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Photon Collider

High energy, high intensity photon beam can be obtained using
Compton backscattering of laser light off the high energy electrons

Compton scattering:

γ e

γ

e

backscattering:

e

e

γ
γ

PC: natural extension of all linear collider projects including
TESLA
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Compton scattering
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( To avoid γγ → e+e− need x < 4.8)
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Compton scattering

E0 ω

ω0 α

Differential Compton cross section:

dσc
dy

=
2σ0

x
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1− y + 1− y − 4r(1− r) + 2λePcrx(1− 2r)(2− y)
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y = ω/E0, r = y
(1−y)x, σ0 = πr2

e

λe: e-helicity, Pc: circular laser polarisation
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Cross section depends on helicity product 2λePc



Mean helicity of scattered photons:

〈λγ〉 =
−Pc(2r−1)[(1−y)−1+1−y]+2λexr[1+(1−y)(2r−1)2]

(1−y)−1+1−y−4r(1−r)−2λePcxr(2−y)(2r−1)
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x < 4.8 makes spectrum less peaked with little effect on polarisation

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y/ym

1/
σ 

dσ
/d

y

x=4.8

x=1.5

2Pcλe=-1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y/ym

λ γ

x=4.8

x=1.5

Pc=-1

2λe=1

Warsaw University 20/2/04 12 Klaus Mönig



Non-linear effects

In a high field an electron can interact with several photons simultaneously

Non linearity parameter:

ξ2 =
e2F̄ 2h̄2

m2c2ω2
0

=
2nγr

2
eλ

α

F̄ = field strength of laser field, nγ = photon density

Non linear effects:

• increase effective electron mass to m2(1 + ξ2)

⇒ decreases ωm to ωm/E0 = x/(1 + x + ξ2)

• create tail at high ω from n-photon interactions
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Photon energy spectrum for different non-linearities
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CompAZ

Parametrization of the photon energy spectrum

Compton formula
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non-linear effects � peak position shift
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Beam energy correlations

There are large correlations between energies of two beams

energies normalized to uncorrelated supperposition
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Parametrization of the photon energy spectrum
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Additional contributions from ’higher-order’ processes:

Scattering of two laser photons

γ
γ

γ
e

e

Scattering on secondary electrons
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CompAZ

TESLA Photon Collider luminosity spectra parametrization
Very good description of the high energy part

� � invariant mass polarization
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Crab crossing:

in γγ the disruption angle is larger than in e+e− because of the beam-laser
interaction

⇒ outgoing beam no longer fits through final quadrupole

→ need crossing angle to have separate beam pipe for in- and outgoing
beam

Crab crossing scheme allows crossing angle without luminosity loss

θc

• need θc ∼ 35mrad

• apparent transverse beam dimension for beam-laser interaction larger

Warsaw University 20/2/04 18 Klaus Mönig



The Laser

Wavelength of powerful solid state lasers is in the 1µm range, e.g. Nd:YAG
λ = 1.06µm

(x = 4.5 for
√
s = 500 GeV)

(If really needed can double or triple frequency)

Laser focusing in diffraction limited region:

σL,r(z) = σL,r(0)
√√√√1 + z2/Z2

R σL,r(0) =

√√√√√√√√
λZR
2π

ZR: Rayleigh length

ZR

σ(0)

→ cannot vary length and diameter of laser spot simultaneously

Optimum around ZR ≈ σz ß half opening angle of O(1◦)
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Fraction of converted electrons:

k = Nγ/Ne ≈ 1− exp(−A/A0)

A: pulse energy of laser

For ZR ≈ σz and head on laser-beam collisions:

A0 ≈
πh̄cσz
σc

≈ 1.5J

⇒ need A ≈ 2J (corresponds to ξ2 ≈ 0.2)
(for head on e−-laser collisions)

⇒ total laser power of ∼ 2× 30 kW needed

ß ∼ 60 Mercury lasers from the Livermore fusion program
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One solution: 

Pulsed laser with the correct timestructure and relaxed power requirements 
feeds a resonant cavity for enhancement of power

Laser pulses of have to match the TESLA bunch-structure: 

Requires: 

Laser requirements 

t

1 msec 0.2 sec 1 msec

2820 bunches 5 bunchtrains / sec



However the number of used laser photons is negligible

Better idea: recycle laser pulses

 ,
laser

adaptive  optics
other opt. elements 

M
(T~0.01)

M

M

M IP

 optics for e to    conversion of one electron beamγ 
side   view

ring-cavity

~ 400 cm
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Principles of a cavity

• cavity with N mirrors with reflectivity Ri
• loss per round trip V = R2 · R3 . . . · RN · L (L = other losses)

• power enhancement of cavity A = 1−R1

(1−√R1V )2 (R1 =coupling mirror)

•maximal for R1 = V

Power enhancement > 100 possible for realistic reflectivities
Durham, September 04 7 Klaus Mönig



Present geometry of telescopic, passive, resonant cavity

beam magnification: 

reduced size of laser-optics 
and -beampipe outside the 
collimation region
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Aberration-compensated focussing telescope

spherical surfaces: 

general: 

reduced spherical aberration, coma, 
astigmatism, field curvature

M6

M5



Photon Collider – p.15/35



• To have highly efficient mirrors need
crossing angle beam-laser

• crossing angle results in smaller conver-
sion probability

• laser divergence and therefore mirror size
depends on Rayleigh length

• finite mirrors result in diffraction losses
and broadening of the focus

• have to find optimum crossing an-
gle/Rayleigh length

⇒ even higher laser power needed
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Folding the cavity around the TESLA detector



Diffraction losses are small even for small mirrors
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However diffraction broadening is serious
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Alignment tolerances

Total length of cavity: ∆L ∼ 0.3nm

Correction procedure understood e.g. from gravitational wave antennas

Misalignment of focusing telescope:

Need precision of
∼ 100nm
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Conclusions

•No showstoppers found so far

• The laser-cavity seems difficult but possible

• Backgrounds are under control

•However the price to pay is a dead detector below 7.5◦

•Neutrons may be a problem for the vertex detector

• If you want the photon collider to become a reality you have to work
on the technical issues
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The Photon Collider in the LC project

Letter submitted to:
•International Steering Committee on Linear Colliders
•Worldwide Study Organizing Committee

Valery Telnov

Special requirements for photon collider:
•Crossing angle > 30 mrad
•Horizontal and vertical emittances as small as possible
•Spot size at IP as small as possible
•Beam dump
•Detector design allowing replacement of elements

in the forward region
•Space for laser lines and housing

Signed by:



Final Focus system (36.6m)
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Schedule
2005.2     optics design (Local correction, S.Kuroda)
2005.3     “international” proposal with ILC-WG4
2005.4     construction starts
2007.3     completion
2007.4-6  achievement of σy*=37nm
- 2008   nanometer stabilization of final quadrupole
2009-α   PLC test facility 
           strong QED experiments




