Observation of the strongly interacting Higgs sector in the CMS detector

Paweł Zych

15 December, 2004

- problems in the Standard Model for $m_H \ge 700 \text{ GeV}$
 - 1. coupling $V_L V_L V_L V_L \sim m_H^2 \implies V_L$'s interact strongly (perturbation theory?)
 - 2. unitarity is broken in $V_L V_L \rightarrow V_L V_L$ scattering (VV \rightarrow VV scattering dominated by $V_L V_L \rightarrow V_L V_L$)
 - 3. new physics must enter to cure these problems

• if there is no Higgs boson then what?

An alternative is effective theory of strongly coupled Higgs sector (strongly interacting scalar sector breaks EW symmetry) As a result V_L 's can interact strongly. Submodels:

- č models with scalar resonances = SM with heavy Higgs boson and unitarized amplitudes
- $\check{}$ models with vector resonances or without resonances in VV scattering

Higgs mechanism

• Higgs sector lagrangian:

$$\mathcal{L}_{Higgs} = \lambda vh(2w^+w^- + z^2 + h^2) - \frac{1}{4}\lambda(2w^+w^- + z^2 + h^2)^2 \text{dla} \quad v^2 = \mu^2/\lambda, 1/v^2 = G_F\sqrt{2}, \lambda = \frac{G_F m_h^2}{\sqrt{2}}, \text{ GB: } w^{\pm}, z$$

Strongly interacting boson sector

- SSB of SU(2)_LxSU(2)_R \rightarrow SU(2)_C triggers SU(2)_LxU(1)_Y \rightarrow U(1)_Q in SM \Rightarrow GB's
- GET: V_L's interact like GB's

- SSB \Rightarrow GB's appear
- GET: V_L's interact like GB's

- 2 parameters: a_4 , a_5 up to order p^4
- various models accesible through a_i parameters choice

- nonresonant application limited to \sqrt{s} <1.5 GeV
- resonant (resonances appear after unitarization of partial waves - analogy with $\pi\pi$ scattering):
 - šcalar (e.g. SM with higgs)
 - [~] vector
 - šcalar+vector

$$t_{J} = t_{J}^{(2)} + t_{J}^{(4)} + ... \to t_{J} =$$

- 1. preparation of selection procedure
- 2. determination of CMS detector discovery reach
- 3. preparation of identification procedure of a particularly realized model of strong scattering:
 - SM with heavy Higgs boson
 - numerous models with/without resonances

strong V_LV_LV_LV_L coupling

- strong scattering e.g. in the SM for $W^{\pm}W^{\pm}$:

enhanced production of WW final states in VBF (WW/ZZ→WW)

channels of interest:

$$W_L W_L / Z_L Z_L \rightarrow W_L^{\pm} W_L^{\pm} \rightarrow qql\nu$$

characteristics:

- hard, central and isolated lepton
- hard escaping ν (large MET)
- 2 (1) very hard and central W jets
- 2 very forward tagging jets

3. $VV \rightarrow W_T W_T$, $VV \rightarrow W_L W_T$ scattering of the order of $V_L V_L$ scattering in SM for $m_H \sim 100 \text{ GeV}$ (already included in WWjj)

3. $VV \rightarrow W_T W_T$, $VV \rightarrow W_L W_T$ scattering of the order of $V_L V_L$ scattering in SM for $m_H \sim 100 \text{ GeV}$ (already included in WWjj)

Observ. of the strongly interacting Higgs...

2→2 processes PYTHIA 6.2

- signal $V_L V_L \rightarrow V_L V_L$ scattering
- backgrounds: Wj, tt

 $2 \rightarrow 3, 2 \rightarrow 4 \text{ processes}$ COMPHEP 4.2p1

LO matrix element calculation for a given process

- EW⊕QCD pp→WWjj
- complicated backgrounds: W+multijets, tt+multijets

- approximated currently being used
 - 1. effective W approx. \Rightarrow V_L pt spectrum

approximations:

- : 2. equivalence theorem: V_L 's scatters \sim like Goldstone bosons
 - 3. final V's are on the mass shell
- \sim V_LV_L \rightarrow W_LW_L in PYTHIA:
 - * heavy SM Higgs boson
 - * QCD-like models
 - * Electro-Weak Chiral Lagrangian (EWChL) effective theory for strongly interacting bosons (provided by Butterworth, et al. PRev D65, 096014)
- more exact calculation of LO matrix elements in COMPHEP planned approach
 - in SM for heavy Higgs boson
 - \sim) in SM for heavy Higgs boson / in EWChL \oplus EW diagrams
 - ~ 4 \oplus qqqql ν diagrams (PHASE)

