

Higgs Physics at Future Colliders workshop 2004/2005

A.F.Żarnecki 01.12.2004

Higgs Production at a LC

• The fusion process is dominant for higher CM energies (above 350 GeV)

Observing the Higgs Boson

Measuring the Higgstrahlung Cross Section

- Full simulation
- Error bars give precision,

Δσ ⁄σ ~ 3.0% at 350 GeV

Δσ /σ ~ 5.5% at 500 GeV (c.f. 4.7% fast MC simulation)

 $\Delta\sigma/\sigma$, m_H=120 GeV

ECM	300	350	500
NLC		~3%	~5%
JLC	2.1%		2.9%
TESLA		2.6%	

 \Rightarrow **g**_{HZZ} coupling measurement

Measuring the Higgs Boson Mass

 m_{H} =240 GeV Δm_{H} =200 MeV

 Δm_H , m_H =120 GeV

ECM	300	350		
NLC		90 MeV (11H)		
JLC	80 (40) MeV			
	ll (Combined)			
TESLA		70 (40) MeV		
		ll (Combined)		
(500/fb@350)				

A Scalar Higgs Boson?

- For $\sqrt{s} \sim m_{H} + m_{Z}$ (Threshold) $\sigma(ee \rightarrow HZ) \sim \beta_{ZH} \sim \sqrt{s - (m_{H} + m_{Z})^{2}}$
- For J=0 $\sigma \sim \beta$ J=1 $\sigma \sim \beta^3$ J=2 $\sigma \sim \beta^5$
- Threshold scan with JL = 20 fb⁻¹/point is sufficient to distinguish the different behavior
- Signal ZH→llqq
- E_{cm}=215, 222, 240 GeV
- Δσ/σ~20% per point

Higgs Parity

TDR: Spin from threshold scan TDR: CP from angular distributions of ZH

New Ideas:Spin from $H \rightarrow ZZ$ Miller et al CP from transverse polarisation correlations in $H \rightarrow \tau\tau$

Observable: *ρρ***-acoplanarity:**

> 8σ separation between CP+ and CPfor 120 GeV Higgs (350GeV/1 ab⁻¹)

Was,Worek

Bower

Higgs Boson Total Decay Width FH

For 160 GeV Higgs the drop in fusion based accuracy is due to the fact that bb Higgs decay is not dominant anymore

3.6%

(500/fb)

MH

160 GeV

13.4%

Higgs Decay Rates to Fermions

- The Higgs boson generates the fermion masses ("the God particle" :)
- one needs a precise determination of the coupling constants (including b/c discrimination, in order to tell a SUSY Higgs from a SM Higgs
- That is the power of the LC

Higgs Decay Rates

(500/fb@350 GeV) Tesla				300GeV)	(500/fb@500 GeV)			
decays	BR (%)	δ B/B (%)	δ B/B (%)	δB/B (%)	JLC	NLC	Tesla	JLC
		direct method	indirect method	combined			Scale	b
		(this note)	from ref. [2]					
bb	68.	1.9	2.4	1.5	1.1%	3%	5%	1.7%
au au	6.85	7.1	5.0	4.1	4.4%	8%	10%	
cē	3.1	8.1	8.3	5.8		39%*	17%	22%
gluon-gluo	n 7.0	4.8	5.5	3.6		18%	11%	13%
$\gamma\gamma$	0.22	35.	26	21.				
WW*	13.3	3.6	4.2	2.7	5.1%	10%	10%	16%

- Theoretical uncertainties come mainly from m_a(m_H) and QCD corrections to hadronic decays
- One can assume that by the time of LC an improvement of at least factor ~2 on m_b and m_b-m_c will be achieved from B factories and LHC

The scaling might be too optimistic because of the different kinematics (more boosted)
NLC takes into account tracking ambiguity between jets

Light Higgs off Top Quark...

ttH

- Signature:
 For low Higgs Mass ee→ttH →WbWb bb :
 2W bosons + 4 b jets
- For Heavier Higgs, H→WW, 4W+2b final state
- JLC: $\delta g_{Htt}/g_{Htt}=4.2\%$ for $m_H=120~GeV$ @ $E_{CM}=700~GeV$ with 500 fb⁻¹
- TESLA: See plot (~7% for m_H=120 GeV) NLC: ~8%
- NLC: An attempt was done to measure this Yukawa coupling by a threshold scan of the tt cross section, results are poor (>20%).

A Linear Collider (√s=300-1000 GeV) Will...

- Measure the Higgs properties:
 - Production rate
 - Mass
 - Spin
 - Lifetime (total width)
- Couplings to
 - Matter particles: g_{hff}
 - Gauge bosons: g_{hZZ}
- Establis the Higgs mechanism as the mechanism of electroweak Symmetry Breaking by measuring the Higgs coupling to itself : λ
- Due to its intrinsic limitations (E_{CM}, ee nature) some unique properties can be better probed by a γγ collider (Hγγ coupling, Beyond the SM Heavy Higgs Bosons) and a Multi-TeV LC (CLIC) (Rare Higgs Decays...)

