Monolithic Active Pixel Sensors for the Vertex Detector at the International Linear Collider

Warsaw University, 18 May 2005

Devis Contarato DESY/Hamburg University

UH A

Outline

- Introduction: VXD requirements at the ILC
- Features and achievements of MAPS
- Activities of the DESY/Uni-Hamburg group
- Charge collection simulations
- Chip tests: ⁵⁵Fe, beam-tests, irradiation
- Power dissipation and cooling studies
- Conclusions & Outlook

Introduction: VXD requirements @ ILC

High impact parameter resolution

- →spatial resolution<5 µm
- \rightarrow multiple scattering<0.1% X₀
- →thin layers ~25-50 µm
- High granularity (high jets multiplicity)
 - \rightarrow pixel pitch of ~20x20 µm²
- High occupancy (e⁺e⁻ pairs background)
 - →fast read-out
 - \rightarrow on-line data sparsification
- Harsh radiation environment:

 $\rightarrow \Phi_{\text{neutron}} \approx 10^{10} \text{ n}_{(1 \text{ MeV})}/\text{cm}^2/\text{year}$

→ D_{ionisation}≈ 50 kRad/year

The vertex technology needs to combine high granularity, little multiple scattering, high read-out speed and radiation hardness:

 \rightarrow natural choice: (thin) pixel detectors

Principles of operation of MAPS

- MAPS: Monolithic Active Pixel Sensors (a.k.a. CMOS sensors)
- double-well CMOS process with epitaxial layer
- the charge generated by the impinging particle is reflected by the potential barriers due to doping differences and collected by thermal diffusion by the n-well/p-epi diode
- large charge spreading and collection times~100 nsec
- integration of the circuitry electronics on the same sensor substrate

Single pixel read-out

- Classical 3T architecture (3 transistors)
- Other designs possible and also considered
- Single pixel level: reset cycle + integration + readout + reset ...

at the International Linear Collider

Warsaw University

18 May 2005

MAPS read-out scheme

Typical readout scheme for the first prototypes

- Reset cycle for all pixel (common row reset) + serial readout
- Cell output is amplified physical signal: two frames are read-out and
- subtracted (to subtract noise/pedestals) Correlated Double Sampling (CDS)

Correlated Double Sampling

UH D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Why MAPS as the technology for the VXD?

- Integration of signal processing electronics on the same sensor substrate \rightarrow system-on-chip
- \bullet Thin sensitive volume and possibility of thinning down \rightarrow low material budget
- \bullet High granularity \rightarrow good spatial resolution
- Improved read-out speed (e.g. column-parallel readout)
- Radiation tolerance
- \bullet Use of standard CMOS technology \rightarrow large scale availability at low cost

History of MAPS prototypes

MIMOSA = **M**inimum **I**onising **MOS A**ctive pixel sensor

[©IReS, Strasbourg (France)]

Prototype	Process	Epi-thickness [µm]	Pixel pitch [µm]	Features
MIMOSA 1	AMS 0.6 μm	14	20	Thick epitaxy, technology demonstration
MIMOSA 2	MIETEC 0.35 µm	4.2	20	Thin epitaxy
MIMOSA 3	IBM 0.25 μm	2	8	Deep-submicron process, rad. tol. design
MIMOSA 4	AMS 0.35 μm	0	20	No epitaxy, low-doping substrate
MIMOSA 5	AMS 0.6 μm	14	17	1 Mpixel real-size sensors
MIMOSA 6	MIETEC 0.35 µm	4.2	28	Column-parallel read-out, integrated sparsification
MIMOSA 7	AMS 0.35 μm	0	25	Column parallel r.o. + integr. sparsification (photoFET)
MIMOSA 8	TSMC 0.25 μm	8	25	Column-parallel read-out, integrated sparsification
MIMOSA 9	AMS 0.35 μm	20	20/30/40	Technology tests, different parameters (pitch)
MIMO*	TSMC 0.25 μm	8	30	STAR VXD upgrade
MIMOSA 11	AMS 0.35 μm	20	20	Radiation hardness studies

...and more to come: submission of M12/M13 under way

MIMOSA V: real-size prototype

- Real-size prototype: 3.5 cm², 1M pixels
- First ladder concept attempt
- AMS 0.6 µm CMOS with <u>14 µm epilayer</u>
- pixel pitch 17x17 µm²
- 4 independent matrices of 512x512 pixels
- serial analogue readout @ 10 MHz
- \bullet back-thinned down to 120 μm

Chip mounted on PCB board

Achievement of MIMOSA sensors

Signal/noise in 1 pixels

20

40

Resolution vs Temperature Small Diode

60

80

180

160

140

120

100

80

60

40

20

'n

- Several fabrication processes explored
- Tracking performances (100 GeV/c π @ CERN):
 - S/N~20-30
 - noise~10-20 e
 - detection efficiency>99%
 - single point resolution: 1.5-2.5 µm
- Performances reproduced with large size prototype (e.g. imager)
- Radiation tolerance against neutrons and TID asserted within ILC requirements

