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Introduction: VXD requirements  @ ILC

• High impact parameter resolution

spatial resolution<5 µm

multiple scattering<0.1% X0

thin layers ~25-50 µm

The vertex technology needs 
to combine high granularity, 
little multiple scattering, high 
read-out speed and radiation 
hardness: 

B=4 T

• High granularity (high jets multiplicity)

pixel pitch of ~20x20 µm2

• High occupancy (e+e- pairs background)

fast read-out

on-line data sparsification

• Harsh radiation environment:

Φneutron≈ 1010 n(1 MeV)/cm2/year 

 Dionisation≈ 50 kRad/year → natural choice: (thin) pixel detectors
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Principles of operation of MAPS
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• MAPS: Monolithic Active Pixel Sensors (a.k.a. CMOS sensors)

• double-well CMOS process with epitaxial layer

• the charge generated by the impinging particle is reflected by the potential 
barriers due to doping differences and collected by thermal diffusion by the      
n-well/p-epi diode

• large charge spreading and collection times~100 nsec

• integration of the circuitry electronics on the same sensor substrate

15
 µ

m

Operational voltage set
by CMOS process (no HV)

through the center of N well
through the center of P well

20 µm 
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Single pixel read-out
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• Classical 3T architecture      
(3 transistors)

• Other designs possible and 
also considered

• Single pixel level: reset cycle
+ integration  + readout +
reset ...

Output Reset…Collection 
(int. time=frame rate)

Reset 
(common row)

Reset transistor

Collecting node

Output
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MAPS read-out scheme
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Typical readout scheme for the first prototypes
• Reset cycle for all pixel (common row reset) + serial readout
• Cell output is amplified - physical signal: two frames are read-out and 
subtracted (to subtract noise/pedestals) – Correlated Double Sampling (CDS)

last amplification stage
common to all

only reset and clock signals 
needed

full analog information
(all pixels) read-out in series

Prototype maximum clock
frequency: 40 MHz
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Correlated Double Sampling 
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Signal/Noise ratio

for given event

CDS : get rid of FPN, reset noise, 1/f noise



Why MAPS as the technology for the VXD?

● Integration  of signal processing electronics on the same 
sensor substrate → system-on-chip 

• Thin sensitive volume and possibility of thinning down → low 
material budget  

• High granularity → good spatial resolution

• Improved read-out speed (e.g. column-parallel readout)

• Radiation tolerance 

• Use of standard CMOS technology → large scale availability 
at low cost

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

Warsaw University

18 May 2005



Prototype Process Epi-thickness [µm] Pixel pitch [µm] Features
MIMOSA 1 AMS 0.6 µm 14 20 Thick epitaxy, technology

demonstration

MIMOSA 2 MIETEC 0.35 µm 4.2 20 Thin epitaxy

MIMOSA 3 IBM 0.25 µm 2 8 Deep-submicron process, rad.
tol. design

MIMOSA 4 AMS 0.35 µm 0 20 No epitaxy, low-doping substrate

MIMOSA 5 AMS 0.6 µm 14 17 1 Mpixel real-size sensors

MIMOSA 6 MIETEC 0.35 µm 4.2 28 Column-parallel read-out,
integrated sparsification

MIMOSA 7 AMS 0.35 µm 0 25 Column parallel r.o. + integr.
sparsification (photoFET)

MIMOSA 8 TSMC 0.25 µm 8 25 Column-parallel read-out,
integrated sparsification

MIMOSA 9 AMS 0.35 µm 20 20/30/40 Technology tests, different
parameters (pitch)

MIMO* TSMC 0.25 µm 8 30 STAR VXD upgrade

MIMOSA 11 AMS 0.35 µm 20 20 Radiation hardness studies

History of MAPS prototypes

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

MIMOSA = Minimum Ionising MOS Active pixel sensor
[©IReS, Strasbourg (France)]

...and more to come: submission of M12/M13 under way
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MIMOSA V: real-size prototype