LHC TESLA multi–TeV LC

Higgs self-coupling

Y.Yasui

Conditions of Baryogenesis

Evidence of the BAU

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} \simeq (8.7^{+0.4}_{-0.3}) \times 10^{-11}$$

• 3 requirements for generation of the BAU (Sakharov conditions)

baryon number violation
 C and CP violation
 out of equilibrium

2 scenarios

- (1) B-L-generation above EW phase transition. (Leptogenesis, etc)
- (2) B-generation at the electroweak phase transition. (Electroweak baryogenesis)

-based on a testable model

Baryogenesis in the electroweak theory

In principle, SM fulfills the Sakharov conditions, BUT

- Phase transition is not 1st order for the current Higgs mass bound ($m_h > 114$ GeV)
- KM-phase is too small to generate the sufficient baryon asymmetry

 \implies Extension of the minimal Higgs sector

THDM, MSSM, Next-to-MSSM, etc.

▷ THDM is a simple viable model not so constrained

Finite temperature Higgs potential

ightarrow CP violation at the bubble wall \Rightarrow Asymmetry of the charge flow

Contour plot of φ_c/T_c in the m_{Φ} -M plane

 $\sin^2(\alpha - \beta) = \tan \beta = 1, \ m_h = 120 \text{ GeV}, \ m_\Phi \equiv m_A = m_H = m_{H^{\pm}}$

ullet For $m_{\Phi}^2 \gg M^2, m_h^2$,

Strongly 1st order phase transition is possible due to the loop effect of the heavy Higgs bosons (non-decoupling effect). (φ^3 -term is effectively large)

• What the magnitude of the λ_{hhh} coupling at T=0 in such a region?

Radiative corrections to λ_{hhh}

[S. Kanemura, S. Kiyoura, Y. Okada, E.S., C.-P. Yuan PL '03] • <u>hhh</u> $h \dots = h \dots + h \dots + h \dots + h \dots + counter terms$

- $(\phi = h, H, A, H^{\pm}, f = t, b)$
- For $\sin(\beta \alpha) = 1$,

For $m_{\Phi}^2 \gg M^2, m_{h}^2$, the loop effect of the heavy Higgs bosons is enhanced by m_{Φ}^4 , which does not decouple in the large mass limit. (non-decoupling effect)

Electroweak baryogenesis and the Higgs self-coupling in 2HDM E.Senaha

Baryon number asymmetry can be created at the EW phase transition in 2HDM.

The condition of the strong first order phase transition

=>

A large radiation correction to the triple Higgs boson coupling.

$$V_{eff}(\phi, T) \leftrightarrow V_{eff}(\phi, 0)$$

 $\Delta \lambda_{hhh} / \lambda_{hhh} \gtrsim 10\%$

New Strategy for simulation studies

- 1. Parton level Generator (tree level ⇔ *GRACE-loop*)
 - LCGrace talk by Yasui, ACFA 6th India 2003 package for LC Higgs physics study: $M_h \le 140 \text{ GeV} \quad e^+e^- \rightarrow 6f$
 - based on the GRACE System
 - Bases \Rightarrow Monte Carlo integration \Rightarrow Cross section
 - Spring \Rightarrow Events generator
- 2. Hadronizer
 - Pythia (interface from Spring to Pythia6)
- 3. Simulator (Quick Simulation → Full Simulation)
- 4. Analysis

Simulation Study

 $\star E_{cm} = 1 \text{ TeV}$ ► <u>VVhh quick analyses</u> main mode \Rightarrow W-fusion only for hh decaying to 4b ➤ Br(hh→ 4b) ~ 47 % SM decay Br for 120 GeV SM Higgs **☆ISR/BSR** included Signal & bkg event generator LCGrace (BASES+SPRING) **☆**Signal MC: X + hh λ/λ_{SM} from 0.0 to 2.0 with 0.2 step Smearing simulation at parton level Jet energy resolution ~ $30\%/\sqrt{E}$ (GeV) (detector R&D target value)

Signal characteristics

-Large missing energy, missing Pt -Only 4 b jets $-M_1$ jj ~ M_h M_2 jj ~ M_h -No isolated lepton

Signal and Background processes

By LCGrace

vvhh Analysis Flow

- 1. Likelihood selection bkg further reduction
- 2. Separate Zhh & fusion different λ dependence (positive/negative interferences)
- 3. Combine with Zhh analyses for s-channel process
- 4. Check hh invariant mass
- 5. λ_{hhh} measurements

Reconstructed 'Higgs' mass

HH invariant mass distributions

By Yamashita et.al. LCWS 2004

Precise study \Rightarrow Radiative corrections are also important!!

⇒ Systematic study of the RC for Higgs physics at LC with GRACE

Summary

A quick simulation study has been performed for E_{cm} =1 TeV For M_h=120 GeV: λ measurement sensitivity (only hh \rightarrow bbbb only) for $\lambda = \lambda_{SM}$ $\lambda/\lambda_{SM} = 1.0 + 0.13 - 0.11 (1\sigma)$ 0.78 - 1.32 (95%CL) $\lambda/\lambda_{SM} = 0.6$ 0.6 +0.10 -0.07 (1 σ) 0.45 - 0.77 (95%CL)

 λ/λ_{SM} =1.4 1.4 +0.14 -0.18 (1 σ) 1.08 - 1.70 (95%CL)

Still to be done:

 * Non-b decay of the Higgs ⇒ increase sensitivity
 * M_n>140GeV ⇒ W-par decay of the Higgs
 vvhh → 8f, 10f New version of Grace system
 *Radiative corrections (systematic study have been done) sizable ⇒ include in the event generator
 *New Physics study

Higgs at Linear Collider - Summary