Warsaw University

hsn1

6067

41.07

23.57

0

202

199.8 / 131

 930.5 ± 18.1

 $\textbf{26.27} \pm \textbf{0.19}$

 6.521 ± 0.102

140

pitch 20 small diode chip

Entries

Mean

RMS

Underflow

Overflow

Constant

 χ^2 / ndf

MPV

100

120

Signal/Noise

Sigma

DESY/Uni-Hamburg activities on MAPS

• Detector performance studies

- Simulation of charge collection (ISE-TCAD)
- Test-stand and test-beam measurements (MIMOSA V)
- Radiation damage and material investigations
- Mechanical design and cooling
 - Mechanics: CAD design of VXD layers layout
 - VXD cooling: simulations, material budget, power switching
- General detector design and optimization
 - Physics simulation of Vertex Detector

3-D device physics simulations are performed in order to:

- understand the charge collection mechanism and its time properties
- estimation of the charge collection efficiency
- study of the spatial charge spreading onto neighboring pixels
- study of the influence of technological parameters on the sensor charge collection properties
- optimisation of the sensor design

Overview of ISE-TCAD simulations

D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Simulation of charge collection

- Simulated structure: 3-dim model of 3x3 pixel cluster (3 pixels in 2dim)
- Technological details and doping profiles from foundry (approximate)
- The passage of a MIP is simulated introducing an excess charge (80 e- h pairs/ μ m)
- Transient simulation: relaxation process of achieving equilibrium after the particle passage
- Study of different impact positions for the simulated MIP

MIMOSA V Simulation

Pixel pitch 17 μ m, diode 3 μ m, EPI-thickness 14 μ m, 3x3 pixels cluster

• larger diffusion in the epilayer, fast recombination in the substrate (different carrier lifetimes)

- expected signal ~1000 e: large charge sharing (clustering)
- charge collection times <100 ns

Going to deep-submicron technology

Future: probably only deep-submicron ($\leq 0.25 \mu m$) technology available

- smaller epilayer thickness: smaller signal + substrate contribution to the collected charge
- latch-up of the transistors requires trench isolation
- radiation-induced interface states at the Si/SiO₂ interface

Configuration of the collecting diode in a sub- μ m process with Shallow Trench Isolation

Example of simulated structure and geometrical parameters used in the simulations

Charge collection in deep-submicron MAPS

Pixel pitch 20 μ m, diode 1 μ m, EPI-thickness 2÷8 μ m, typical doping profiles

- Linear dependence of collected signal on epilayer thickness
- Important substrate contribution
- A thinner epilayer results in smaller signal, but limited charge spreading and shorter collection times (faster collection)

Simulation of interface damage

(Interface traps concentrations: 10¹¹, 10¹² 1/eVcm² ~500 krad, Wüstenfeld 2001, Ph.D. thesis)

- Significant dependence of the collected charge on the trench geometry (mainly on depth, less dependence on trench width)
- Collection times are not affected
- How to overcome the problem: PolySi instead of Si0₂?

Test stand for chip characterization

- MIMOSA V chip (262K pixels/matrix)
- clocked with 10 MHz
- matrix read-out time 26ms
- Cooling unit
- VME-Based readout
- clock & reset signals
- ADC board
- Radioactive source tests ⁵⁵ Fe - X rays
- Planned tests:
 - IR laser light injection
 - B-field dependence
 - on/off power switching

Warsaw University 18 May 2005

Data acquisition system

UH D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Warsaw University

18 May 2005

Pedestals and noise

UH M

D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Calibration with ⁵⁵Fe

at the International Linear Collider

- Looking for conversion of the photons in the n-well (assume 100% charge collection efficiency)
- 5.9 keV photons generate ~1640 e
- Peak used to calibrate e/ADC conversion and noise
- ENC~20 electrons

18 May 2005

Beam-tests at DESY II

- Electrons up to 6 GeV
- 3 x-y planes silicon reference telescope
- Event rate ~Hz (MAPS + reference telescope)
- VME telescope readout + dedicated ADC board for MAPS
- Cooling to -15°C possible
- Dec '04 Jan '05 run: 400000 events

The silicon reference telescope

- Single-sided silicon microstrip detectors, 50 µm readout pitch
- Detection efficiency>99%, S/N~45-85
- Intrinsic resolution~3 µm, but in real life... multiple scattering!
- In this work: track fitting with $\sim 6 \ \mu m$ precision

Beam-test results: signal & S/N

10

20

30

40

50

- 6 GeV electrons, cooling to -10°C
- Applied cuts: $S/N_{seed} > 5$, $S/N_{neigh} > 2$
- MPV for seed pixel signal ~340 e
- ENC~20 electrons
- Average Signal-to-Noise~21

UH D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Warsaw University

60

Noise [electrons]

