A Photon Collider at TESLA, how does it work?

Klaus Mönig

DESY-Zeuthen

- Physics motivation
- Basic idea
- Compton scattering
- Non linear effects
- Beam issues
- Laser issues
- Background and luminosity
- Conclusions

Physics motivation

Charged particle production

- Basic production process

- Cross sections typically larger than in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ plot
- Production mechanism very simple (no γZ or ST interference)
- Example $\gamma \gamma \rightarrow W^{+} W^{-}$
- cross section factor 10 larger than in $\mathrm{e}^{+} \mathrm{e}^{-}$
- only diagram with triple gauge coupling
$\rightarrow \rightarrow$ should be very sensitive to triple gauge coupling
- However $\mathrm{e}^{+} \mathrm{e}^{-}$equally sensitive due to gauge cancellations

Higgs Physics

- Higgs produced via loop diagram

${ }^{\prime \prime} \rightarrow$ all heavy charged particles contribute (W, t, new physics)
\rightarrow cross section very interesting in itself
- expect $\mathcal{O}(10000)$ events for $m_{\mathrm{h}} \sim 120 \mathrm{GeV}$
- heavy SUSY Higgses in $\mathrm{e}^{+} \mathrm{e}^{-}$pair produced
\rightarrow mass reach $\sim 0.5 \sqrt{s}$
in $\gamma \gamma$ single production possible
\rightarrow mass reach $\sim 0.8 \sqrt{s}$
- Access to CP structure with linear photon polarisation

SUSY:

In general profit from large cross section for charged particles
$\mu \rightarrow$ Branching ratio measurements?
Possible discovery channel:
e $\gamma \rightarrow \tilde{e} \chi_{1}^{0}$ if $\tilde{e}-\chi_{1}^{0}$ mass difference is large

(e $\gamma \rightarrow \nu W$ background?)

Physics and Polarisation

Circular polarisation in $\gamma \gamma$

- Helicity suppression: $\sigma(\gamma \gamma \rightarrow \mathrm{ff}) \propto \frac{m^{2}}{s}$ for $\mathrm{J}=0$
- Higgs production requires $\mathrm{J}=0$
- TGC sensitivity in $\gamma \gamma \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$better for $\mathrm{J}=2$

Linear polarisation in $\gamma \gamma$:

- Production of CP even particle: $\sigma \propto \overrightarrow{\varepsilon_{1}} \cdot \overrightarrow{\varepsilon_{2}}$
- Production of CP odd particle: $\sigma \propto\left[\overrightarrow{\varepsilon_{1}} \times \overrightarrow{\varepsilon_{2}}\right] \cdot \overrightarrow{k_{\gamma}}$

Circular polarisation in e γ :

- electron s-channel exchange only for $\mathrm{J}=1 / 2$
- eW coupling only for left handed electrons

The basic idea

$\gamma \gamma$ physics in the past:

- only "used" electrons are lost
- however photon flux peaks at low energy
- mainly useful for QCD studies

Linear collider

- electrons are used only once
$" \rightarrow$ can "convert" electrons to high energy γs
\Rightarrow Compton scattering

- high energy photons follow e-direction
focusing as in $\mathrm{e}^{+} \mathrm{e}^{-}$

Run in $\mathrm{e}^{-} \mathrm{e}^{-}$mode:

- easier to achieve low emittance
- easier to reach high polarisation
- less disturbing background in $\mathrm{e}^{-} \mathrm{e}^{-}$interactions than in $\mathrm{e}^{+} \mathrm{e}^{-}$
- less beamstrahlung in $\mathrm{e}^{-} \mathrm{e}^{-}$than in $\mathrm{e}^{+} \mathrm{e}^{-}$

Compton scattering

Maximum γ energy

$$
\omega_{m}=\frac{x}{x+1} E_{0}
$$

with

$$
x=\frac{4 E_{0} \omega_{0}}{m^{2} c^{4}} \cos ^{2} \frac{\alpha}{2} \simeq 19\left[\frac{E_{0}}{\mathrm{TeV}}\right]\left[\frac{\mu m}{\lambda}\right]
$$

