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Physics motivation

Charged particle production

e Basic production process

o S

e Cross sections typically larger than in eTe™

e Production mechanism very simple (no vZ or ST interference)
o Example vy — WTIW ™

— cross section factor 10 larger than in eTe™

—only diagram with triple gauge coupling

w= should be very sensitive to triple gauge coupling

— However eTe™ equally sensitive due to gauge cancellations
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Higes Physics

e Higes produced via loop diagram

-

= all heavy charged particles contribute (W, t, new physics)
B cross section very interesting in itself

e expect O(10000) events for my, ~ 120 GeV

e heavy SUSY Higgses in eTe™ pair produced
— mass reach ~ 0.5/s
in vy single production possible
— mass reach ~ 0.84/s

e Access to CP structure with linear photon polarisation
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SUSY:

In general profit from large cross section for charged particles

= Branching ratio measurements?’
Possible discovery channel:

ey — éx(f if e — X(l) mass difference is large

(ey — vW background?)

m
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Physics and Polarisation

Circular polarisation in v~y

N 2
o Helicity suppression: o(yy — ff) oc *;- for J=0
e Higgs production requires J=0
e TGC sensitivity in vy — WTW™ better for J=2

Linear polarisation in ~~:

e Production of CP even particle: o o< g7 - £9

—

e Production of CP odd particle: o oc [£] X £5] - ky
Circular polarisation in e:

e clectron s-channel exchange only for J=1/2

e e\W coupling only for left handed electrons
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The basic idea
v~ physics in the past:

e only “used” electrons are lost
e however photon flux peaks at low energy

e mainly useful for QCD studies
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Linear collider

e clectrons are used only once

= can ‘convert’ electrons to high energy ~s
= Compton scattering

e high energy photons follow e-direction

P focusing as in eTe”
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Run in e e~ mode:

e casier to achieve low emittance

e casier to reach high polarisation

e less disturbing background in e"e™ interactions than in eTe™

e less beamstrahlung in e e~ than in eTe™
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Compton scattering
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( To avoid vy — eTe™ need x < 4.8)

Differential Compton cross section:
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Ae: e-helicity, P.: circular laser polarisation
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Cross section depends on helicity product 2A¢ P

Mean helicity of scattered photons:

<)W> -
—Pe(2r=1)[(1=y) "'+ 1=yl +2\ear[1+(1—y)(2r=1)’]
(1—y) "+ 1—y—dr(1—r)—2X e Pexr(2—y)(2r—1)

Differential Compton cross section and mean circular polarisation:
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x < 4.8 makes spectrum less peaked with little effect on polarisation
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For realistic electron polarisation photon polarisation varies rapidly at
Y < Ymax
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Linear polarisation

Why?
e.g. CP-studies of Higgses

e CP even: o oc ey - &9

o CP odd: o o [£] x &5 - ks

e Linear beam polarisation
possible with linear laser
polarisation

e High linear polarisation
can only be reached with
small z!
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Non-linear effects

In a high field an electron can interact with several photons simultaneously

o

— — ~—

Non linearity parameter:
e F2h? 27747“623)\

&= m2c2wi «

F = field strength of laser field, n~ = photon density

Non linear effects:
e increase effective electron mass to m2(1 + §2)
= decreases wm, to wy/Ey=x/(1 4+ x + 52)

e create tail at high w from n-photon interactions
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Photon energy spectrum for different non-linearities

1d6 i [ 7 r—r—r7r T T T T
ody i 0 —
°l &7 =02 — ‘_
51 0.5 — ]
4 r -

x=4.8, 2P A.=-1

: /Ak
: /| ]
0_"""""""""'_

0 0.2 0.4 0.6 0.8 1
y=w/E,

Warsaw University 20/2/04 16

Klaus Monig



Luminosity:

N2

L= f rep
Amogoy

Beamstrahlung:

1

0p X
Oy + Oy

= need flat beams!
7Y

e BS only relevant for pair background

e BS only created from unconverted electrons

e BS in e e is less than in eTe™

= Can work with “rounder” beam in v+ than in eTe™
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Crab crossing:

in v the disruption angle is larger than in eTe™ because of the beam-laser
mteraction

