Measurement of the Higgs-boson CP properties from decays into WW and ZZ at the Photon Collider

Higgs Physics at Future Colliders workshop 2004/2005

A.F.Żarnecki 09.03.2005

Introduction

Why do we need Photon Collider ? Comparison of SM Higgs boson production cross sections:

Higgs boson at PC

Two-photon width of the Higgs boson $\Gamma_{\gamma\gamma}$ is sensitive to all massive and charged particles in the loop:

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 M_h^3}{128\sqrt{2} \pi^3} \cdot |\mathcal{A}|^2 \qquad \gamma$$

where:

 $\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \cdots$ two-photon amplitude

Warszawa

amplitude \mathcal{A} is real imaginary contribution from light fermions - very tiny

Phase

Phase

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

Phase

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H > 2m_W$ W contribution is complex

Phase

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H > 2m_W$ W contribution is complex

Phase

Phase

Phase

Phase

Phase

Phase

Phase

For $m_H > 2m_W$ W contribution is complex $\mathcal{A} = |\mathcal{A}| \cdot e^{i\phi}$ - phase $\phi_{\gamma\gamma} \neq 0$ $\Gamma_{\gamma\gamma} \sim Im(\mathcal{A})^2 + Re(\mathcal{A})^2$

Higgs at the Photon Collider

Phase

For $m_H > 2m_W$ W contribution is complex $\mathcal{A} = |\mathcal{A}| \cdot e^{i\phi}$ - phase $\phi_{\gamma\gamma} \neq 0$ $\Gamma_{\gamma\gamma} \sim Im(\mathcal{A})^2 + Re(\mathcal{A})^2$

Higgs at the Photon Collider

Phase

Phase

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

Higgs production and decay

For $M_h > 2M_W$, $h \to W^+W^-$ dominate:

There is a large background from "direct", non-resonant production $\gamma\gamma \rightarrow W^+W^-$

G.Belanger, F.Boudjema, Phys.Lett.B288(1992)210; D.A.Morris, et al., Phys. Lett. B323(1994)421; I.F.Ginzburg, I.P.Ivanov, Phys. Lett. B408(1997)325.

Interference

Resonant and direct amplitudes interfere Large effects expected:

Destructive interference dominates above ${\sim}200~{\rm GeV}$

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

$\gamma\gamma \to ZZ$

Non-resonant background only at loop level

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \rightarrow W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 - 1000 fb^{-1} High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1} for $\sqrt{s_{ee}}$ = 305 - 500 GeV

Higgs-boson couplings and CP properties from $\mathcal{H} \rightarrow WW, ZZ$

$$\gamma\gamma \rightarrow (h) \rightarrow W^+W^-, ZZ$$

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$
- \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation
- \Rightarrow can be used for fast simulation and fitting

Comparison with full simulation:

SM results

Two parameter fit to W^+W^- and ZZ invariant mass distribution Expected statistical precision, assuming SM branching ratios (1 PC year):

Phase measurement significantly improves our sensitivity to new heavy charged particles e.g. heavy charged Higgs boson of the SM-like 2HDM(II) with $M_{H^+} = 800 \text{ GeV}$ at large Higgs boson masses

CP conserving 2HDM (II)

Higgs boson couplings

Scalar Higgs bosons h and H with basic couplings (relative to SM):

$\chi_x = g_{\mathcal{H}xx} / g_{\mathcal{H}xx}^{SM} \mathcal{H} = h, H, A$			
	h	H	A
χ_u	$rac{\coslpha}{\sineta}$	$rac{\sinlpha}{\sineta}$	$-i \ \gamma_5 \ rac{1}{ an an eta}$
χ_d	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos\alpha}{\cos\beta}$	$-i\gamma_5 aneta$
χ_V	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0

For charged Higgs boson couplings (loop contribution to $\Gamma_{\gamma\gamma}$) we set

$$M_{H^{\pm}} = 800 \; GeV \qquad \mu = 0$$

Higgs couplings are related by "patter relation"

$$(\chi_V - \chi_d)(\chi_u - \chi_V) + \chi_V^2 = 1$$

I. F. Ginzburg, M. Krawczyk and P. Osland, hep-ph/0101331

Instead of angles α and β use couplings χ_V and χ_u to parametrize cross sections

$$0 \leq \chi_V \leq 1$$

If we neglect H decays to h and A (small) cross sections and BRs calculated for H are also valid for h

Solution A

For light Higgs boson *h*:

 $\chi_u = \chi_d = \chi_V = 1$

 χ_i - couplings normalized to SM couplings All couplings are the same as in SM. $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ affected only by the H^+ loop

For heavy Higgs bosons H and A:

 $\chi_V~\equiv~0$

No decays to W^+W^- and ZZ ...

