Status of Higgs searches

Higgs Physics at Future Colliders workshop 2004/2005

A.F.Żarnecki 27 X 2004

Precision (pseudo-)observables

$$\begin{array}{c} Z \text{ lineshape (5)} \quad M_{Z} \ \Gamma_{Z} \ \sigma_{h}^{0} \ \Gamma_{had} / \Gamma_{l} \ A_{FB}^{l} \\ \hline tau \text{ polarisation - } A_{e}(1) \\ \hline left-right asymm - A_{e}(1) \\ Z (b,c) \text{ properties (6)} \ R_{b}^{0} \ R_{c}^{0} \ A_{FB}^{b} \ A_{FB}^{c} \ A_{b} \ A_{c} \\ \hline sin^{2} \mathcal{G}_{eff}^{lept} \ (Q \ _{FB}^{had}) \ (1) \\ \hline W \text{ properties (2)} \ M_{W} \ \Gamma_{W} \\ \hline top \text{ quark mass (1)} \\ \end{array}$$

D)

92 94 E_{cm} [GeV]

(correlated) uncertainties

Standard Model parameters: M_Z , G_F , $\alpha(M_Z)$, $\alpha_S(M_Z)$ & M_t

plus 'unknown' $M_{\rm H}$

40th anniversary of Peter Higgs' papers

H top-quark mass 'predicted' by electroweak corrections prior to direct discovery eg LP 1995 Beijing does this work for the Higgs ? LEP + SLD + $p\bar{p}$ + vN Data

Preliminary

150

200

250

m. [GeV]

SM: TOPAZ0 and ZFITTER 6.40 Enew

 $sin^2\theta_{eff}$ fermion 2-loop: M_W full 2 (& leading 3)-loop

measurement of M_W , Γ_W and M_t (plus other electroweak quantities) Run 1 improved M_t measurement from D0 ~100 pb-1 Run 2 prelim M_t measurements from CDF & D0 from ~160 pb⁻¹ combinations (Run 1 only) by Tevatron Electroweak Working Group

ICHEP04 Beijing Global Electroweak fits and constraints on the Higgs mass Pete Renton Aug 2004

New world average (Run 1 only): $m_t = 178.0 \pm 2.7(stat) \pm 3.3(syst) \text{ GeV}$ $= 178.0 \pm 4.3 \text{ GeV}$

(previous $m_t = 174.3 \pm 5.1 \,\text{GeV}$)

top quark mass – Run 2 (prelim)

blueband' from uncertainties of 2 (& leading 3) herefore $M_W \& \sin^2 \theta_{eff}$ (main effect for m_H)

Awramik,Czakon,Freitas,Weiglein hep-ph/0311148,0407317 &refs therein Faisst,Kuhn,Seidensticker,Veretin N Phys B665,649(2003) + many more! Since Aachen EPS Summer 2003 new top mass increases m_H by ~20 GeV new 2-loop terms etc increase m_H by ~6 GeV

ICHEP04 Beijing Global Electroweak fits and constraints on the Higgs mass Pete Renton Aug 2004

pulls

Higgs mass from individual measurements

ICHEP04 Beijing Global Electroweak fits and constraints on the Higgs mass Pete Renton Aug 2004

m_t, m_w direct vs indirect

Consistency with the SM

The HZZ coupling limits 95 % CL limit on

 $\xi^2 = (g_{\rm HZZ}/g_{\rm HZZ}^{\rm SM})^2$

 $m_{\rm H} ({\rm GeV}/c^2)$

108

observed

expected $\pm 1\sigma$ bands

±2 or bands

100 110

Flavour blind searches: Higgs boson decays to down type fermions are suppressed; **BR(H->hadrons) = 100 %**

Two Higgs Doublet Models (2HDM)

Simplest extension of SM with 2 complex scalar field doublets, in total 5 physical scalar Higgses:

- CP even scalars: h, H
- CP odd scalar: A

 $\cos(\beta - \alpha)$

- Two charged scalars: H[±]

6 Free parameters: 2 angles, 4 masses

Two production processes:

$$\label{eq:star} \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & &$$

The type of 2HDM is determined by the couplings of the Higgs doublets to fermions:

- **Type I**: quarks and leptons only couple to the 2nd Higgs doublet
- **Type II:** 1st Higgs doublet couples only to down-type fermions, 2nd Higgs doublet couples only to up-type fermions

General 2HDM(II)