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

• Real-size prototype: 3.5 cm2, 1M pixels
• First ladder concept attempt
• AMS 0.6 µm CMOS with 14 µm epilayer
• pixel pitch 17x17 µm 2
• 4 independent matrices of 512x512 pixels
• serial analogue readout @ 10 MHz
• back-thinned down to 120 µm

chip size 
1.74x1.94 cm2

Wafer view

Chip mounted on PCB board
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Achievement of MIMOSA sensors
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• Several fabrication processes explored
• Tracking performances (100 GeV/c π @ CERN):

- S/N~20-30
- noise~10-20 e
- detection efficiency>99%
- single point resolution: 1.5-2.5 µm

• Performances reproduced with large size 
prototype (e.g. imager)
• Radiation tolerance against neutrons and TID 
asserted within ILC requirements

[©IReS, Strasbourg (France)]
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DESY/Uni-Hamburg activities on MAPS

• Detector performance studies

- Simulation of charge collection (ISE-TCAD)

- Test-stand and test-beam measurements (MIMOSA V)

- Radiation damage and material investigations

• General detector design and optimization

- Physics simulation of Vertex Detector

• Mechanical design and cooling

- Mechanics: CAD design of VXD layers layout

- VXD cooling: simulations, material budget, power switching
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Issues for device simulation (ISE-TCAD)

3-D device physics simulations are performed in order to:

• understand the charge collection mechanism  and its time 
properties

• estimation of the charge collection efficiency

• study of the spatial charge spreading onto neighboring pixels

• study of the  influence of technological parameters  on the 
sensor charge collection properties

• optimisation of the sensor design
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Overview of ISE-TCAD simulations

MESH GENERATOR

DEVICE PHYSICS SIMULATOR

Description of boundaries,

doping and mesh 

SIMULATION RESULTS

VISUALIZATION TOOLS

Physical models and

parameters 

Boundaries…

Doping…

Mesh…

Physics…

Parameters…

Solve…
+
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Simulation of charge collection

• Simulated structure: 3-dim model 
of 3x3 pixel cluster  (3 pixels in 2-
dim)

• Technological details and doping 
profiles from foundry (approximate)

• The passage of a MIP is simulated 
introducing an excess charge (80 e-
h pairs/µm)

• Transient simulation: relaxation 
process of achieving equilibrium 
after the particle passage

• Study of different impact positions 
for the simulated MIP

0 nsec

1 nsec

10 nsec

20 nsec

Particle track
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• larger diffusion in the epilayer, fast recombination in the substrate 
(different carrier lifetimes)

• expected signal ~1000 e: large charge sharing (clustering)

• charge collection times <100 ns

MIMOSA V Simulation 
Pixel pitch 17 µm, diode 3 µm, EPI-thickness 14 µm, 3x3 pixels cluster

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

particle 
track

Central hits
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Future: probably only deep-submicron (≤0.25 µm) technology available

• smaller epilayer thickness: smaller signal + substrate contribution to 

the collected charge

• latch-up of the transistors requires trench isolation

• radiation-induced interface states at the Si/SiO2 interface

Going to deep-submicron technology

Example of simulated structure 
and geometrical parameters used 
in the simulations

Configuration of the collecting 
diode in a sub-µm process with 
Shallow Trench Isolation

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

Warsaw University

18 May 2005



0
100
200
300
400
500
600
700
800
900

0 2 4 6 8 10
Epilayer Thickness [µm]

Ch
ar

ge
 [

e]

Total collected charge
Epilayer contribution (expected)
Substrate contribution

M
ea

n

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Epilayer thickness [µm]

To
ta

l C
ol

le
ct

io
n 

Ti
m

e 
[n

se
c]

Side hit

Central hit 

Charge collection in deep-submicron MAPS

• Linear dependence of collected signal on epilayer thickness

• Important substrate contribution

• A thinner epilayer results in  smaller signal, but  limited charge 
spreading and shorter collection times (faster collection)

Pixel pitch 20 µm, diode 1 µm, EPI-thickness 2÷8 µm, typical doping profiles
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Simulation of interface damage 

Shallow trench isolationNo shallow trench isolation
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(Interface traps concentrations: 1011, 1012 1/eVcm2 ~500 krad, Wüstenfeld 2001, Ph.D. thesis)

• Significant dependence of the collected charge on the trench geometry 
(mainly on depth, less dependence on trench width)

