Photon Collider at ILC

Higgs Physics at Future Colliders workshop 2004/2005

A.F.Żarnecki 12.01.2005

Photon Collider

High energy, high intensity photon beam can be obtained using Compton backscattering of laser light off the high energy electrons

Compton scattering:

backscattering:

Photon Collider

High energy, high intensity photon beam can be obtained using Compton backscattering of laser light off the high energy electrons

PC: natural extension of all e^+e^- linear collider projects

Compton scattering

Maximum γ energy

$$\omega_m = \frac{x}{x+1}E_0$$

with

$$x = \frac{4E_0\omega_0}{m^2c^4}\cos^2\frac{\alpha}{2} \simeq 19\left[\frac{E_0}{\text{TeV}}\right]\left[\frac{\mu m}{\lambda}\right]$$

(To avoid $\gamma \gamma \rightarrow e^+e^- \text{ need } x < 4.8$)

Compton scattering

Differential Compton cross section:

$$\frac{d\sigma_c}{dy} = \frac{2\sigma_0}{x} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) + 2\lambda_e P_c r x(1-2r)(2-y) \right]$$

$$\begin{bmatrix} \frac{1}{\sigma_c} \frac{d\sigma_c}{dy} & x = 4.8 \\ \frac{1}{\sigma_c} \frac{d\sigma_c}$$

E₀

 ω_0

ω

α

Mean helicity of scattered photons:

$$\begin{array}{l} \langle \lambda_{\gamma} \rangle = \\ \underline{-P_c(2r-1)[(1-y)^{-1}+1-y]+2\lambda_e xr[1+(1-y)(2r-1)^2]} \\ (1-y)^{-1}+1-y-4r(1-r)-2\lambda_e P_c xr(2-y)(2r-1) \end{array}$$

x < 4.8 makes spectrum less peaked with little effect on polarisation

Non-linear effects

In a high field an electron can interact with several photons simultaneously

Non linearity parameter:

$$\xi^2 = \frac{e^2 \bar{F^2} \hbar^2}{m^2 c^2 \omega_0^2} = \frac{2n_\gamma r_e^2 \lambda}{\alpha}$$

 \bar{F} = field strength of laser field, n_{γ} = photon density

Non linear effects:

- increase effective electron mass to $m^2(1+\xi^2)$
- \Rightarrow decreases ω_m to $\omega_m/E_0 = x/(1+x+\xi^2)$
 - \bullet create tail at high ω from n-photon interactions

Compton formula

Compton formula

 nonlinear effects

non-linear effects \Rightarrow peak position shift

$$x = \frac{4E_e\omega_L}{m_e^2} \longrightarrow \frac{x}{1+\zeta^2}$$

Photon Collider

→ _ p.23/35

Beam energy correlations

There are large correlations between energies of two beams

energies

normalized to uncorrelated supperposition

Compton formula

- nonlinear effects
- angular correlations

Additional contributions from 'higher-order' processes:

Scattering of two laser photons

Scattering on secondary electrons

Compton formula

- nonlinear effects
- angular correlations
- two photon scattering

Compton formula

- nonlinear effects
- angular correlations
- two photon scattering
- electron rescattering

Compton formula

- nonlinear effects
- angular correlations
- two photon scattering
- electron rescattering

TESLA Photon Collider luminosity spectra parametrization Very good description of the high energy part

$\gamma\gamma$ invariant mass

polarization

Crab crossing:

in $\gamma\gamma$ the disruption angle is larger than in e^+e^ because of the beam-laser interaction

 \Rightarrow outgoing beam no longer fits through final quadrupole

 \rightarrow need crossing angle to have separate beam pipe for in- and outgoing beam

Crab crossing scheme allows crossing angle without luminosity loss

• need $\theta_c \sim 35$ mrad

• apparent transverse beam dimension for beam-laser interaction larger

The Laser

Wavelength of powerful solid state lasers is in the $1\mu m$ range, e.g. Nd:YAG $\lambda = 1.06 \mu m$

$$(x = 4.5 \text{ for } \sqrt{s} = 500 \,\text{GeV})$$

(If really needed can double or triple frequency)

Laser focusing in diffraction limited region:

 \rightarrow cannot vary length and diameter of laser spot simultaneously

Optimum around $Z_R \approx \sigma_z \implies$ half opening angle of $\mathcal{O}(1^\circ)$

Fraction of converted electrons:

$$k = N_{\gamma}/N_e \approx 1 - \exp(-A/A_0)$$

A: pulse energy of laser

For $Z_R \approx \sigma_z$ and head on laser-beam collisions:

$$A_0 \approx \frac{\pi \hbar c \sigma_z}{\sigma_c} \approx 1.5 \mathrm{J}$$

 \Rightarrow need $A \approx 2J$ (corresponds to $\xi^2 \approx 0.2$) (for head on e^- -laser collisions)