(To avoid $\gamma \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$need $x<4.8$)
Differential Compton cross section:

$$
\begin{aligned}
& \frac{d \sigma_{c}}{d y}=\frac{2 \sigma_{0}}{x}\left[\frac{1}{1-y}+1-y-4 r(1-r)+2 \lambda_{e} P_{c} r x(1-2 r)(2-y)\right] \\
& y=\omega / E_{0}, \quad r=\frac{y}{(1-y) x}, \quad \sigma_{0}=\pi r_{e}^{2}
\end{aligned}
$$

λ_{e} : e-helicity, P_{c} : circular laser polarisation

Cross section depends on helicity product $2 \lambda_{e} P_{C}$

Mean helicity of scattered photons:

$$
\begin{aligned}
& \left\langle\lambda_{\gamma}\right\rangle= \\
& \frac{-P_{c}(2 r-1)\left[(1-y)^{-1}+1-y\right]+2 \lambda_{e} x r\left[1+(1-y)(2 r-1)^{2}\right]}{(1-y)^{-1}+1-y-4 r(1-r)-2 \lambda_{e} P_{c} x r(2-y)(2 r-1)}
\end{aligned}
$$

Differential Compton cross section and mean circular polarisation:

$x<4.8$ makes spectrum less peaked with little effect on polarisation

For realistic electron polarisation photon polarisation varies rapidly at $y<y_{\text {max }}$

Linear polarisation

Why?

e.g. CP-studies of Higgses

- CP even: $\sigma \propto \overrightarrow{\varepsilon_{1}} \cdot \overrightarrow{\varepsilon_{2}}$
- CP odd: $\sigma \propto\left[\overrightarrow{\varepsilon_{1}} \times \overrightarrow{\varepsilon_{2}}\right] \cdot \overrightarrow{k_{\gamma}}$
- Linear beam polarisation possible with linear laser polarisation
- High linear polarisation can only be reached with small x !

$$
\left\langle l_{\gamma}\right\rangle=\frac{2 r^{2} P_{l}}{(1-y)^{-1}+1-y-4 r(1-r)-2 \lambda_{e} P_{c} \operatorname{xr}(2-y)(2 r-1)}
$$

Non-linear effects

In a high field an electron can interact with several photons simultaneously

Non linearity parameter:

$$
\xi^{2}=\frac{e^{2} \bar{F}^{2} \hbar^{2}}{m^{2} c^{2} \omega_{0}^{2}}=\frac{2 n_{\gamma} r_{e}^{2} \lambda}{\alpha}
$$

$\bar{F}=$ field strength of laser field, $n_{\gamma}=$ photon density
Non linear effects:

- increase effective electron mass to $m^{2}\left(1+\xi^{2}\right)$
\Rightarrow decreases ω_{m} to $\omega_{m} / E_{0}=x /\left(1+x+\xi^{2}\right)$
- create tail at high ω from n-photon interactions

Photon energy spectrum for different non-linearities

The Beam

Luminosity:

$$
\mathcal{L}=f_{\text {rep }} \frac{N^{2}}{4 \pi \sigma_{x} \sigma_{y}}
$$

Beamstrahlung:

$$
\delta_{b} \propto \frac{1}{\sigma_{x}+\sigma_{y}}
$$

\Rightarrow need flat beams!
$\gamma \gamma$:

- BS only relevant for pair background
- BS only created from unconverted electrons
- BS in $\mathrm{e}^{-} \mathrm{e}^{-}$is less than in $\mathrm{e}^{+} \mathrm{e}^{-}$
\Rightarrow Can work with "rounder" beam in $\gamma \gamma$ than in $\mathrm{e}^{+} \mathrm{e}^{-}$

Crab crossing:

in $\gamma \gamma$ the disruption angle is larger than in $\mathrm{e}^{+} \mathrm{e}^{-}$because of the beam-laser interaction
\Rightarrow outgoing beam no longer fits through final quadrupole
\rightarrow need crossing angle to have separate beam pipe for in- and outgoing beam

Crab crossing scheme allows crossing angle without luminosity loss

- need $\theta_{c} \sim 35 \mathrm{mrad}$
- apparent transverse beam dimension for beam-laser interaction larger
$\underline{\text { Beam parameters for } \sqrt{s_{\mathrm{ee}}}=500 \mathrm{GeV}}$

