Extended analysis of the MSSM Higgs-bosons production at the Photon Collider

P. Nieżurawski, A. F. Żarnecki, M. Krawczyk

Faculty of Physics Warsaw University

- Motivation: LHC wedge
- Overview of the analysis
- Short summary of SM higgs results
- New results for MSSM higgs bosons

Motivation: LHC wedge

LHC wedge: only one light SM-like higgs boson h can be seen

Photon Collider offers unique possibility for precise H/A studies

NŻK

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Overview

Analysis of $\sigma(\gamma\gamma \rightarrow higgs \rightarrow b\bar{b})$ measurement

LCWS'04 Paris:

- NLO QCD background $\gamma\gamma \rightarrow Q\bar{Q}(g)$ (Q=c,b)
- \checkmark realistic $\gamma\gamma$ -spectra
- *b*-tagging
- \checkmark overlaying events $\gamma\gamma \rightarrow hadrons$ (OE)
- crossing angle
- primary vertex distribution
- \Rightarrow results for MSSM at $M_A = 200, 250, 300, 350 \text{ GeV}$

with $\tan \beta = 7$, $M_2 = \mu = 200$ GeV (following M. Mühlleitner *et al.*)

Overview

Analysis of $\sigma(\gamma\gamma \rightarrow higgs \rightarrow b\bar{b})$ measurement

NEW:

- $\gamma \gamma \rightarrow W^+W^-$ background contribution (polarized cross section)
- $\mathbf{P} \quad \gamma\gamma \to q\bar{q} \ (q = u, d, s)$ background contribution (unpolarized cross section)
- $\gamma \gamma \rightarrow \tau^+ \tau^-$ background contribution
- Full optimization of cuts
- \Rightarrow results for MSSM at $M_A = 200, 250, 300, 350 \text{ GeV}$

with four MSSM scenarios and $\tan \beta = 3-20$.

Tools

Photon-photon spectrum: COMPAZ

Signal: HDECAY, PYTHIA

Background:

■ NLO $\gamma\gamma \rightarrow Q\bar{Q}(g)$ for Q = c, b (G. Jikia)

 $\gamma \gamma \rightarrow W^+ W^-$ (PYTHIA + polarized cross section)

$$\checkmark$$
 $\gamma\gamma \rightarrow q\bar{q}$ for $q = u, d, s$ (PYTHIA, unpolarized cross section)

 $\mathbf{P} \quad \gamma \gamma \to \tau^+ \tau^- \ (\mathsf{PYTHIA}).$

Overlaying events $\gamma \gamma \rightarrow hadrons$ (PYTHIA) with realistic $\gamma \gamma$ -luminosity spectrum (V. Telnov)

Parton Shower (not for $Q\bar{Q}(g)$): PYTHIA

Fragmentation: PYTHIA (Lund)

Detector performance: SIMDET 4.01

Crab-wise crossing of beams

 $\alpha_c = 34 \text{ mrad}$

٩C

$\gamma\gamma \rightarrow hadrons$ events

Cross sections

Angular E_T -flow per bunch crossing.

Generation for $\sqrt{s_{ee}} = 210.5$ GeV.

Reconstructed energy per bc

 $\gamma\gamma \rightarrow hadrons$

Summary of our SM analysis

Final results for the SM Higgs boson

For $M_h = 120$ GeV precision from constrained max. likelihood fit: 2.0% stat., 1.8% syst.

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

Summary of our SM analysis

Final results for the SM Higgs boson

LCWS

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Choice of MSSM parameters

LHC wedge

From: CMS NOTE 2003/033 (the same results as in newer CMS CR 2004/058)

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Choice of MSSM parameters

We consider following MSSM parameter sets:

Symbol	μ [GeV]	M_2 [GeV]	$A_{\widetilde{f}}$ [GeV]	$M_{\widetilde{f}}$ [GeV]
	200	200	1500	1000
11	-150	200	1500	1000
111	-200	200	1500	1000
IV	300	200	2450	1000

and III – as in M. Mühlleitner *et al.* but we take higher $A_{\tilde{f}}$ to have M_h above limit II – an intermediate scenario

IV – as in CMS NOTE 2003/033

Reconstruction & Selection

Selection of $b\bar{b}$ events for $M_A = 300$ GeV:

- OE suppression: clusters & tracks with $|\cos \theta_i| > \cos \theta_{TC} = 0.85$ ignored
- $W_{rec} > 1.2 W_{\gamma\gamma}^{\min}$ Jets: Durham algorithm, $y_{cut} = 0.02$
- **9** $N_{jets} = 2, 3$
- for each jet: $|\cos \theta_{jet}| < 0.65$
- $|P_z|/E < 0.06$

Rejection of W^+W^- events:

- **•** for each jet: $M_{jet} < 65 \text{ GeV}$
- energy below θ_{TC} : $E_{TC} < 80 \text{ GeV}$
- $for each jet: N_{trk} \geq 4$

```
b-tagging: ZVTOP-B-HADRON-TAGGER (T. Kuhl)
```