I. F. Ginzburg, M. Krawczyk and P. Osland, Nucl. Instrum. Meth. A472:149, 2001 hep-ph/0101331; hep-ph/0101208.

(extended) Solution B h HA $\frac{1}{\tan\beta}$ $-i \gamma_5 \frac{1}{\tan \beta}$ -1 χ_u $-i \gamma_5 \tan \beta$ +1 $-\tan\beta$ χ_d $\chi_V | \cos(2\beta) |$ $-\sin(2\beta)$ 0

 $\tan \beta \rightarrow 0 \Rightarrow \text{sol. } B_u$

 $\tan \beta \to \infty \Rightarrow$ sol. B_d

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on tan β .

Can we extract $\tan \beta$ value from the measured W^+W^- and ZZinvariant mass distributions ?

2HDM(II)

Heavy Higgs boson H

Two-photon width and phase measurement for different $\tan \beta$ $\chi_V = -\sin 2\beta$

Light Higgs boson

Influence of systematic uncertainties on the tan β determination is estimated by adding additional free parameters to the fit:

Uncertainties:

Parameters:

- luminosity \Rightarrow overall normalization
- energy scale
- mass resolution
- luminosity spectra

- relative normalization of WW and ZZ samples fixed
- \Rightarrow Higgs boson mass
- Higgs boson width \Rightarrow
- \Rightarrow spectra shape variations

$$\frac{dL}{dW_{\gamma\gamma}} = \frac{dL^{CompAZ}}{dW_{\gamma\gamma}} (1 + A \cdot \sin \pi x + B \cdot \sin 2\pi x)$$
$$x = \frac{W_{\gamma\gamma} - W_{min}}{W_{max} - W_{min}}$$

Heavy Higgs boson H

Influence of systematic uncertainties for $M_H = 300 \text{ GeV}$

Expected precision in $\tan \beta$ determination

stat. + sys. errors

Large effects of systematic uncertainties

General Two Higgs Doublet Model

Mass eigenstates of the neutral Higgs-bosons h_1 , h_2 and h_3 do not need to match CP eigenstates h, H and A.

We consider SM-like 2HDM(II) with CP violation

through a small mixing between H and A states

Couplings relative to SM: (assuming $|\Phi_{HA}| \ll 1$)

$$\chi_X^{h_1} \approx \chi_X^h$$

$$\chi_X^{h_2} \approx \chi_X^H \cdot \cos \Phi_{HA} + \chi_X^A \cdot \sin \Phi_{HA}$$

$$\chi_X^{h_3} \approx \chi_X^A \cdot \cos \Phi_{HA} - \chi_X^H \cdot \sin \Phi_{HA}$$

$$X = u, \ d \text{ or } V; \quad V = W \text{ or } Z$$

 \Rightarrow additional model parameter: **CP-violating mixing phase** Φ_{HA}

Higgs boson h_2

Two-photon width and phase measurement for different $\tan \beta = \Phi_{HA} = 0$

Higgs-boson couplings and CP properties from $\mathcal{H} \rightarrow WW, ~ZZ$

Higgs boson h_2

Influence of phase and systematics in $\tan \beta$ determination ($M_H = 300 \text{ GeV}$)

Expected precision in $\tan \beta$ determination stat. + sys. errors from $\tan \beta$ and Φ_{HA} fit

Possible CP violation increases expected $\tan \beta$ measurement errors

Higgs boson h_2

Influence of tan β and systematics in Φ_{HA} measurement ($M_H = 300 \text{ GeV}, \Phi_{HA} = 0$) Expected precision in Φ_{HA} determination stat. + sys. errors from tan β and Φ_{HA} fit

CP violating H–A mixing can be precisely measured if $\tan \beta$ is not too large

Photon Collider

Combined fit to W^+W^- and ZZ invariant mass distributions $\Rightarrow \Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ \Rightarrow couplings to both vector bosons (χ_V) and up fermions (χ_u) can be determined 1σ contours for 1 year of PC running, $M_H = 250$ GeV

Higgs-boson couplings from LHC \oplus LC \oplus PC analysis

Measurements at LHC, LC and Photon Collider are complementary, being sensitive to different combinations of Higgs-boson couplings

 $LHC \oplus LC \oplus PC$

Higgs-boson couplings from LHC \oplus LC \oplus PC analysis

 $\mathsf{LHC}\oplus\mathsf{LC}\oplus\mathsf{PC}$

Allowed coupling values from cross section measurements at LHC, LC and PC, and the phase measurement at PC.

Inconsistency would indicate "new physics":

- different coupling structure or
- existence of new heavy particles contributing to Γ_{gg} and $\Gamma_{\gamma\gamma}$

Results for 2HDM (II) with weak CP violation:

Higgs-boson couplings from LHC \oplus LC \oplus PC analysis