Search for the MSSM Higgs bosons in the channel $H/A \rightarrow \tau \tau \rightarrow \mu + \tau_{jet}$ in the CMS detector

Artur Kalinowski

Institute of Experimental Physics, Warsaw University

January 5 2005

- Physics motivation
- HLT path for the $A/H \to \tau \tau \to \mu + \tau_{jet}$ channel
- Trigger efficiencies and rates for signal and background
- Offline selection
 - Observables' distributions
 - Preliminary τ impact parameter studies
 - Study on MET reconstruction
- Final results (with limited statistics)

For large $tan\beta$ A and H couplings to down-type fermions are enchanced relative to the Standard Model values $gm_f/2m_W$:

$$\begin{aligned} hb\bar{b} \ (or \ h\tau^{+}\tau^{-}): & -\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \tan\beta \cdot \cos(\beta - \alpha) \\ Hb\bar{b} \ (or \ H\tau^{+}\tau^{-}): & \frac{\cos\alpha}{\cos\beta} = \cos(\beta - \alpha) + \tan\beta \cdot \sin(\beta - \alpha) \\ Ab\bar{b} \ (or \ A\tau^{+}\tau^{-}): & \gamma_{5} \tan\beta \end{aligned}$$

$$\begin{aligned} & 10^{0} \\ & 10^{-1} \\ & \vdots \\ & 10^{-2} \\ & \vdots \\ & 0^{-3} \\ & \vdots \\ & 10^{-4} \\ & \vdots \\ & 10^{-5} \end{aligned}$$
These couplings are modified by radiative corrections. In particular there are some MSSM parameters sets that suppress the $Hb\bar{b}$ coupling.
$$\begin{aligned} & 10^{0} \\ & 10^{-1} \\ & \vdots \\ & 10^{-2} \\ & \vdots \\ & 10^{-2} \\ & \vdots \\ & 10^{-4} \\ & 10^{-5} \end{aligned}$$

We are interested in the asociated Higgs production with pair of *b* quarks. Main process here is gluon fusion (Quark fusion is neglidible.): $g \underbrace{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \overline{b} \\ 0 \\ \overline{b} \\ 0 \\ 0 \\ \overline{b} \\ \overline{b} \\ 0 \\ \overline{b} \\ \overline{b}$

Tagging at least one b quark reduces many background processes, including minimum bias QCD.

For $m_A > 150 \ GeV/c^2$ and large $tan\beta$ CP even **H** and CP odd **A** are almost degenerate in mass and have similar cross sections.

We have a clear signature: isolated, high p_T muon on one side, and collimated τ_{jet} of 1 or 3 particles on the other side.

Process	Pythia 6.233	Calculations				
	[pb]	Source	[pb]	K factor		
$gg, qq \rightarrow bbA/H \rightarrow bb\tau\tau$	3.39	PPHTT 1.1, HDECAY 3.1	6.60231	1.95		
$bar{b}$	$4.78\cdot 10^8$	cernrep / 2000-004	$5\cdot 10^8$	1.05		
$tar{t}$	490	Kidonakis, Vogt, Phys. Rev. D 68	875	1.79		
$gb \rightarrow Wt$	281	Belyaev, Boos, Phys. Rev. D 63	62	n.a.		
Wjet	$4.1457 \cdot 10^4$	_	_			
$Z/\gamma^* \to \tau\tau \to \mu + \tau_{jet}$	$8.801 \cdot 10^3$	_	_			

With $20 f b^{-1}$ (one year with low luminosity) one gets **29040** signal events.

Samples where generated with **CMKIN 1.2.0**(FORTRAN) and simulated with **cms133**(FORTRAN). To save the CPU time and disk space a preselection selecting events likely to pass the HLT was performed on the generator level. We required:

- one isolated μ with $p_T \geq 15~GeV/c, |\eta| \leq 2.4$
- one isolated au_{jet} with $E_T > 30~GeV, |\eta| \leq 2.4$

The signal samples where simulated using the **TAUOLA**(FORTRAN) package.

There was a bug in the preselecction routine for Z/γ^* . A small (1k) sample was reproduced with fixed software.

Digitization was done for $\mathcal{L} = 2 \cdot 10^{33} \frac{1}{cm^2 s}$ with ORCA 8.2.0 (C++).