= outgoing beam no longer fits through final quadrupole

— need crossing angle to have separate beam pipe for in- and outgoing
beam

Crab crossing scheme allows crossing angle without luminosity loss

e need 6. ~ 3bmrad

e apparent transverse beam dimension for beam-laser interaction larger
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Beam parameters for ,/see = 500 GeV

ete” |y 0!
(optimistic)
N/10% 2 2 2
o, [mm] 0.3 0.3 0.3
pulses/train 2820 | 2820 2820
Repetition rate |Hz| 5 5 5

ey 13/ 1070 [mrad] | 10./0.03]3./0.03 | 2.5/0.03
By fyy ] at P 15/0.4 | 4/04 | 1.5/0.3
0 jyy 0] 553/5 | 157/5 | 88/4.3
L(z > 0.8zy) 3.4 0.6 1.1

1034 em =251
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Wavelength of powerful solid state lasers is in the 1pum range, e.g. Nd:YAG
A = 1.06pm

( = 4.5 for /5 = 500 GeV)
(If really needed can double or triple frequency)

Laser focusing in diffraction limited region:

UL,?“('Z) - UL,?“@)Jl + ZQ/Z%% 0'L7T<O) — |=£&

\

Zp: Rayleigh length

— cannot vary length and diameter of laser spot simultaneously

Optimum around Zp a2 o. == half opening angle of O(1°)
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Fraction of converted electrons:
k= Ny/Ne~1—exp(—A/Ap)
A: pulse energy of laser

For Zp =~ o0, and head on laser-beam collisions:

mhco

~ 1.5J

A()%

Oc¢

= need A ~ 2J (corresponds to €2 ~ 0.2)
(for head on e~ -laser collisions)

= total laser power of ~ 2 x 30kW needed

= ~ 60 Mercury lasers from the Livermore fusion program
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Injection and
reversor

Architecture:

- 2 amplifier heads

- angular multiplexing
- 4 pass

- relay imaging

- wavefront correction

vacuum relay

gas-cooled
amplifier head

Goals:

-100J

-10 Hz

- 10% electrical
efficiency

-2-10 ns

- Bandwidth to

compress to

2 ps
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However the number of used laser photons is negligible
Better idea: recycle laser pulses

side view

M =

* | ~ 400 cm o

< adaptive optics _ T T _
M < other opt. elements - y _ laser
M
(T~0.01)
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Bunch spacing at TESLA ~ 300ns = cavity length ~ 100 m

Basic 1dea:

cm
600 .
500._; RGN
e cavity mounted around the f
detector 10

e all mirrors outside detector 5, .

200.

100.

T/

.0 100. 200. 300. 400. 500. 600. cm
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e To have highly efficient mirrors need
crossing angle beam-laser

e crossing angle results in smaller conver-
sion probability
e laser divergence and therefore mirror size eln

depends on Rayleigh length iy @

e finite mirrors result in diffraction losses  Quadrupole =
and broadening of the focus

e have to find optimum crossing an-
gle/Rayleigh length

Laser Out

= even higher laser power needed
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Layout of the cavity

[\7‘
Detector
J

———
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Lossfactor

Overview_loss_HH_Zeuthen_meeting.OPJ, Graph2

Diffraction losses are small even for small mirrors

telescopic cavity, magnification sqrt(3)
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However diffraction broadening is serious

telescopic cavity, magnification sqrt(3)
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Optimum for relatively small mirrors

©

a/w = (‘).75+
a/w=1.00"x

aw=125—=x"

Total Luminosity [1 0330m'2s'1
~ ~ ~ oo oo oo oo
N ® ® ® M » o o
I I I I I I I I

~
N
\

Laser energy 8.55 J, pulse duration 1.5 ps

~

50 55 60 65 70 75 80 85
Collision angle a. [mrad]

Warsaw University 20/2/04 29 Klaus Monig



Optimum parameters

LLASER PARAMETERS

TDR prT. VI

THIS STUDY

Rayleigh length Zp
Collision angle oy

Laser energy A

pulse duration oy, ,
nonlinearity parameter &2
Total Luminosity [10%*cm

—28—1]