70

Beam-test results: cluster charge

Signal-to-noise: temperature dependence

(bars= RMS of pixel distribution)

$$noise = c_0 + c_1 \sqrt{T^2 \exp(-\frac{E_g}{2k_B T})}$$

Leakage current term

Noise $\propto (I_{\text{leak}})^{1/2}$

- Measurements performed from
 -15°C to +5°C
- Cooling is needed to keep noise level low w.r.t. room T
- Slight dependence of S/N between -15°C and +5°C

D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Electron background in the VXD

- Background of low momentum e⁺/e⁻ from beamstrahlung
- For $B_{field} = 4$ T, only e^+/e^- with $p \ge 9$ MeV/c reach first VXD layer
- At 90° ~5 hits/cm²/BX expected \rightarrow 6×10¹¹ e/cm²/year
- Necessity for radiation hardness assurance against ~10 MeV electrons

MIMOSA V irradiation with 10 MeV electrons

- Performed at the S-DALINAC of Darmstadt Technical University (Germany)
 - 9.4 MeV electrons, current~1 nA
 - Irradiation under bias & clock
 - Fluences of 3×10^{12} and 1×10^{13} e/cm² (resp.

70 and 230 krad) on 2 different matrices

- After irradiation: need for cooling to retain detector operability
- Pedestal levels strongly and non-uniformly shifted (correlated with dose)

Preliminary results from ⁵⁵Fe calibration

Warsaw University

18 May 2005

VXD cooling studies

Cooling requirements

• for complete pixel detector up to ~1kW of cooling needed if readout electronics stays on between bunch trains

• cooling should involve as little material in the tracking volume as possible

First attempt with gas cooling of whole detector volume: velocity of gas~30m/s needed, too high for light structure of ladders

Present strategy

- system of cooling pipes in contact with ladders
- evaporative cooling: mixture of gas and fluid, evaporation heat used for cooling

Simulation of ladders

- instead of Si-ladders use 30 μm thick glass plate with thin Al-pattern to simulate mechanical properties and heat load

Setup for cooling tests

- evaporative cooling (like ATLAS) using octafluoropropane $\mathsf{C}_3\mathsf{F}_8$

- vessel with 30 μm glass ladders (SiC foam support) and aluminum strips to simulate power dissipation, 300 μm capillaries for cooling liquid

• tests under way

(J. Hauschildt, DESY)

Warsaw University 18 May 2005

Issues for future developments

Read-out architecture/speed

- Optimization to different VXD layers requirements
- First VXD layers: need for fast readout and signal processing
- CDS on-pixel + column-parallel readout
- ADC + signal processing and extraction at end of column
- Outer layers: lower rate but larger data flux
- on-pixel charge storage (multi-capacitors, larger pixel size)
- signal processing between bunch trains
- Several prototypes fabricated to study different features

Issues for future developments (2)

Thinning

- Real-size sensor thinned to 15 µm (substrate removal) operative but loss of performance observed
- Goal: thinning to 25-50 um

... and many other issues:

- Prototype ladder fabrication: interconnection, routing of the lines, handling
- Radiation hardness assurance against low energy e⁺/e⁻ background
- Power pulsing tests
- \bullet Exploration of different fabrication technologies (<0.25 μm) and pixel architectures

Summary and Conclusions

- Monolithic Active Pixel Sensors show excellent performances for particle tracking and are a promising candidate for application in the VXD at the ILC
- DESY/Uni-Hamburg group active on chip tests, radiation studies, physics simulation and engineering issues
- Our achievements (covered in this seminar):
 - development of detector simulation tools: charge collection simulations
 - large-scale prototype (\sim 1 Mpixel) tested with radioactive sources and electron beam
 - cooling studies: simulation and test of power dissipation
- Several issues for future developments... much room for work!

SPARE SLIDES

D. Contarato, MAPS for the Vertex Detector at the International Linear Collider

Warsaw University

18 May 2005

Simulation of temperature distribution

- simulation of cooling conditions in our experimental set-up
- Mimosa 5 chip in a brass box cooled down to -16°C, nitrogen flow
- \bullet Chip thickness 120 μm , PCB board modelled with a 0.035 mm copper layer
- Convective heat transfer coefficient $\alpha \sim 10 \text{ W/m}^2 \text{ K}$
- Temperature distribution simulated with I-DEAS®-TMG®
- Chip temperature varies from +26°C in the readout area to +6°C in the pixel area

(C. Muhl, DESY)

Simulation for central VXD ladder

- 3 mm long portion of 10 mm wide ladder, 30 µm thick
- Thermal coupling: 2500 W/m²K to a -16° C fluid, via two 0.5 mm wide strips on both sides of the bottom (a better coupling is feasible)
- No convective coupling to environment gas
- Under these conditions cooling is much better than for a single chip

(C. Muhl, DESY)

Simulation for outer VXD ladder

- \bullet 3 mm long portion of 22 mm wide ladder, 30 μm thick
- Thermal coupling: 2500 W/m²K to a -16° C fluid, via two 0.5 mm wide strips on both sides of the bottom (a better coupling is feasible)
- No convective coupling to environment gas
- Higher maximum temperature than for central ladder

(C. Muhl, DESY)