- L1
 - single μ with $p_T \geq$ 12 GeV/c
 - OR single au_{jet} with $E_T \geq$ 93 GeV
- HLT
 - L2 Calo jet with $E_T \geq 40~GeV$ and ${\rm Eisol} \leq 5.3~GeV$, isolated in pixel detector
 - AND L2 μ with $p_T \geq 15~GeV/c$ and calorimetry isolation ≤ 0.97
 - AND L3 μ with $p_T \geq 15~GeV/c$ and tracker isolation ≤ 0.97

(the tracker isolation was not used in this study)

L2 Calo jet: IterativeCone(R=0.6), Et recombination scheme, closest to the hardest L1 tau jet, but not further than 0.8 Eisol: Energy in the ECAL in the ring around the

jet direction 0.14 < R < 0.4

 μ calo isol variable: Efficiency for the $W
ightarrow \mu
u_{\mu}$ sample

Trigger efficiencies (wrt preselected events) table

Cut	bbH(200)	$b\overline{b}$	$t\bar{t}$	Wt	Wjet	Z/γ^*
single L1 Mu(12)	0.89	0.84	0.9	0.88	0.84	0.89
single L1 Tau(93)	0.27	0.004	0.32	0.071	0.058	0.044
L1Mu(12) OR L1Tau(93)	0.92	0.84	0.93	0.89	0.84	0.89
L1 AND single L2 Mu(15)	0.89	0.8	0.9	0.86	0.82	0.86
L1 AND single L2 Tau(40)	0.76	0.2	0.81	0.66	0.4	0.43
L1 AND L2Mu(15) AND L2Tau(40)	0.73	0.19	0.78	0.64	0.38	0.42
L1 AND L2MuPt(15) Isol(0.97) AND L2TauEt(40)	0.71	0.14	0.73	0.61	0.37	0.41
L1 AND L2MuPt(15) AND L2TauEt(40) Isol	0.63	0.094	0.33	0.35	0.21	0.36
L1 AND L2Mu(15) AND L2Tau(40) both with isol	0.62	0.071	0.31	0.33	0.2	0.35
L1 AND L2 AND single L3 Mu(15)	0.61	0.07	0.3	0.33	0.2	0.35
L1 AND L2 AND single L3 Tau (L2 tau with px isol)	0.48	0.037	0.12	0.15	0.055	0.22
L1 AND L2 AND single L3 Mu (15) with isol(1.00)	0.61	0.07	0.3	0.33	0.2	0.35
L1 AND L2 AND L3Mu(15) AND L3Tau(40) with isol	0.48	0.036	0.12	0.15	0.055	0.22

	bbH(200)	$bar{b}$	$tar{t}$	Wt	W jet	Z/γ^*
Cross section * BR [pb]	6.6	3.1e+06	8.8e+02	62	4.1e+04	8.8e+03
Preselection eff	0.095	0.00076	0.09	0.066	0.014	0.0031
HLT eff	0.48	0.036	0.12	0.15	0.055	0.22
(HLT eff)*(preselection eff)	0.046	2.7e-05	0.01	0.0097	0.00079	0.0007
Rate after HLT [Hz]	0.0006	0.0045	0.018	0.0012	0.065	0.012

Total rate: 0.1 [Hz] (DAQ TDR for min. bias only: 0.2 [Hz])

Rate [Hz] = $\mathcal{L}\left[\frac{1}{pb\cdot s}\right] \cdot \sigma[pb] \cdot \epsilon_{pres} \cdot \epsilon_{HLT}$ Numbers quoted for $\mathcal{L} = 2 \cdot 10^{33} \left[\frac{1}{cm^2 s}\right]$ Rate for $b\bar{b}$ includes event's weight $\simeq 0.03$.

- Full tracker τ isolation
- 1 or 3 tracks in the $\tau's$ signal cone
- Leading τ_{jet} track $p_T > 10~GeV/c$
- $\bullet\,$ Opposite charge of the μ and signal tracks
- Single b Tagging
- Jet veto (no jet with $Et \geq 20$ and $|\eta| \leq 2.5$)
- $m_T(l, MET) \leq 30 \; GeV$
- $-0.997 \le \cos(\Delta \varphi) \le -0.5$
- Ratio HCAL energy/leading track $E \geq 0.3$
- $E_{\nu 1} \ge 0 AND E_{\nu 2} \ge 0$

 $\tau_{\rm jet}$ leading track after HLT

Veto jet η

MC transverse mass of (μ , $\not\!\!\!E_T$) system

Rec transverse mass of (μ , $\not\!\!E_T$) system

 $\textbf{cos}(\!\Delta \; \phi)$ between $\textbf{p}_{\textbf{T}}^{\!\!\!\!\!\!\!\!\!\!}$ and $\textbf{E}_{\textbf{T}}^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}$

$$\cos(\Delta\varphi) = \hat{p}_T^{\mu} \cdot \hat{p}_T^{\tau_{jet}}$$

$$H \to \tau \tau \to \mu + \tau_{jet}$$

Jet hadronic energy vs leading track energy

Conclusion: τ_{jet} in $t\bar{t}$ and Wtb samples are mainly faked by electrons coming from W decay