	$\mathrm{e}^{+} \mathrm{e}^{-}$	$\gamma \gamma$	$\gamma \gamma$ (optimistic)
$N / 10^{10}$	2	2	2
$\sigma_{z}[\mathrm{~mm}]$	0.3	0.3	0.3
pulses/train	2820	2820	2820
Repetition rate $[\mathrm{Hz}]$	5	5	5
$\gamma \epsilon_{x / y} / 10^{-6}[\mathrm{~m} \cdot \mathrm{rad}]$	$10 . / 0.03$	$3 . / 0.03$	$2.5 / 0.03$
$\beta_{x / y}[\mathrm{~mm}]$ at IP	$15 / 0.4$	$4 / 0.4$	$1.5 / 0.3$
$\sigma_{x / y}[\mathrm{~nm}]$	$553 / 5$	$157 / 5$	$88 / 4.3$
$\mathcal{L}\left(z>0.8 z_{m}\right)$	3.4	0.6	1.1
$\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$			

The Laser

Wavelength of powerful solid state lasers is in the $1 \mu \mathrm{~m}$ range, e.g. Nd:YAG $\lambda=1.06 \mu \mathrm{~m}$
$(x=4.5$ for $\sqrt{s}=500 \mathrm{GeV})$
(If really needed can double or triple frequency)
Laser focusing in diffraction limited region:

$$
\sigma_{L, r}(z)=\sigma_{L, r}(0) \sqrt{1+z^{2} / Z_{R}^{2}} \quad \sigma_{L, r}(0)=\sqrt{\frac{\lambda Z_{R}}{2 \pi}}
$$

Z_{R} : Rayleigh length

\rightarrow cannot vary length and diameter of laser spot simultaneously
Optimum around $Z_{R} \approx \sigma_{z}{ }^{\prime \prime \prime} \rightarrow$ half opening angle of $\mathcal{O}\left(1^{\circ}\right)$

Fraction of converted electrons:

$$
k=N_{\gamma} / N_{e} \approx 1-\exp \left(-A / A_{0}\right)
$$

A: pulse energy of laser
For $Z_{R} \approx \sigma_{z}$ and head on laser-beam collisions:

$$
A_{0} \approx \frac{\pi \hbar c \sigma_{z}}{\sigma_{c}} \approx 1.5 \mathrm{~J}
$$

\Rightarrow need $A \approx 2 J$ (corresponds to $\xi^{2} \approx 0.2$)
(for head on e^{-}-laser collisions)
\Rightarrow total laser power of $\sim 2 \times 30 \mathrm{~kW}$ needed
$\xrightarrow{\prime \prime} \rightarrow \mathbf{\sim}$ Mercury lasers from the Livermore fusion program

However the number of used laser photons is negligible

Better idea: recycle laser pulses

Bunch spacing at TESLA $\approx 300 \mathrm{~ns} \Rightarrow$ cavity length $\approx 100 \mathrm{~m}$

 Basic idea:- cavity mounted around the detector
- all mirrors outside detector

- To have highly efficient mirrors need crossing angle beam-laser
- crossing angle results in smaller conversion probability
- laser divergence and therefore mirror size depends on Rayleigh length
- finite mirrors result in diffraction losses and broadening of the focus
- have to find optimum crossing angle/Rayleigh length
\Rightarrow even higher laser power needed

Layout of the cavity

Diffraction losses are small even for small mirrors

However diffraction broadening is serious

Optimum for relatively small mirrors

Optimum parameters

LASER PARAMETERS	TDR PT. VI	THIS STUDY
Rayleigh length Z_{R}	0.35 mm	0.63 mm
Collision angle α_{0}		55.1 mrad
Laser energy A	5 J	9.0 J
pulse duration $\sigma_{L, z}$	1.5 ps	1.5 ps
nonlinearity parameter ξ^{2}	0.30	0.30
Total Luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1.10	1.05

TDR parameters can be reproduced
However mirror tolerances $\mathcal{O}(10 \mathrm{~nm})$

Design of the laser resonator in the hall

Luminosity and Background

Special programs exist to calculate luminosity and background including

- multiple Compton scattering
- finite scattering angle
- non-linear effects
- coherent processes at IP (Beamstrahlung)
- non-coherent processes (large angle pairs)
- depolarisation effects