• Collection times are not affected

• How to overcome the problem: PolySi instead of Si02?
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Test stand for chip characterization

• MIMOSA V chip (262K pixels/matrix)
- clocked with 10 MHz
- matrix read-out time 26ms

• VME-Based readout
- clock & reset signals
- ADC board
• Radioactive source tests
55 Fe - X rays  

• Planned tests:

- IR laser light injection

- B-field dependence

- on/off power switching

• Cooling unit

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

Warsaw University

18 May 2005



Cooler & Thermostat

ADC & Imager
 board

Cooling block 
(-15°C<T<35°C)

Repeater board

Chip

Data acquisition system
MIMOSA V  chip on 
front-end board  and 
cooling unit

Serial analog output

VME-based read-
out system and 
hardware data 
processing units

Interface 
board - 
Repeater

Imager board –

VME Flash ADC unit

Software for data 
acquisition and 
analysis

Source
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• Pedestal and noise are uniform over 
all the matrix
• Good agreement with fit function:

→ pedestals (∝ Ileak ) can be used to 
measure Ileak after irradiation

Pedestals and noise
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Calibration with 55Fe
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• Looking for conversion of the photons in 
the n-well (assume 100% charge collection 
efficiency)
• 5.9 keV photons generate ~1640 e
• Peak used to calibrate e/ADC conversion 
and noise
• ENC~20 electrons

Seed pixel signal 
distribution

5.9 keV peak

6.4 keV peak
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Beam-tests at DESY II 
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3 x-y planes

 Spill Counter

MAPS support + cooling box

● Electrons up to 6 GeV
● 3 x-y planes silicon reference telescope
● Event rate ~Hz (MAPS + reference telescope)
● VME telescope readout + dedicated ADC board for MAPS
● Cooling to –15°C possible
● Dec '04 – Jan '05 run: 400000 events

Warsaw University
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The silicon reference telescope 
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● Single-sided silicon microstrip detectors, 50 µm readout pitch
● Detection efficiency>99%, S/N~45-85
● Intrinsic resolution~3 µm, but in real life... multiple scattering!
● In this work: track fitting with ~6 µm precision 

S/N~55

e- @ 6 GeV
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Beam-test results: signal & S/N 
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<S/N>~21

● 6 GeV electrons, cooling to -10°C

● Applied cuts: S/N
seed

>5, S/N
neigh

>2

● MPV for seed pixel signal ~340 e
● ENC~20 electrons
● Average Signal-to-Noise~21

MPV~340 e

ENC~20 e
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Beam-test results: cluster charge 
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S/N
neigh

>2

MPV~946 e MPV~940 e

● Average cluster size ~6    
● Most of the charge 

collected within 9 pixel
● Symmetric charge sharing

(pixel sorted by decreasing charge)
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Signal-to-noise: temperature dependence 
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Average noise vs T <S/N> vs T

● Measurements performed from 
-15°C to +5°C
 
● Cooling is needed to keep noise 
level low w.r.t. room T

● Slight dependence of S/N between 
-15°C and +5°C

Leakage current term

)
2

exp(2
10 Tk

E
Tccnoise

B

g−+=

(bars= RMS of pixel distribution)

Noise ∝ (Ileak)1/2
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Electron background in the VXD 
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• Background of low momentum e+/e- from beamstrahlung

• For B
field

=4 T, only e+/e- with p≥9 MeV/c reach first VXD layer

• At 90° ~5 hits/cm2/BX expected → 6×1011 e/cm2/year

• Necessity for radiation hardness assurance against ~10 MeV electrons 

[©IReS, Strasbourg]

[K. Buesser, DESY]

e+/e- from one 
bunch crossing (BX) 
hitting 1st VXD layer
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electron beam
(spot~6x6 mm2)

Copper plate for 
beam-current 
measurement

Chip control signals

MIMOSA V irradiation with 10 MeV electrons 

 

● Performed at the S-DALINAC of Darmstadt 
Technical University (Germany)
● 9.4 MeV electrons, current~1 nA
● Irradiation under bias & clock
● Fluences of 3×1012 and 1×1013 e/cm2 (resp. 
70 and 230 krad) on 2 different matrices

-10°C
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• After irradiation: need for cooling to retain 
detector operability
• Pedestal levels strongly and non-uniformly 
 shifted (correlated with dose)
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Preliminary results from 55Fe calibration 

 

5.9 keV peak
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● Measurements performed at -10°C
 
● Loss in performance observed from 
calibration characteristics

● Further studies under way

?