0.35 mm

5J
1.5 ps
0.30
1.10

0.63 mm
55.1 mrad
9.0 J
1.5 ps
0.30
1.05

TDR parameters can be reproduced

However mirror tolerances O(10nm)
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n of the laser resonator in the hall

Py
-
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Luminosity and Background

Special programs exist to calculate luminosity and background including

e multiple Compton scattering

e finite scattering angle

e non-linear effects

e coherent processes at [P (Beamstrahlung)
e non-coherent processes (large angle pairs)

e depolarisation effects

Backgrounds in the detector are calculated from

e direct hits
e backscattering from the mask

e neutrons from the beam dump
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Energy disruption on the calorimeter tface from one bunch crossing

-0.05

0.1

0.05

0

-0.05

-0.1

More energy in the detector than in eTe™ because of

e disruption from beam-laser interaction

e large crossing angle
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Luminosity spectra for L = 0,2 with /s = 500 GeV and 2\, = 0.85

2 T T T T T T T T

=
3 — L=0
v
o 15 ) .
g
1 - |
0.5 :
O 200 a0
Vs [GeV]
e Total vy luminosity for z > 0.8z: L=11-10m 21
e Total ey luminosity for z > 0.8z L£=0.9-10m 2!
e Total e e~ luminosity for z > 0.65: L =0.07-10%cm 2!
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The Detector

e as much as possible the TDR e™e™ detector should be used

Yoke 3

Laser

Laser

e Tungsten mask to shield additional background
e Detector dead below 0 = 7°

e at low angles 6 < 7° a redesign is needed

e Need space for the pipes
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Background in the vertex detector

20y 1300
- direct B |
250 — |
200 - e backscattered| 50 i :
200 — .
150 ) i |
150 — .
100 |- 1o [ .
i 150 - -

7 0 I e e
0 —= 2 % s I 2 3 4 s
Similar as in eTe™
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Background in the TPC:

Roughly factor two larger than in eTe™
= still acceptable

Neutrons from dump:

Photons cannot be deflected electrically or magnetically

e there is a straight line from the IP to the dump
e 1 neutron/cm~?/bx = 10 neutrons/cm =2 /year
e Marginally acceptable for CCD vertex detector
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Low energy qq background

e Large luminosity and large cross section vy — qq at low /s

= (O(1)event /bx overlaid to physics events (pileup)

>
S 107 |
e Due to large boost pileup 2
tracks are forward peaked 102
e Can be largely rejected if 7
physics in not forward peaked ,
(like vy — WTWT) 10 |
0 0.2 0.4 0.6 0.8 1

cos0
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e Additional help/complication: beamspot length ~ 300um
= signal and pileup separated in z
— microvertex detector can help to separate

— can screw up b-tagging. e.g. in Higgs analysis

Integrated Impact Parameter distribution for Slgnal and pileup

o T i B

e e T

0.6

04
s1gnal

0.2 background -
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Pileup gives also non negligible background in detector

Hits in vertex detector from beam and pileup

é? 20
Z I —qq |
=
— beam
15 .
10 5
5 | _|
| | | R | |
0 1 2 3 4 5

layer
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Vs #£ 500 GeV :

s(yy) ~ mp ~ 120 GeV:

e can run with A = 1.06um, /s = 200 GeV = = = 1.8

= high linear polarisation

e if really needed can run with frequency trippler

=1 =43 (/5=160GeV)

w worse linear polarisation, but better peaked spectrum

/5 ~ 800 GeV:

e have to live with A = 1.06pm = x = 7.1

e However need &2 ~ 0.4 to get high k2
wm v = 1/(14 €2) ~ 5 still acceptable

Can run all energies at TESLA with the same laser system
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Conclusions

e TESLA offers the possibility to work as a v (or ev) collider with

[s(yy) < 0.8/s(ete™)

e The luminosity might be 20-30% of the eTe™ luminosity

e Detector and beams of lower quality then in eTe™
e However one should be aware that the photon collider is far from being

oguaranteed and some difficult problems need to be solved.
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