 \Rightarrow total laser power of $\sim 2 \times 30 \,\mathrm{kW}$ needed

 $\Longrightarrow \sim 60$ Mercury lasers from the Livermore fusion program

Laser requirements

• Laser pulses of

 $\approx 5 \,\mathrm{J}$ pulse energie

 $\approx 1-3 \,\mathrm{ps}$ pulse duration (FWHM)

 $pprox 14\,\mu{
m m}$ spotsize $(1/e^2)$

 $\approx 1\,\mu{\rm m}$ wavelength

 $2.5^{\circ} - 4^{\circ}$ e⁻ - in crossing angle

- have to match the TESLA bunch-structure:
 - 2820 bunches/train
 - 337 ns spacing
 - 5 Hz repetition rate

Requires:

- high peak power ($\approx 2 \,\mathrm{TW}$)
- high average power ($\approx 70 \, \text{kW}$)
- precise timing, low jitter (1 ps)

One solution:

Pulsed laser with the correct timestructure and relaxed power requirements feeds a resonant cavity for enhancement of power However the number of used laser photons is negligible

Better idea: recycle laser pulses

Principles of a cavity

- cavity with N mirrors with reflectivity R_i
- loss per round trip $V = R_2 \cdot R_3 \dots \cdot R_N \cdot L$ (L = other losses)
- power enhancement of cavity $A = \frac{1-R_1}{(1-\sqrt{R_1V})^2}$ (R_1 =coupling mirror)
- maximal for $R_1 = V$

Power enhancement > 100 possible for realistic reflectivities

Present geometry of telescopic, passive, resonant cavity

Aberration-compensated focussing telescope

spherical surfaces:

$$V=rac{w_c}{w_x}=2+\sqrt{5}$$

$$\rho_e = \frac{t}{4} \cdot (1 + \sqrt{5})$$
$$\rho_x = \frac{t}{4} \cdot (1 - \sqrt{5})$$

$$\alpha_x = f(\alpha_c)$$

reduced spherical aberration, coma, astigmatism, field curvature

general:

$$t = \frac{\rho_x + \rho_c}{2} + \delta$$
$$M = -\frac{\rho_c}{\rho_x}$$
$$V = M - \frac{2\delta}{\rho_x}$$

Layout of the Beams

> – p.15/35

- To have highly efficient mirrors need crossing angle beam-laser
- crossing angle results in smaller conversion probability
- laser divergence and therefore mirror size depends on Rayleigh length
- finite mirrors result in diffraction losses and broadening of the focus
- have to find optimum crossing angle/Rayleigh length
- \Rightarrow even higher laser power needed

Diffraction losses are small even for small mirrors

telescopic cavity, magnification sqrt(3)

However diffraction broadening is serious

$\gamma\gamma$ technical work at Zeuthen

Design study for a laser cavity

- \bullet a laser cavity with a power enhancement around 100 can decrease the needed laser power by the same amount
- \bullet with the TESLA bunch structure the length of the cavity is 100 m and can be mounted around the detector
- to increase the conversion rate and to minimise the dead region the laser-beam crossing angle should be as small as possible
- if the mirrors cut into the laser beam the diffraction losses stay small, however the broadening of the focus is serious

Alignment tolerances

Total length of cavity: $\Delta L \sim 0.3$ nm

Correction procedure understood e.g. from gravitational wave antennas Misalignment of focusing telescope:

13

Conclusions

- \bullet No shows toppers found so far
- The laser-cavity seems difficult but possible
- Backgrounds are under control
- \bullet However the price to pay is a dead detector below 7.5°
- Neutrons may be a problem for the vertex detector
- If you want the photon collider to become a reality you have to work on the technical issues

The Photon Collider in the LC project

Valery Telnov

Letter submitted to:

International Steering Committee on Linear Colliders

Worldwide Study Organizing Committee

Special requirements for photon collider:

- Crossing angle > 30 mrad
- Horizontal and vertical emittances as small as possible
- Spot size at IP as small as possible
- •Beam dump
- •Detector design allowing replacement of elements

in the forward region

Space for laser lines and housing

Signed by: J.Gronberg, V.Telnov, T.Takahashi, K.Cheung, A.De Roeck, M.Krawczyk, K.Mönig, M.Velasco

Schedule

2005.2optics design (Local correction, S.Kuroda)2005.3"international" proposal with ILC-WG42005.4construction starts2007.3completion2007.4-6achievement of $\sigma_y^*=37$ nm- 2008nanometer stabilization of final quadrupole2009- α PLC test facility
strong QED experiments