Cross-sections were calculated in LO in PYTHIA and COMPHEP

	very loose		
	\hat{p}_{\perp} \sim 2 GeV		
process	cuts		
	σ [pb]		
SIGNAL S4	-		
W±j	38000		
₩ [−] jj	?		
W [±] jjj	11000(W ⁺ jjj)		
W ⁺ W ⁻ j	170		
W ⁺ W ⁻ jj ^b			
tī	630		
tīj	4400		
tījj	14709		

^ageneration is very CPU consuming and enough estatistics has not been generated yet ^bgenerated in COMPHEP for m_H=115 GeV for all contributing diagrams (QCD \bigoplus EW) excluding virtual γ , s, c, b, t; with virtual light higgs to have well-behaved calculation for large W-pair inv. masses

Cross-se	ections were	calculated	in LO in PYTHIA	and COMPHEP
	very loose	after		
	\hat{p}_{\perp} \sim 2 GeV	gener.		
process	cuts	presel.		
	σ [pb]	σ [pb]		
SIGNAL S4	-	0.016		
W [±] j	38000	22000		
₩ [−] jj	?	63		
W [±] jjj	11000(W ⁺ jjj)	54		
W^+W^-j	170	5.6		
W ⁺ W ⁻ jj ^b		3.8		
tī	630	-		
tīj	4400	502		
tījj	14709	2010		

- preselection steps:
 - 1. during generation in PYTHIA&COMPHEP objects: partons and W's cuts on pT & η

^ageneration is very CPU consuming and enough estatistics has not been generated yet ^bgenerated in COMPHEP for m_H=115 GeV for all contributing diagrams (QCD \bigoplus EW) excluding virtual γ , s, c, b, t; with virtual light higgs to have well-behaved calculation for large W-pair inv. masses

Cross-sections were calculated in LO in PYTHIA and COMPHEP						
	very loose	after	after			
	\hat{p}_{\perp} \sim 2 GeV	gener.	CMKIN			
process	cuts	presel.	presel.*BR			
	σ [pb]	σ [pb]	σ [fb]			
SIGNAL S4	-	0.016	4.2			
W [±] j	38000	22000	360			
₩ [−] jj	?	63	12			
W [±] jjj	11000(W ⁺ jjj)	54	42			
W ⁺ W ⁻ j	170	5.6	1.7			
W ⁺ W ⁻ jj ^b		3.8	0.02±0.02			
tī	630	-	133			
tīj	4400	502	753			
tījj	14709	2010	930			

- preselection steps:
 - 1. during generation in PYTHIA&COMPHEP objects: partons and W's cuts on pT & η
 - 2. before accepting CMKIN objects:leptons & clusters cuts on pT & η

^ageneration is very CPU consuming and enough estatistics has not been generated yet ^bgenerated in COMPHEP for m_H=115 GeV for all contributing diagrams (QCD \bigoplus EW) excluding virtual γ , s, c, b, t; with virtual light higgs to have well-behaved calculation for large W-pair inv. masses

Cross-sections were calculated in LO in PYTHIA and COMPHEP						
	very loose	after	after	after OFFLINE selection		
	\hat{p}_{\perp} \sim 2 GeV	gener.	CMKIN	with fast det. simul.		
process	cuts	presel.	presel.*BR	(CMSJET) I = e, μ		
	σ [pb]	σ [pb]	σ [fb]	σ [fb]		
SIGNAL S4	-	0.016	4.2	0.8		
W [±] j	38000	22000	360	0.3		
₩ [−] jj	?	63	12	0.001		
W [±] jjj	11000(W ⁺ jjj)	54	42	<2.2ª		
W ⁺ W ⁻ j	170	5.6	1.7	0.009		
W ⁺ W [−] jj ^b		3.8	$0.02{\pm}0.02$	\sim 0		
tī	630	-	133	0.1		
tīj	4400	502	753	0.6		
tījj	14709	2010	930	<3x2.ª		

^ageneration is very CPU consuming and enough estatistics has not been generated yet
 ^bgenerated in COMPHEP for m_H=115 GeV for all contributing diagrams (QCD⊕EW)
 excluding virtual γ, s, c, b, t; with virtual light higgs to have well-behaved calculation for
 large W-pair inv. masses

- preselection steps:
 - 1. during generation in PYTHIA&COMPHEP objects: partons and W's cuts on pT & η
 - 2. before accepting CMKIN objects:leptons & clusters cuts on pT & η

• OFFLINE selection:

- constructed and optimizedwith fast simul. CMSJET
- translated and being optimized with full simul.ORCA

