Precision of $\gamma\gamma \rightarrow h \rightarrow bb$ **cross section measurement**

P. Nieżurawski

Faculty of Physics Warsaw University

Workshop "Higgs boson at Future Colliders"P. NieżurawskiWarsaw, 09.01.2004

$M_{\rm h}\approx 120\text{-}160~GeV$

Standard Model higgs:

- ${\rm Br}(h o \gamma \gamma) \approx$ 0.2-0.05 %
- ${
 m Br}(h o b\bar{b}) pprox$ 70-5 %
- $\Gamma_{\rm tot}\approx$ 5-100 MeV

- p.2/21

$\mathbf{M_h} \approx \textbf{120-160~GeV}$

Standard Model higgs:

- ${\rm Br}(h o \gamma \gamma) \approx$ 0.2-0.05 %
- $Br(h \rightarrow b\bar{b}) \approx$ 70-5 %

 $\Gamma_{\rm tot}\approx \text{5-100 MeV}$

Indirect Γ_{tot} measurement available ($\sigma_{mass}^{DET} \approx 5$ GeV):

$$\sigma(\gamma\gamma \to h \to b\bar{b}) \propto \mathrm{Br}(h \to \gamma\gamma)\mathrm{Br}(h \to b\bar{b})\Gamma_{\mathrm{tot}}$$

$$\frac{\Delta\sigma(\gamma\gamma \to h \to b\bar{b})}{\sigma(\gamma\gamma \to h \to b\bar{b})} \approx \frac{\Delta\Gamma(h \to \gamma\gamma)\mathrm{Br}(h \to b\bar{b})}{\Gamma(h \to \gamma\gamma)\mathrm{Br}(h \to b\bar{b})}$$

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$

 $J_z = 0$

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$ $J_z = 0$

"Hard" background:

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

X

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$ b $J_z = 0$ þ b,W,t, ... b $\sigma \propto Q_q^4$ $\sigma^{LO}(|J_z|=2) \gg \sigma^{LO}(J_z=0)$

Other background:

Overlaying events (high intensity of photon-beams in the low-energy part of the spectrum)

Other background:

$\mathbf{M_h} \approx \textbf{120-160~GeV}$

Other background:

Overlaying events (high intensity of photon-beams in the low-energy part of the spectrum)

- Mistagged $\gamma\gamma \rightarrow \tau\tau$ events
- Resolved photon(s) interactions $\gamma + \gamma \rightarrow X + Q + \bar{Q}$

Workshop "Higgs boson at Future Colliders"

LO cross section for massless fermions

$$\sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) = 0$$

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

$\gamma + \gamma \rightarrow F + \bar{F}$

LO cross section for massless fermions

$$\sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) = 0$$

LO cross section for massive fermions

$$S_F^{\mu} = P_F^{\mu} + \mathcal{O}(\frac{m_F}{E_F})$$

$$\implies \sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) \propto \frac{m_F^2}{s} \frac{\alpha^2}{s}$$

Workshop "Higgs boson at Future Colliders"

$\gamma + \gamma \to F + \bar{F}$

NLO cross section for massless fermions

$$\implies \sigma \propto \frac{\alpha^2 \alpha_s}{s}$$
$$\frac{d\sigma}{dE_g} (J_z = 2) \propto \frac{1}{E_g}$$
$$\sigma (J_z = 0) \propto E_g^3$$

 $\gamma + \gamma \to F + F$

NLO cross section for massless fermions

$$\implies \sigma \propto \frac{\alpha^2 \alpha_s}{s}$$
$$\frac{d\sigma}{dE_g} (J_z = 2) \propto \frac{1}{E_g}$$
$$\sigma (J_z = 0) \propto E_g^3$$
NLO cross section for massive fermions

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

X

Photon-photon spectrum: CompAZ

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger

- $N_{jets} = 2, 3$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)