Backgrounds in the detector are calculated from

- direct hits
- backscattering from the mask
- neutrons from the beam dump

Energy disruption on the calorimeter face from one bunch crossing

More energy in the detector than in $\mathrm{e}^{+} \mathrm{e}^{-}$because of

- disruption from beam-laser interaction
- large crossing angle

Luminosity spectra for $L=0,2$ with $\sqrt{s}=500 \mathrm{GeV}$ and $2 \lambda_{e}=0.85$

- Total $\gamma \gamma$ luminosity for $z>0.8 z_{m}$:

$$
\begin{aligned}
\mathcal{L} & =1.1 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\mathcal{L} & =0.9 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\mathcal{L} & =0.07 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

- Total e luminosity for $z>0.8 z_{m}$:
- Total $e^{-} e^{-}$luminosity for $z>0.65$:

The Detector

- as much as possible the TDR $\mathrm{e}^{+} \mathrm{e}^{-}$detector should be used \rightarrow plot
- at low angles $\theta<7^{\circ}$ a redesign is needed

- Need space for the pipes
- Tungsten mask to shield additional background
- Detector dead below $\theta=7^{\circ}$

The $\mathrm{e}^{+} \mathrm{e}^{-}$TDR-Detector

Background in the vertex detector

Similar as in $\mathrm{e}^{+} \mathrm{e}^{-}$

Background in the TPC:

Roughly factor two larger than in $\mathrm{e}^{+} \mathrm{e}^{-}$
\Rightarrow still acceptable
Neutrons from dump:
Photons cannot be deflected electrically or magnetically

- there is a straight line from the IP to the dump
- 1 neutron $/ \mathrm{cm}^{-2} / \mathrm{bx} \Rightarrow 10^{11}$ neutrons $/ \mathrm{cm}^{-2} /$ year
- Marginally acceptable for CCD vertex detector

Low energy q \bar{q} background

- Large luminosity and large cross section $\gamma \gamma \rightarrow \mathrm{q} \overline{\mathrm{q}}$ at low \sqrt{s}
$\xrightarrow{\prime} \rightarrow \mathcal{O}(1)$ event/bx overlaid to physics events (pileup)
- Due to large boost pileup 䆟 tracks are forward peaked
- Can be largely rejected if physics in not forward peaked (like $\gamma \gamma \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$)

- Additional help/complication: beamspot length $\sim 300 \mu$ m
\Rightarrow signal and pileup separated in z
- microvertex detector can help to separate
- can screw up b-tagging, e.g. in Higgs analysis

Integrated Impact Parameter distribution for signal and pileup

Pileup gives also non negligible background in detector
Hits in vertex detector from beam and pileup

$\sqrt{s} \neq 500 \mathrm{GeV}:$

$\sqrt{s(\gamma \gamma)} \sim m_{\mathrm{H}} \sim 120 \mathrm{GeV}:$

- can run with $\lambda=1.06 \mu \mathrm{~m}, \sqrt{s}=200 \mathrm{GeV} \Rightarrow x=1.8$
" \rightarrow high linear polarisation
- if really needed can run with frequency trippler

$$
\Rightarrow x=4.3 \quad(\sqrt{s}=160 \mathrm{GeV})
$$

$\mathrm{l} \rightarrow$ worse linear polarisation, but better peaked spectrum
$\sqrt{s} \sim 800 \mathrm{GeV}:$

- have to live with $\lambda=1.06 \mu \mathrm{~m} \Rightarrow x=7.1$
- However need $\xi^{2} \approx 0.4$ to get high k^{2}
$" \rightarrow x_{\text {eff }}=1 /\left(1+\xi^{2}\right) \sim 5$ still acceptable
Can run all energies at TESLA with the same laser system

Conclusions

- TESLA offers the possibility to work as a $\gamma \gamma$ (or e γ) collider with $\sqrt{s(\gamma \gamma)} \leq 0.8 \sqrt{s\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)}$
- The luminosity might be $20-30 \%$ of the $\mathrm{e}^{+} \mathrm{e}^{-}$luminosity
- Detector and beams of lower quality then in $\mathrm{e}^{+} \mathrm{e}^{-}$
- However one should be aware that the photon collider is far from being guaranteed and some difficult problems need to be solved.