Cross-sections were calculated in LO in PYTHIA and COMPHEP						
	very loose	after	after	after OFFLINE selection		
	\hat{p}_{\perp} \sim 2 GeV	gener.	CMKIN	with fast det. simul.		
process	cuts	presel.	presel.*BR	(CMSJET) I = e, μ		
	σ [pb]	σ [pb]	σ [fb]	σ [fb]	#/100 fb ⁻¹	
SIGNAL S4	-	0.016	4.2	0.8	78.2±2.3	
W±j	38000	22000	360	0.3	28.6±6.1	
₩ [−] jj	?	63	12	0.001	0.11±0.04	
W [±] jjj	11000(W ⁺ jjj)	54	42 <2.2 ^ª		<3x74.ª	
W^+W^-j	170	5.6	1.7	0.009	0.9±0.3	
W ⁺ W ⁻ jj ^b		3.8	0.02±0.02	${\sim}0$	\sim 0	
tī	630	-	133	0.1	10±4	
tīj	4400	502	753	0.6	57±9	
tījj	14709	2010	930	<3x2.ª	<3x205 ^a	

^ageneration is very CPU consuming and enough estatistics has not been generated yet
 ^bgenerated in COMPHEP for m_H=115 GeV for all contributing diagrams (QCD⊕EW)
 excluding virtual γ, s, c, b, t; with virtual light higgs to have well-behaved calculation for
 large W-pair inv. masses

- preselection steps:
 - 1. during generation in PYTHIA&COMPHEP objects: partons and W's cuts on pT & η
 - 2. before accepting CMKIN objects:leptons & clusters cuts on pT & η

• OFFLINE selection:

- constructed and optimizedwith fast simul. CMSJET
- translated and being optimized with full simul.ORCA

Observ. of the strongly interacting Higgs...

- leptons are isolated in calorimeters and in the tracker ($W \rightarrow I\nu$)
- p_T^{ν} of ν reconstructed from Missing Transverse Energy (MET). Overall transverse momentum is conserved and = $\overrightarrow{0} \Rightarrow$

$$\overrightarrow{p_T^{\nu}} = \overrightarrow{MET} = -\sum_{CALO \ towers} (E_i sin\theta_i) \hat{n}^{\mathsf{a}}$$

• muons do not interact in calorimeters \Rightarrow MET needs to be corrected:

 ${}^{a}\hat{n}$ is transverse unit vector pointing to CALO tower

Observ. of the strongly interacting Higgs...

- leptonic W reconstruction (W_{lept}=l+ν):
 M(l+ν)=M_W ⇒ we have p^ν_Z if quadratic equation is solved
- very hard W→qq̄ can be reconstructed from a single jet (candidate close to M_W is chosen)
 69% of hadronic W's are reconstructed from 1 jet (full simulation)
- tagging very forward jets are detected by forward calorimeters
- transverse momentum is conserved & $W^{lept}W^{hadr}j^{tag}j^{tag}$ is full final state \Rightarrow

 $\mathsf{p}_\mathsf{T}^{WWjj} \approx 0$

- N_{iso lept} = 1, lept=μ, *e* (efekt. id. = 100%)
- 2. $N_{jet} \ge 3$
- 3. p_T^{lept}>90 GeV
- 4. E_{T}^{miss} (improved)>50 GeV
 - candidate for $\boldsymbol{\nu}$
- 5. $W_{lept} = \mu + \nu$: ν reconstructed from E_{T}^{miss} and $M(W_{lept}) = M_{W}$
- 6. W_{lept}: p_T^{Wlept}>200 GeV
- 7. W_{hadr}: candidate (1 or 2 jets of |η|<2.) closest to M_W,
 70 GeV<M(W_{hadr})<100 GeV
 correction of jets is needed!

- 8. p_T^{Whadr}>150 GeV
- 9. W's separated from each other: $|\eta_{Wlept}-\eta_{Whadr}| > 0.5$
- 10. top veto: vetoed events with $M(W_{hadr}+j)$ or $M(W_{lept}+j)$ in (140 GeV, 200 GeV); j-any of jets (for W_{lept} also W-jets)
- 11. 2 tagging jets: a jet very forward and a jet very backward of 2.0<|η|<4.5,
 E>500 GeV, p_T>40 GeV one tagging jet is not enough
 12. p_T^{WWjj}<50 GeV

