2HDM(II) Higgs results SM-like scenario B	•	3rd Workshop of the Extended ECFA/DESY Study on Physics and Detectors for Linear Collider November 16, 2002, Praha
SM Higgs results	•	hep-ph/0207294
Analysis simulation, event selection, parametriza	•	NCN
$\gamma\gamma \rightarrow W^+W^-, ZZ$: Higgs signal SM background and interference effects	•	waiszawa with P. Nieżurawski and M. Krawczyk
$\gamma\gamma \rightarrow h$: two-photon width and phases expected effects of new particles	•	A.F. Zarnecki, Warsaw University
tline	Out	
into WW and ZZ	NS :	from the Higgs decay
nase measurement	p	Two-photon width and

Two-photon width and phase measurement from $h o WW, \ ZZ$

Two-photon width and phase measurement from h o WW, ZZ

Contribution to $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ from new heavy charged particles with mass ~800 GeV

 $\gamma\gamma
ightarrow h$

Expected deviations from SM

Two-photon width and phase measurement from h o WW, ~ZZ

G.J.Gounaris et al., Eur. Phys. J. C13 (2000) 79.

60

hep-ph/0207294

σ [**pb**] 00

the phase $\phi_{\gamma\gamma}$ of the $\gamma\gamma \rightarrow h$ amplitude

 $\sigma(\gamma\gamma \rightarrow W^+W^-)$ dependence on $\phi_{\gamma\gamma}$

[**pb**]

M_h=250 GeV

100

 $\sigma_{\gamma\gamma \rightarrow WW}$

80

Interference term is sensitive to

Phase mea<u>surement</u>

 $\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$

ZZ

Simulation

γγ spectra from CompAZ

generated with PYTHIA 6.152 $\gamma\gamma \rightarrow W^+W^-$, ZZ events

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

- total $\gamma\gamma$ luminosity: 600 1000 fb^{-1}
- High $W_{\gamma\gamma}$ peak: for $\sqrt{s_{ee}}$ II 305 – 500 GeV $75 - 115 \, fb^{-1}$

Analysis

CompAZ

Parametrization of the Photon Collider

Based on the detailed simulation by V.Telnov luminosity spectra NIM A355(1995)3, NIM A472(2001)267 ⇒ hep-ex/0207021

Higher order QED effect taken into account. Comparison with detailed simulation:

Analysis

W⁺W⁻ event selection

Selection requirements:

balanced transverse momentum:

$$P_T/E_T < 0.1$$

- 4 hadronic jets reconstructed (Durham algorithm)
- cut on jet angle $\cos \theta_{jet} < 0.95$ to preserve good mass resolution

- - 16 (20) % for W^+W^- events

 - for M_h = 200 (400) GeV.

 $\Rightarrow P_W = 1$ for "perfect" W pair fit

ZZ event selection

Analysis

Very similar to W^+W^- selection:

balanced transverse momentum:

with probability $P_W > 0.001$

two W^{\pm} reconstructed

event selection

$$P_T/E_T < 0.1$$

- too large background in 4-jet channel 2 leptons (e^{\pm} or μ^{\pm}) + 2 hadronic jets
- cut on lepton and jet angle $\cos \theta_{l,jet} < 0.95$
- with probability $P_Z > 0.001$ leptons and jets reconstruct into two Z°

Selection efficiency

Analysis

Parametrization

and ZZ events is parametrized as a function of $W_{\gamma\gamma}$. Invariant mass resolution for selected W^+W^-

"Measured" invariant mass distribution can be then described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula

for signal + background + interf.

Invariant mass resolution

 \Rightarrow expected mass spectra can be calculated for any $\sqrt{s_{ee}}$ and M_h without time-consuming MC simulation

Analysis

Parametrization

Comparison of parametrized detector response with full simulation (PYTHIA+SIMDET):

Sensitive to possible "new physics" only up to $M_h \sim {\rm 280~GeV}$

for W^+W^- and ZZ events

One parameter fit to invariant mass distribution

measurement

SM results

For higher Higgs masses $\Gamma_{\gamma\gamma}$ is little sensitive to contribution of new heavy charged particles !

"new physics" modeled by SM-like 2HDM (II) with $M_{H^+} = 800 \text{ GeV}$

Expected statistical precision, assuming SM branching ratios (1 PC year):

Two parameter fit to W^+W^- and ZZ invariant mass distribution

SM results

Two-photon width and phase measurement from $h \to WW, ZZ$

Precize knowledge of M_h and luminosity not crucial \Rightarrow can be constrained by the data itself

Systematic effects

SM results

Statistical precision for different choices of fit parameters:

2HD	M(II)
SM-like 2HDM(II)	Solution B (extended)
	$g_d = -g_u = 1$
$g_u = g_d = g_V = 1$	$g_v = \cos 2\beta$
g_i - couplings normalized to SM couplings	$(g_v-g_d)(g_u-g_v)+g_v^2=1 \ aneta ightarrow 0 \ \Rightarrow ext{ sol. } B_u$
All Higgs couplings are the same as in SM.	$\tan\beta \to \infty \Rightarrow \text{sol. } B_d$ At LHC will also look SM-like:
Only $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ are affected by the loop	Production is dominated by gg-fusion
contribution from heavy charged Higgs	$\sigma(pp o h) \sim \Gamma_{gg}$
However, scalar loops give very small contribution to $h \rightarrow \gamma \gamma \dots$	and Γ_{gg} is dominated by $t \operatorname{loop}(g_u)$
I. F. Ginzburg, M. Krawczyk and P. Osland, Nucl. Instrum. Meth. A472:149. 2001	Deviations from SM can be measured at LHC only for tan $\beta \sim 1$
nep-ph/u1u1331; nep-ph/u1u12u8.	$\Rightarrow g_v \sim 0 \Rightarrow b\overline{b}$ decays visible

A.F.Żarnecki

2HDM(II)

2HDM(II)

Solution B

SM-like

e.g. distinguish between large and small $\tan \beta$

Solution B

SM-like

2HDM(II)

Two-photon width and phase measurement for different M_h

Production of the SM Higgs-boson in $\gamma\gamma
ightarrow h$ studied for masses above 170 GeV

Large interference effects are expected in the W^+W^- decay channel

and the phase of the $h \rightarrow \gamma \gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured. Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$

can be more sensitive to the contributions of new particles than the $\Gamma_{\gamma\gamma}$ For Higgs boson masses around 300 GeV the amplitude phase $\phi_{\gamma\gamma}$

Measurement of $\phi_{\gamma\gamma}$ can be helpful in testing Higgs sector structure Large effects expected for SM-like solution B of 2HDM (II) (looks like SM at LHC)