Correction for crossing angle: jets boosted with $\beta = -\sin(\alpha_c/2)$

higgs-tagging at $M_A = 300$ GeV

higgs-tagging: a cut on the ratio of $\gamma \gamma \rightarrow A, H \rightarrow b\bar{b}$ to $\gamma \gamma \rightarrow b\bar{b}(g), c\bar{c}(g), q\bar{q} \ (q = u, d, s)$ events $\Rightarrow \varepsilon_h = 53\%$ $\varepsilon_{bb} = 47\%$ $\varepsilon_{cc} = 2.9\%$ $\varepsilon_{uds} = 0.5\%$ Without OE $\Rightarrow \varepsilon_h = 57\%$ $\varepsilon_{bb} = 52\%$ $\varepsilon_{cc} = 1.8\%$

$$\varepsilon_{uds} = 0.1\%$$

Tighter cuts are needed due to OE contribution

 $\gamma\gamma \to A \to bb$

 $W_{\rm corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E + P_T)}$ Acta Phys. Pol. B34 177 2003, hep-ph/0208234 Gaussian fit from $\mu - 1.3\sigma$ to $\mu + 1.3\sigma$.

CWS'05 P. Niezura

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.14

$\gamma\gamma \to A, H \to bb$

LO cross section for signal and interference term.

Interference with $\gamma\gamma \rightarrow b\bar{b}$ is less than 1% of the signal even after higher order corrections (M. M. Mühlleitner, hep-ph/0008127)

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

– p.15

 $\gamma\gamma \to A, H \to bb$

Reconstructed events

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

 $\gamma\gamma \to A, H \to bb$

Reconstructed events

 $\tan \beta = \mathbf{3}$ $M_H - M_A \approx 6.8 \text{ GeV}$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

– p.17

$M_A = 300 \text{ GeV}$

Without OE, without $\gamma \gamma \rightarrow W^+ W^-$

NŻK

X

$M_A = \mathbf{300} \; \mathbf{GeV}$

With OE, without $\gamma \gamma \rightarrow W^+ W^-$

LCWS'05

SLAC

X

$M_A = 300 \text{ GeV}$

 $\gamma\gamma \rightarrow hadrons$ (resolved) as a separate contribution – ineffi cient generation \Rightarrow we estimate number of events in the mass window $\gamma\gamma \rightarrow q\bar{q} \ (q=u,d,s)$ (unpolarized cross sec.) is overestimated but compensates the lack of *resolved* contribution

_CWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

MSSM summary

LCWS

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.21

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
1	-150	1500
111	-200	1500
IV	300	2450

NŻK

'S'05 P.

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

 \bigcirc

Symbol	μ [Gev]	$A_{\widetilde{f}}$ [Gev]
	200	1500
II.	-150	1500
III	-200	1500
IV	300	2450
IV	300	2450

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

1500 2450

 $A_{\widetilde{f}}$ [GeV]

1500

1500

$$rac{\Delta\sigma}{\sigma} = rac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

NŻK

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

X

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
I	200	1500
- H	-150	1500
III	-200	1500
IV	300	2450

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
1	-150	1500
111	-200	1500
IV	300	2450

Precision

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

NŻK

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

- p.23

X

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$ δ for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$ $tg\beta = 7$ 22.5 Π 20 III 17.5 IV 15 12.5 10 7.5 5 2.5 0 200 220 240 260 280 300 320 340 360 180 M_A [GeV]

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
II	-150	1500
III	-200	1500
IV	300	2450

Significance

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

The band widths indicate the level of possible statistical fluctuations

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

- p.24

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
- H	-150	1500
III	-200	1500
IV	300	2450

Significance

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

The band widths indicate the level of possible statistical fluctuations

Arrow – lower limit of the LHC discovery region.

NŻK

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
I	200	1500
1	-150	1500
III	-200	1500
IV	300	2450

Significance

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

The band widths indicate the level of possible statistical fluctuations

Arrow – lower limit of the LHC discovery region.

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Photon Collider reach

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
1	-150	1500
III	-200	1500
IV	300	2450

Significance

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

The band widths indicate the level of possible statistical fluctuations

Arrow – lower limit of the LHC discovery region.

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Significance for $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$

Symbol	μ [GeV]	$A_{\widetilde{f}}$ [GeV]
	200	1500
1	-150	1500
III	-200	1500
IV	300	2450

Significance

$$\delta = \frac{\mu_S}{\sqrt{\mu_B}} \pm \sqrt{1 + \frac{\mu_S}{\mu_B}}$$

The band widths indicate the level of possible statistical fluctuations

Arrow – lower limit of the LHC discovery region.

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Conclusions

- All important theoretical and experimental aspects of the measurement taken into account.
- Optimal cuts per mass point.
- *higgs*-tagging: cut on the ratio of $\gamma\gamma \rightarrow A, H \rightarrow b\bar{b}$ to $\gamma\gamma \rightarrow b\bar{b}(g), c\bar{c}(g), q\bar{q}$ (q=u, d, s) events.
- **P** Four MSSM parameter sets, $\tan \beta = 3-20$.
- Precision between 11% and 21% for $M_A = 200-350$ GeV, $\tan \beta = 7$, and parameter set I, after one year.
- Significance compared to LHC estimates.
- For $M_A \gtrsim 300$ GeV the Photon Collider can discover MSSM Higgs bosons for much lower values of $\tan \beta$ than LHC.