Details on backup slides

selection cut	CMSJET with preselection				
	S4	tī200	Wj100	tīj	
before presel (μ +e)	16.4 fb	11.3 pb	374 pb	502 pb	
preselection	25.6%	0.6%	5.9E-4	1.5E-3	
$N_{iso lept} = 1 \& lept.==\mu \& N_{jet} \ge 3$	11.1%	2.0E-3	1.9E-4	4.1E-4	
$p_T(lept) \& E_T^{miss} \& \nu_\mu rec. \& p_T^{Wlept}$	8.1%	7.0E-4	1.0E-5	1.1E-4	
M(W _{hadr}), p _{TWhadr} >150 GeV	6.6%	2.9E-4	8.2E-7	4.4E-5	
top veto	5.3%	3.0E-5	2.8E-7	5.0E-6	
tagging jets	2.4%	7.7E-6	2.9E-8	9.0E-7	
p _T ^{WWjj} <50 GeV	2.3%	3.4E-6	1.9E-8	7.2E-7	
# / 100 fb ⁻¹	38.2±1.6	3.8±1.3	0.7±0.5	36±7	

- S4: signal for $a_4=0.0$, $a_5=0.0040$
- tt200: $t\bar{t}$ with 200< \hat{p}_{\perp} <400 GeV
- Wj100: Wj with 100< \hat{p}_{\perp} <200 GeV

model S4, a4=0.0, a5=0.0040, WW $\!\!\rightarrow$ qqlv, l=e, μ

fast simulation (CMSJET) for I = e, μ :

- signal S4: N_{S4}= 78±2
- Wj: N_{Wj}= 29±6
- $t\bar{t}$: N_{tt}= 10±4
- $t\bar{t}j$: $N_{t\bar{t}j} = 57 \pm 9$

N(S4)	N(B)	S=N(S4)/ $\sqrt{N(B)}$	disc. prop.
78±2	87±12	8.0±0.5	\sim 100%

Observ. of the strongly interacting Higgs...

EWChL parameter space:

model	m[GeV]	a ₄	a ₅	# / 100 fb ⁻¹	S=NS/√NB		
results with fast simulation (CMSJET)							
S1	1400	0.0	0.0015	52.3±0.3	5.3±		
S2	1300	0.0	0.0020	61.4±0.8	6.3±		
S3	1200	0.0	0.0025	68.4±0.3	7.0±		
S4	900	0.0	0.0040	78±2	8.0±0.5		
S5	820	0.0	0.0077	102±5	10.4±0.8		
S6	770	0.0	0.0090	95±5	9.7±0.8		
V1	1360	0.002	-0.003	44±1	4.4±0.3		
V2	1900	0.002	-0.001	31±4	3.2±0.4		
VS		0.008	0.0	113±4	11.5±1.4		
NR	-	0.0	0.0	32.2±0.3	3.3±		

discovery: S \geq 5 S=5 \Rightarrow discovery propability: 50%

- there are indications that signal of strong VV scattering could be observed
- W+multijets and tt+multijets are very important sources of background

already done

- selection with fast simulation (CMSJET)
- dedicated preselection constructed
- all sources of physics background considered
- expected discovery contours obtained

remains to be done

- significance of signal interference with other WWjj diagrams (COMPHEP) and $qqqql\nu$ diagrams (PHASE)
- optimization of analysis with full detector simulation and reconstruction
- study on systematic uncertainties: background x-sections, ...

- 1. Definitions for preselection (generation level):
 - leptons: pT>70 GeV, $|\eta| < 2.5$
 - central clusters (CS): pT>30 GeV, $|\eta| < 2$, (PYCELL clusterisation in PYTHIA)
 - forward/backward clusters: pT>30 GeV, $|\eta| > 1.8$, $(|\eta|+0.3*pT)>12.5$
- Preselection cuts (details on back-up slides): 2.
 - number of leptons $N_{lept} \ge 1$
 - number of forward clusters: ≥ 1 , number of backward clusters: ≥ 1
 - hadronic activity in central region only from hadronic W:
 - \sim N_{CS} =1: hard cluster (W jet)
 - \sim N_{CS} =2: (pT₁ +pT₂)>130 GeV and close to each other (W jets)
 - č N_{CS},≥3:
 - * 1st and 2nd CS's hard and close to each other
 - * additional softer clusters (CS's 3^{rd} , 4^{th} , ...) are: either soft or close to $1^{st} \vee 2^{nd}$ CS or not too central
 - number of separated clusters limited

- N_{iso lept} = 1, lept=*µ*, *e* (efekt. id. = 100%)
- N_{jet}≥3
- p_T^{lept}>90 GeV
- E^{miss}(improved)>50 GeV
 - candidate for ν

2 tagging jets: a jet very forward and a jet very backward of $2.0 < |\eta| < 4.5$, E>500 GeV, $p_T > 40$ GeV one tagging jet is not enough

24

