luminosity spectrum

Wγγ [GeV]

#e
ve

n
ts

simulation (V.T.)

Compton formula

λL = 1.05 µm

see
1/2 = 500 GeV L=0

0

2000

4000

0 200 400
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CompAZ

Parametrization of the photon energy spectrum

Compton formula

corrected for:

nonlinear
effects

angular
correlations

two photon
scattering

electron
rescattering

Eγ [GeV]

#e
ve

n
ts

simulation (V.T.)

Compton formula

see
1/2 = 500 GeV
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CompAZ

TESLA Photon Collider luminosity spectra parametrization
Very good description of the high energy part

� � invariant mass polarization

Wγγ [GeV]
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Beam energy correlations

There are large correlations between energies of two beams

energies normalized to uncorrelated supperposition
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Beam energy correlations

0

50

100

150

200

250

0 50 100 150 200 250

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Eγ1 [GeV]

E
γ2

 [G
eV

]

see
1/2 = 500 GeV Full MC/CompaZL = 0

Wγγ = 0.3 Wmax

CompAZ describes well correlations in high energy part of the spectra
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Neutron background: mask design
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Conclusions

� Strongly motivated option for Future Linear Collider
many issues will be discussed at future meetings...

Seems feasible, promissing results of first studies.

Many technical details still to be studied
for all projects (TESLA, NLC, GLC):

Powerfull and very “precise” laser
Optical cavity
Influence on detector design
Background reduction
Luminosity and polarisation measurement
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