 $-\pi/2 \le \alpha \le \pi/2$

MSSM-like

 $-\pi/2 \le \alpha \le 0$

Fermiophobic Higgs searches:

Benchmark: HZ-SM production cross-section with all direct decays into fermions removed

LEP fermiophobic limit: 109.7 (109.4) GeV

LEP MSSM Exclusions at 95 % CL for the m_h -max benchmark scenario (m_t = 179.3 GeV)

LEP MSSM Exclusions at 95 % CL for the no-mixing benchmark scenario (m₁ = 179.3 GeV)

LEP MSSM Exclusions at 95 % CL for the large- μ benchmark scenario (m_t = 179.3 GeV)

LEP Exclusions at 95 % CL for the CPX scenario

SM Higgs Production at the Tevatron

 Though Higgs production could be quite copious, not all channels are accessible

gg→H

- Useful for M_H>140 GeV
- $H \rightarrow WW \rightarrow ||_{VV}$
- Background: WW

W/Z+H

- M_H<140 GeV
- WH→Ivbb
- ZH→IIbb, ννbb
- Background: W+bb, Z+bb, top

WH Cross Section Limit (DØ)

For M_H=115 GeV Higgs σ**(WH)×BR(H→bb)̄<12.4 pb** (95% C.L.)

WH Searches (CDF)

- Using 162pb⁻¹ of data in muon and electron channels
- Event selection
 - lepton: p_T>20 GeV
 central region
 - Missing E_T: ∉_T>20 GeV
 - 2 Jets: $p_T > 15 \text{ GeV}$

|η|<2.5

- Veto on
 - Additional high p_T track
 - 3rd and 4th jet

WH Searches (CDF)

- Single b-tag analysis
 - Secondary vertex tagging

Exclusive W + 2 jets
62 events (67±9 expected)

ICHEP 2004 Beijing

WH Cross Section Limit (CDF)

Signal acceptance

H→WW (DØ)

- Search in 3 channels
 - ee, eµ, µµ
 - 147~177 pb⁻¹ of data
- Selection
 - 2 oppositely charged leptons
 - Large MET
 - Di-lepton mass or min(M_T(e), M_T(μ))
 - Scalar sum of lepton \textbf{p}_{T} and MET
 - Jet veto
 - $-\Delta \Phi_{\parallel}$
 - reduce Z, W+jets, tt-bar
- Cuts optimized for each mass point

H→WW (D0)

Limit set in each channel by countingCombine the likelihoods

 σ *BR(H \rightarrow WW) < 5.7pb For M_H=160 GeV

H→WW (CDF)

- Seach in 3 channels
 ee, eµ and µµ
- Selection
 - 2 isol. leptons p_T >20 GeV
 - Oppositely charged
 - MET > 25 GeV
 - Veto on jets $E_T > 15$, $|\eta| < 2.5$
 - $M_{\rm H} < M_{\rm H}/2$
- 8 events observed
 8.9±1.0 expected
- Limits are extracted by performing likelihood fit to the $\Delta \Phi_{\parallel}$ distribution

WW	Drell-Yan	Fakes
6.5 ± 0.8	1.3 ± 0.5	$\textbf{0.81} \pm \textbf{0.25}$

H→WW (CDF)

CDF Run II Preliminary

σ*BR(H→WW) < 5.6pb @ 95% CL For M_H=160 GeV

Outlook

- Need >2 fb⁻¹ per experiment to exclude M_H
- Working on further optimization
- Benchmark: WZ→Ivbb

- Excellent performance of the Tevatron
 - Met the design projection for this year
- Need to understand high luminosity environment

Higgs Search at Tevatron (Run1)

SM Higgs Search

- $Wh \rightarrow (l\nu, q\bar{q}')b\bar{b}$
- $Zh \rightarrow (l^+l^-, \nu\bar{\nu})b\bar{b}$
- set $\sigma_{Vh} \cdot B < 8$ pb at 95% CL

MSSM Higgs Search

- Due to enhancement of $b\bar{b}h/H/A \to b\bar{b}b\bar{b}$ xsec at large $tan\beta$
- Selecting 3 b-jets from multi-jet sample
- set $tan\beta > 50$ at 95% CL for $m_A = 100$ GeV

No real sensitivity yet ...