 $\overline{H \to \tau \tau \to \mu + \tau_{iet}}$

 $-0.997 < cos(\varphi_{\mu-jet}) < -0.5$

Sample:	bbH(200)	$bar{b}$	$tar{t}$	Wt	Wjet	Z/γ^*
Offline $ au_{jet}$ isolation	0.92	0.72	0.79	0.83	0.54	0.82
1 or 3 tk. in $ au_{jet}$ signal cone	0.84	0.5	0.69	0.74	0.33	0.74
Leading track $p_T > 10~GeV/c$	0.76	0.34	0.64	0.69	0.24	0.62
$Q_{\mu} \cdot Q_{jet} = -1$	0.75	0.18	0.61	0.67	0.19	0.59
Single b tag	0.12	0.011	0.41	0.28	0.002	0.014
No jet with $E_T > 20$, $ \eta < 2.5$	0.086	0.0052	0.11	0.22	0	0.009
Tau impact parameter > 2.5	0.086	0.0052	0.11	0.22	0	0.009
$m_T(l, MET) < 30$	0.066	0.0036	0.036	0.058	0	0.009
$-0.997 < \cos(\Delta\varphi) < -0.5$	0.055	0.0016	0.02	0.034	0	0
HCAL/leading tk. E: $0.3 < R < 1.3$	0.042	0.0012	0.0028	0.0044	0	0
$E_{\nu}^{1} > 0, E_{\nu}^{2} > 0$	0.02	0.0004	0.0011	0.0016	0	0
Events for $20 f b^{-1}$	119	6.7	197	19.3	<3.98e+03	<7.45e+03

 $\overline{H \to \tau \tau \to \mu + \tau_{jet}}$

Method:

 $S = |\vec{r}_{trackIP}^{\ 2D}|/\delta$

 $\vec{r}_{trackIP}$ is obtained by taking the trajectory state at the inner most layer and propagating it to the plane containing the IP, and transverse to the beam line:

```
1 FreeTrajectoryState *
2 FTS(aRecTrack.stateAtFirstPoint().freeTrajectoryState());
3 GlobalPoint vertex(aRecoVertex.position().x(),
4 aRecoVertex.position().y(),
5 aRecoVertex.position().z());
6 TransverseImpactPointExtrapolator TIPE;
7 TrajectoryStateOnSurface TSOS = TIPE.extrapolate(*FTS, vertex);
```


 $\overline{H} \to \tau \tau \to \mu + \tau_{jet}$

MC transverse distance between PV and leading track vertex.

Tau tagging by impact parameter. Reconstruction.

 μ track impact parameter significance

 $\boldsymbol{\tau}_{_{jet}}$ leading track impact parameter significance

Rec transverse distance between PV and secondary tau jet vertex


```
1 if(mySignalTracks.size()>1){
2 PrincipalVertexReconstructor *myPVR =
3 new DefaultPrincipalVertexReconstructor()
4 vector<RecVertex> myPVVertices =
5 myPVR->vertices(mySignalTracks);
6 vector<RecVertex>::const_iterator ci =
7 myPVVertices.begin();
8 for(;ci!=myPVVertices.end();ci++)
9 vxPos = (ci)->position();
10 delete myPVR; }
11 return vxPos;
```


$\mathbf{E}_{\mathbf{T}}$ x component resolution

Conclusions: Need better MET corrections.

Basing on results for both possibilities:

- for $m_T(\mu, \tau_{jet})$ the corrected MET was used.
- for Higgs mass reconstruction the uncorrected MET was used.
- "local" evaluation of MET seems promising, but needs more clever treatment of the b jet (at least an energy correction)

 $E_T^{corr} = 1.02 * E_T + 5.7 [GeV]$ Formula taken from the DAQ TDR studies. For corrected jet the direction is taken from the signal tracks, and EM clusters.

Components used:

- GlobalMuon
- Calo jet without E_T correction, with direction correction
- Corrected MET

Components used:

- GlobalMuon
- Calo jet with E_T and direction corrections
- Uncorrected MET

Invariant mass of $\tau\tau$ system. All contributions

Components used:

- GlobalMuon
- Calo jet without E_T and with direction correction
- Uncorrected MET

- Evaluate contribution from the $Zb\overline{b}, Zb$ backgrounds
- Optimize the cuts' values
- Make the discovery reach plots on the $< m_A, tan(\beta) >$ plane

Backup slides

First b tagged jet

b Tagging

Track counting method:

at least 2 tracks with impact parameter significance >2 Iterative Cone(R=0.6) jet with $E_T > 20 \text{ GeV}, |\eta| < 2.4$

Efficiency is computed wrt. previous offline cut (charge correlation).

Purity - fraction of b tagged jest close to MC b jet.

Process	Efficiency	Purity	
$bbA/H(M_A = 200)$	0.16	0.96	
$b\overline{b}$	0.058	0.85	
$t\bar{t}$	0.68	0.96	
$gb \rightarrow Wt$	0.42	0.93	
Wjet	0.01	n.a.	
Z/γ^*	0.023	n.a.	

Components used:

- GlobalMuon
- Calo jet without direction correction
- Corrected MET