Measurement of the Higgs-boson couplings and CP properties from decays into WW and ZZ

NŻK

Workshop of the Extended ECFA/DESY Study Amsterdam, April 2003

Workshop of the ECFA Study Montpellier, France, November 13, 2003 • $\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$

- SM Higgs results hep-ph/0207294 measurement of $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$
- 2HDM(II) results SM-like scenario B_h
- 2HDM(II) with CP violation measurement of tan β and H-A mixing hep-ph/0403138

• CP violation in generic model results sent to EPS'2003: hep-ph/0307175

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

Higgs production and decay

For $M_h > 2M_W$, $h \to W^+W^-$ dominate:

There is a large background from "direct", non-resonant production $\gamma\gamma \rightarrow W^+W^-$

G.Belanger, F.Boudjema, Phys.Lett.B288(1992)210; D.A.Morris, et al., Phys. Lett. B323(1994)421; I.F.Ginzburg, I.P.Ivanov, Phys. Lett. B408(1997)325.

Interference

Resonant and direct amplitudes interfere Large effects expected:

Destructive interference dominates above ${\sim}200~{\rm GeV}$

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

$\gamma\gamma \to ZZ$

Non-resonant background only at loop level

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \rightarrow W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 - 1000 fb^{-1} High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1} for $\sqrt{s_{ee}}$ = 305 - 500 GeV

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$
- \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation
- \Rightarrow can be used for fast simulation and fitting

Comparison with full simulation:

SM results

Two parameter fit to W^+W^- and ZZ invariant mass distribution Expected statistical precision, assuming SM branching ratios (1 PC year):

Phase measurement significantly improves our sensitivity to new heavy charged particles e.g. heavy charged Higgs boson of the SM-like 2HDM(II) with $M_{H^+} = 800 \text{ GeV}$ at large Higgs boson masses

Solution A

For light Higgs boson *h*:

 $\chi_u = \chi_d = \chi_V = 1$

 χ_i - couplings normalized to SM couplings All couplings are the same as in SM. $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ affected only by the H^+ loop

For heavy Higgs bosons H and A:

 $\chi_V~\equiv~0$

No decays to W^+W^- and ZZ ...

I. F. Ginzburg, M. Krawczyk and P. Osland, Nucl. Instrum. Meth. A472:149, 2001 hep-ph/0101331; hep-ph/0101208. **Solution** B_h

2HDM(II)

hHA
$$\chi_u$$
 -1 $-\frac{1}{\tan\beta}$ $-i\gamma_5\frac{1}{\tan\beta}$ χ_d $+1$ $-\tan\beta$ $-i\gamma_5 \tan\beta$ χ_V $\cos(2\beta)$ $-\sin(2\beta)$ 0

 $\tan \beta \rightarrow 0 \Rightarrow \text{sol. } B_u$

 $\tan \beta \to \infty \Rightarrow$ sol. B_d

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on tan β .

Can we extract $\tan \beta$ value from the measured W^+W^- and ZZinvariant mass distributions ?

Light Higgs boson

Two-photon width and phase measurement for different tan β $\chi_V = \cos 2\beta$

 $M_h = 300 \text{ GeV}$

Measurement very sensitive to $\tan \beta$ \Rightarrow precise determination possible.

Ambiguity resolved by the phase measurement (distinguishes between low tan β and large tan β)

 1σ contours for 1 year of PC running statistical errors only M_{H^+} =800 GeV

Light Higgs boson

Expected statistical precision in $\tan \beta$ determination (1 PC year):

Light Higgs boson

Influence of systematic uncertainties on the tan β determination is estimated by adding additional free parameters to the fit:

Uncertainties:

Parameters:

- luminosity \Rightarrow overall normalization
- energy scale
- mass resolution
- luminosity spectra

relative normalization of WW and ZZ samples fixed

- \Rightarrow Higgs boson mass
- Higgs boson width \Rightarrow
- \Rightarrow spectra shape variations

$$\frac{dL}{dW_{\gamma\gamma}} = \frac{dL^{CompAZ}}{dW_{\gamma\gamma}} (1 + A \cdot \sin \pi x + B \cdot \sin 2\pi x)$$
$$x = \frac{W_{\gamma\gamma} - W_{min}}{W_{max} - W_{min}}$$

Light Higgs boson

Influence of systematic uncertainties for $M_h = 200 \text{ GeV}$ and $M_h = 300 \text{ GeV}$ Expected precision in $\tan \beta$ determination stat. + sys. errors

Large effects of systematic uncertainties for $\tan \beta \sim 1$. For small and large $\tan \beta$ expected error increases by 10–30%.