Search for MSSM Higgs: $Ab\overline{b} \rightarrow b\overline{b}b\overline{b}$ (D0)

• $b\overline{b}(h/H/A)$ enhanced at large $tan\beta$

- Selecting events on multijet trigger (131 pb^{-1})
- Requiring 4 jets with 3 b-tags
- Invariant mass of the two highest b-tag jets and set a limit on $tan\beta$ vs m_A

- Standard Model Higgs not found (yet).
- Extensions to the Standard Model with more Higgs doublets predict Higgs bosons which can be lighter: in the MSSM, $m_{H^{\pm}} < m_W$ is barely possible.
- In particular, 2HDM (already introduced) predict two charged Higgs bosons: $\rm H^{\pm}.$
- The production cross-section in e^+e^- is a function of m_{H^\pm} and $\sqrt{s}.$
- The branching ratios are model dependent:
 - <u>Type II</u>: H⁺H⁻ \rightarrow cs̄c̄s, cs̄ $\tau^- \bar{\nu}_{\tau}$ and $\tau^+ \nu_{\tau} \tau^- \bar{\nu}_{\tau}$.
 - -<u>Type I</u>: for light A, decay $H^{\pm} \rightarrow W^*A$, final states $H^+H^- \rightarrow W^*AW^*A$ and $W^*A\tau\nu_{\tau}$.

<u>Note</u>: indirect limits from $\Gamma(Z \rightarrow H^+H^-)$ calculated in 2HDM and from Γ_Z^{fit} using LEP precision data: $m_{H^{\pm}} > 40 \text{ GeV}$ at 95% C.L.

- Charged Higgs bosons can be produced at LEP in $e^+e^- \rightarrow H^+H^-$. Production and decays of H^{\pm} very similar to that of W^{\pm} (main background). Different spin: the boson production angle plays a fundamental role.
- At $\sqrt{s} = 206 \text{ GeV}$, $\sigma \sim 0.28 0.17 \text{ pb}$ for $m_{H^{\pm}} \sim 70 80 \text{ GeV}$. Luminosity per experiment $\sim 650 \text{ pb}^{-1}$ above 189 GeV. Events expected: $\mathcal{O}(100)$ signal and $\mathcal{O}(1000)$ background.

• Final state topologies:

- <u>Type II</u>: 4-jet events in cs̄cs
 2 jets, τ-jet and ≇ in cs̄τ⁻ν̄_τ
 2 τ-jets and ≇ in τ⁺ν_ττ⁻ν̄_τ.
 <u>Type I</u>: W*AW*A and W*Aτν_τ, jets, b-tag, τ-jets and ₽.
- The analysis are mostly likelihood- and multidimensional-NN-based. Typical efficiencies $\sim 30-60\%$, depending on the channel.

Distributions used for the analysis, different experiments and channels:

<u>Mass resolution</u>: 1.5 GeV $c\bar{s}\bar{c}s$, 2-4 GeV $c\bar{s}\tau^-\bar{\nu}_{\tau}$

Good agreement data/expectations (w/o signal), both in the number of events and in the shape of the distributions.

The L3 anomaly at 68 GeV persists only in the 4-jet channel and with reduced significance: statistical fluctuation of the background (2.5σ) .

Exclusion contours (95% C.L.) in the $m_{H^{\pm}} - m_A$ and $m_{H^{\pm}} - \tan\beta$ planes:

- Limits for Type I: $m_{H^{\pm}} > 76.7 \text{ GeV} (77.1)$ for any $\tan\beta$ and $m_A > 12 \text{ GeV}$.
- Log likelihood method used for the statistical analysis.
- Systematic errors included: detector, cuts, normalisation of background and signal.

Exclusion limits on ${ m m}_{ m H^{\pm}}$ vs. ${ m Br}({ m H^{\pm}} ightarrow au u)$

Lower limits at 95% CL (GeV):

	observed	expected
ALEPH	79.3	77.1
DELPHI	74.4	76.3
OPAL	75.5	74.5
L3	76.5	75.6

Systematic errors included: limits reduced by 200-600 MeV, depending on the channel.

LEP combined results

Exclusion contours (95% C.L.) in the $m_{H^{\pm}} - Br(H^{\pm} \rightarrow \tau \nu)$ plane (old from 2001):

- No new combined results (manpower problems): L3 was 'late', OPAL not yet final.
- Results (95% CL limits) NOT expected to change significantly: $m_{H^{\pm}} > 78.6 \text{ GeV} (78.8)$
- Significant improvement in CL_b , specially due to the L3 change.