Jets: Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

- 1) Assumed bb-tagging and mistagging
 2) Using ZVTOP-B-Hadron-Tagger
- $E_{vis} > 90 \text{ GeV}$
- $|P_z|/E_{vis} < 0.1$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events (later modified):

- 1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger
- $N_{jets} = 2, 3$
- $|P_z|/E_{vis} < 0.1$
- $|\cos \theta_i| < 0.75 \quad \text{for each jet}$

ZVTOP-B-Hadron-Tagger

Number of $\gamma + \gamma \rightarrow b + \overline{b}$ events per 1 year of collider running

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

– p.6/21

ZVTOP-B-Hadron-Tagger

Number of $\gamma + \gamma \rightarrow c + \bar{c}$ events per 1 year of collider running

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

– p.6/21

ZVTOP-B-Hadron-Tagger

 $\frac{S}{B} = \frac{\#(\gamma\gamma \to b\bar{b})}{\#(\gamma\gamma \to c\bar{c})}$

Workshop "Higgs boson at Future Colliders"

ZVTOP-B-Hadron-Tagger

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Results

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

Consecutive approaches:

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$ Simdet3 Precision: 1.9%

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Results

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}$$

Consecutive approaches:

- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$ Simdet3 Precision: 1.9%
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$.
 B-tagging algorithm + Simdet4 Precision: 1.8%

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

– p.7/21

Missing P_T

Neutrinos from semileptonic decays of *D*- and *B*-mesons (Simdet3)

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Neutrinos from semileptonic decays of D- and B-mesons

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

— p.8/21

Neutrinos from semileptonic decays of D- and B-mesons

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

Missing P_T

Neutrinos from semileptonic decays of *D*- and *B*-mesons

$$W_{corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E_{vis} + P_T)}$$

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. Simdet3 (1.9%) - with W_{rec}

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. Simdet3 (1.9%) - with W_{rec} (1.7%) - with W_{corr}

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

– p.9/21

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. Simdet3 (1.9%) - with W_{rec} (1.7%) - with W_{corr}

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. B-tagging algorithm + Simdet4 (1.8%) - with W_{rec}

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsaw, 09.01.2004

- p.9/21

$$\frac{\Delta\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})}{\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\bar{b})} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. Simdet3 (1.9%) - with W_{rec} (1.7%) - with W_{corr}

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. B-tagging algorithm + Simdet4 (1.8%) - with W_{rec} (1.6%) - with W_{corr}

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

$\gamma\gamma \rightarrow hadrons:$ cross section

Scans with fixed energy of $\gamma\gamma$ -beams. (PYTHIA default = no elastic & diffractive interactions)

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Spectrum $\gamma\gamma$

We use scaled $\gamma\gamma$ luminosity spectrum $\sqrt{s_{ee}} = 200 \text{ GeV} \rightarrow 210.5 \text{ GeV}$ (full simulations).

 $L_{tot}(\gamma\gamma) = 41 \frac{1}{\text{nb s}}$ $f_{rep}n_b = 14.1 \text{ kHz}$ $\rightarrow L_{tot}(\gamma\gamma) = 0.003 \frac{1}{\text{nb}} \text{ per bc}$

Estimation: $\sigma_{\gamma\gamma} \sim 400 \text{ nb}$ $\rightarrow 1 \text{ event per bc}$

Generation: PYTHIA 6.214 + $\gamma\gamma$ -spectrum \rightarrow 1 event per bc

$\gamma \gamma \rightarrow hadrons: E_T$ distributions

Generated according to Poisson distribution with:

 $\mu = hh + hd + dd = 0.89 + 0.10 + 0.01 = 1.0$ events/bc

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Overlaying events $\gamma\gamma \rightarrow hadrons$

Angular distributions of E_T for $\gamma\gamma \rightarrow hadrons$ events per bc. Generation for $\sqrt{s_{ee}} = 210.5$ GeV.