A.F.Żarnecki

Heavy Higgs boson H

Two-photon width and phase measurement for different $\tan \beta$ $\chi_V = -\sin 2\beta$

Heavy Higgs boson H

Influence of systematic uncertainties for $M_H = 300 \text{ GeV}$

Expected precision in $\tan \beta$ determination

stat. + sys. errors

Large effects of systematic uncertainties

General Two Higgs Doublet Model

Mass eigenstates of the neutral Higgs-bosons h_1 , h_2 and h_3 do not need to match CP eigenstates h, H and A.

We consider SM-like 2HDM(II) with CP violation

through a small mixing between H and A states

Couplings relative to SM: (assuming $|\Phi_{HA}| \ll 1$)

$$\chi_X^{h_1} \approx \chi_X^h$$

$$\chi_X^{h_2} \approx \chi_X^H \cdot \cos \Phi_{HA} + \chi_X^A \cdot \sin \Phi_{HA}$$

$$\chi_X^{h_3} \approx \chi_X^A \cdot \cos \Phi_{HA} - \chi_X^H \cdot \sin \Phi_{HA}$$

$$X = u, \ d \text{ or } V; \quad V = W \text{ or } Z$$

 \Rightarrow additional model parameter: **CP-violating mixing phase** Φ_{HA}

Higgs boson h_2

Two-photon width and phase measurement for different tan β $\Phi_{HA} = 0$

Higgs boson h_2

Influence of phase and systematics in $\tan \beta$ determination ($M_H = 300 \text{ GeV}$)

Expected precision in $\tan \beta$ determination stat. + sys. errors from $\tan \beta$ and Φ_{HA} fit

Possible CP violation increases expected $\tan \beta$ measurement errors

Higgs boson h_2

Influence of tan β and systematics in Φ_{HA} measurement ($M_H = 300$ GeV, $\Phi_{HA} = 0$) Expected precision in Φ_{HA} determination stat. + sys. errors from tan β and Φ_{HA} fit

CP violating H–A mixing can be precisely measured if $\tan \beta$ is not too large

Generic model

Couplings

We consider model with a generic tensor couplings of a Higgs boson \mathcal{H} , to ZZ and W^+W^- :

$$g_{\mathcal{H}ZZ} = ig \frac{M_Z}{\cos \theta_W} \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_Z^2} \right)$$
$$g_{\mathcal{H}WW} = ig M_W \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_W^2} \right)$$

Standard Model (scalar) couplings are reproduced for $\lambda_H = 1$ and $\lambda_A = 0$.

Pseudoscalar Higgs boson corresponds to $\lambda_H = 0$ and $\lambda_A = 1$.

We consider small CP violation (deviations from SM), i.e. $\lambda_H \sim 1$, $|\lambda_A| \ll 1$ \mathcal{H} couplings to fermions assumed to be the same as in the Standard Model.

Model:S.Y. Choi, D.J. Miller, M.M. Mühlleitner and P.M. Zerwas, hep-ph/0210077;
D.J. Miller, S.Y. Choi, B. Eberle, M.M. Mühlleitner and P.M. Zerwas, Phys. Lett. B505 (2001) 149;
D.J. Miller, Spin and Parity in the HZZ vertex, ECFA/DESY meeting, Prague, November 2002.Higgs CP from $\mathcal{H} \rightarrow \tau^+ \tau^-$:K. Desch, A. Imhof, Z. Was, M. Worek, hep-ph/0307331;
K. Desch, Z. Was, M. Worek, Eur.Phys.J.C29 (2003) 491, hep-ph/0302046.Higgs CP from $\mathcal{H} \rightarrow t\bar{t}$:E. Asakawa, K. Hagiwara, hep-ph/0305323.

A.F.Żarnecki

Generic model

Angular distributions

Angular variables used in the analysis of higgs CP-properties:

- higgs decay angle angle Θ_h
- polar angles Θ_1 and Θ_2
- angle between two Z/W decay planes,

 $\Delta \phi = \phi_2 - \phi_1$

To simplify the analysis, we introduce

 $\zeta = \frac{\sin^2 \Theta_1 \cdot \sin^2 \Theta_2}{(1 + \cos^2 \Theta_1) \cdot (1 + \cos^2 \Theta_2)}$

ratio of the distributions expected for a scalar and a pseudoscalar higgs (for $M_h \gg M_Z$).

All polar angles are calculated in the rest frame of the decaying particle.

Generic model

Angular distributions

Normalized angular distributions expected for scalar and pseudoscalar higgs, for $\mathcal{H} \to ZZ \to l^+ l^- jj$ $M_{\mathcal{H}} = 300 \text{ GeV}.$

Both distributions clearly distinguish between decays of scalar and pseudoscalar higgs.

A.F.Żarnecki

Selection

#events

6000

4000

2000

120

Invariant mass cut optimized for background rejection

 $h \rightarrow ZZ \rightarrow q\bar{q} l^+ l^ m_h$ =250 GeV: $h \rightarrow WW \rightarrow q\bar{q}q\bar{q}$ m_h =170 GeV:

SM higgs selection efficiency ~40% (for $ZZ \rightarrow q\bar{q} l^+ l^-$ events, $l = \mu, e$) $\times BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\%$

SM higgs selection efficiency $\sim 30\%$ (for $WW \rightarrow q\bar{q}q\bar{q}$ events) $\times BR(WW \rightarrow q\bar{q}q\bar{q}) \approx 46.9\%$

140

160

220

 $\gamma\gamma \rightarrow h \rightarrow WW$

γγ→WW

200

 M_{rec} [GeV]

180

Resolution

Expected accuracy of decay angles measurement:

All angles can be measured with high accuracy

Shape described by Breit-Wigner distribution

Acceptance

Selection efficiency as a function of the azimuthal angle ϕ_q

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

similar pattern observed for $Z \rightarrow l^- l^+$

Acceptance losses for $\phi = 0, \pi, ...$ are due to the jet/lepton going in the beam direction

Selection efficiency for $\phi_j \approx 0$:

red lines: $\cos \theta_i^{LAB} = \pm \cos \theta_Z^{LAB}$

Acceptance

Nonuniformity of selection efficiency in $\Delta \phi$ largest for small m_h

 m_h = 200 GeV, $\sqrt{s_{ee}}$ =305 GeV

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

Effect much stronger for background events and pseudoscalar higgs due to different $\cos \theta_{i,l}$ distribution

Measured $\Delta \phi$ distribution for $h \rightarrow ZZ \rightarrow q\bar{q} l^+ l^- m_h = 200 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=305 \text{ GeV}$, $\mathcal{L}=610 fb^{-1}$ $\Rightarrow \sim 675 \text{ reconstructed SM higgs events expected} + 145 ZZ$ background events

Measured $\Delta \phi$ distribution for $h \rightarrow ZZ \rightarrow q\bar{q} l^+ l^- m_h = 300 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}$ =418 GeV, $\mathcal{L} = 830 fb^{-1}$ $\Rightarrow \sim 635$ reconstructed SM higgs events expected + 415 ZZ background events

Measured $\Delta \phi$ distribution for $h \rightarrow WW \rightarrow q\bar{q}q\bar{q} m_h = 170 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=270 \text{ GeV}$, $\mathcal{L} = 540 fb^{-1}$ $\Rightarrow \sim 14 400 \text{ reconstructed SM higgs events expected} + 48 000 WW background events$

Large background contribution subtracted \Rightarrow systematic effects can be very important !

Preliminary

EPS'2003

Combined measurement of angular correlations in the W^+W^- and ZZ^- decay products Measurement error for Higgs-boson couplings to vector bosons:

assuming SM-like couplings: $\lambda_H = 1 \ \lambda_A = 0$

Summary

Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$ and the phase of the $\mathcal{H} \to \gamma\gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured. Mass range 200 < $M_{\mathcal{H}}$ < 350 GeV considered.

Strong dependence on Higgs boson couplings is expected for SM-like 2HDM (II) sol. B_h Both h and H boson decays can be used for precise determination of tan β . Precision better than 10% is obtained in wide parameter range.

CP violating H–A mixing phase Φ_{HA} can be measured with precision $\Delta \Phi_{HA} \leq 0.1$ rad, for tan $\beta < 1$

From combined measurement of angular correlations in the W^+W^- and ZZ decays CP violation in the higgs couplings to vector bosons can be determined to about 10%.