Small-angle clusters & tracks should be ignored. Our choice: $\theta_{\min}^{DET} = 450 \text{ mrad}$ $\cos \theta_{\min}^{DET} = 0.9$

Workshop "Higgs boson at Future Colliders"

$b\bar{b}$ -tagging vs. $c\bar{c}$ -mistagging

For $\sqrt{s_{ee}} = 210.5 \text{ GeV}$ with the additional cut $E_{vis} > 85 \text{ GeV}$

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

$W_{\gamma\gamma}$ distributions

without/with OE

SM - signal only

 W_{rec}

Workshop "Higgs boson at Future Colliders"

$W_{\gamma\gamma}$ distributions

without/with OE

SM - signal only

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Precision for $\sigma(\gamma\gamma \rightarrow h \rightarrow bb)$

EPS'2003, hep-ph/0307183

SM - signal & background, with OE SM - summary $e^{-}e^{-}$ beams with $\sqrt{s_{ee}} = 210.5$ GeV 8 Number of events / 2.5GeV 12200 1220 1220 γγ→h→bb [%] **Higgs signal** 7 $M_h = 120 \text{ GeV}$ • with OE **NLO Background:** 6 without OE $b\bar{b}(g)$ $\Delta \sigma / \sigma$ for $c\bar{c}(g)$ 5 Total $L_{\gamma\gamma} = 410 \text{ fb}^{-1}$ 4 1000 3 $\Delta\sigma/\sigma = 1.8 \%$ 750 2 500 1 250 0 100 140 155 160 80 120 160 115 120 125 130 135 140 145 150 165 W_{corr} (GeV) M_h [GeV] $\frac{\Delta\sigma(\gamma\gamma \to higgs \to b\bar{b})}{\sigma(\gamma\gamma \to higgs \to b\bar{b})} = \frac{\sqrt{N_{\rm obs}}}{N_{\rm obs} - N_{\rm bkgd}}$ Warsaw, 09.01.2004

P. Nieżurawski

- p.16/21

Workshop "Higgs boson at Future Colliders"

Transverse momenta of jets

All jets

SM - signal only

Contribution of OE. Only θ_{\min}^{DET} -cut.

Workshop "Higgs boson at Future Colliders"

Transverse momenta of jets

Discriminating between gluon-jets (PS) & OE

SM - signal only

\Rightarrow Additional cut: $p_T^{jet}/E_T > 0.1$ for each jet

Workshop "Higgs boson at Future Colliders"

W_{corr} distributions

with/without p_T^{jet}/E_T -cut

SM - signal only

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

New background: $\gamma\gamma \rightarrow \tau\tau$

$$\frac{\sigma(\gamma\gamma \to \tau\tau)}{\sigma(\gamma\gamma \to c\bar{c})} \approx 5/3$$

$$\frac{\sigma(\gamma\gamma \to \tau\tau)}{\sigma(\gamma\gamma \to c\bar{c}(g))} \approx 1$$

SM - signal & background

Yellow area = $\gamma\gamma \rightarrow \tau\tau$

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Is $\theta_{\min}^{DET} = 0.450$ optimal?

Precision($\Gamma(h \rightarrow \gamma \gamma) Br(h \rightarrow b\bar{b})$) = 1.8 % (with \searrow tendency)

Is $\theta_{\min}^{DET} = 0.450$ optimal?

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsa

Is $\theta_{\min}^{DET} = 0.450$ optimal?

Workshop "Higgs boson at Future Colliders"

P. Nieżurawski

Warsa

Conclusions

- High precision for SM higgs can be achived despite $\gamma\gamma \rightarrow hadrons$ pile-up events.
- Cut on p_T^{jet}/E_T discriminates OE jets.
- Background from $\gamma \gamma \rightarrow \tau \tau$ small. Precision of 1.8% for $\Gamma(h \rightarrow \gamma \gamma) Br(h \rightarrow b\bar{b})$ at $M_h = 120$ GeV.

Plans:

- Background $\gamma\gamma \rightarrow qq \ (q=u,d,s)$
- **Background** $\gamma \gamma \rightarrow WW$