PRELIMINARY!
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VXD cooling studies 

 

Cooling requirements 
• for complete pixel detector up to ~1kW of cooling needed if readout electronics 
stays on between bunch trains
• cooling should involve as little material in the tracking volume as possible

First attempt with gas cooling of whole detector volume: velocity of gas~30m/s 
needed, too high for light structure of ladders

 Present strategy
• system of cooling pipes in contact with ladders
• evaporative cooling: mixture of gas and fluid, evaporation heat used for cooling

        Simulation of ladders 
• instead of Si-ladders use 30 µm thick glass plate with thin Al-pattern to simulate 
mechanical properties and heat load
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Setup for cooling tests 

 

(J. Hauschildt, DESY)

• evaporative cooling (like ATLAS) using octafluoropropane 
C3F8

• vessel with 30 µm glass ladders (SiC foam support) and 
aluminum strips to simulate power dissipation, 300 µm 
capillaries for cooling liquid

• tests under way

Cooling plantTest vessel
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Issues for future developments
Read-out architecture/speed

• Optimization to different VXD layers 
requirements

• First VXD layers: need for fast 
readout and signal processing

- CDS on-pixel + column-parallel readout

- ADC + signal processing and extraction at 
end of column

• Outer layers: lower rate but larger 
data flux

- on-pixel charge storage (multi-capacitors, 
larger pixel size)

- signal processing between bunch trains 

• Several prototypes fabricated to 
study different features
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// columns// columns

(L0)(L0)
5 mm5 mmSensitive volumeSensitive volume

MIMOSA 6 
pixel layout

AC coupling capacitor

Charge 
storage 

capacitors
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M5-B standard

M5-B thinned down

Issues for future developments (2)

Thinning

• Real-size sensor thinned to 15 um 
(substrate removal) operative but 
loss of performance observed

• Goal: thinning to 25-50 um 

 

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

[©IReS, Strasbourg]

Thinning

• Real-size sensor thinned to 15 µm 
(substrate removal) operative but 
loss of performance observed

• Goal: thinning to 25-50 um 

... and many other issues:

• Prototype ladder fabrication: interconnection, routing of the lines, handling

• Radiation hardness assurance against low energy e+/e- background

• Power pulsing tests

• Exploration of different fabrication technologies (<0.25 µm) and pixel 
architectures  

Warsaw University
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Summary  and Conclusions

• Monolithic Active Pixel Sensors show excellent performances for 
particle tracking and are a promising candidate for application in the 
VXD at the ILC

• DESY/Uni-Hamburg group active on chip tests, radiation studies, 
physics simulation and engineering issues

• Our achievements (covered in this seminar):

- development of detector simulation tools: charge collection 
simulations

- large-scale prototype (~1 Mpixel) tested with radioactive sources 
and electron beam

- cooling studies: simulation and test of power dissipation

• Several issues for future developments... much room for work!
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SPARE SLIDES
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SPARE SLIDES
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Simulation of temperature distribution 

 

(C. Muhl, DESY)

• simulation of cooling conditions in our experimental set-up
• Mimosa 5 chip in a brass box cooled down to -16°C, nitrogen flow
• Chip thickness 120 µm, PCB board modelled with a 0.035 mm copper layer
• Convective heat transfer coefficient α~10 W/m2·K
• Temperature distribution simulated with I-DEAS®-TMG®

• Chip temperature varies from +26°C in the readout area to +6°C in the pixel area 

cut through the chip
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Simulation for central VXD ladder 

 

10 mm

200 pixels

200 pixels

cooling to –16°C

• 3 mm long portion of 10 mm wide ladder, 30 µm thick
• Thermal coupling: 2500 W/m2K to a –16°C fluid, via two 0.5 mm wide strips 
on both sides of the bottom (a better coupling is feasible)
• No convective coupling to environment gas
• Under these conditions cooling is much better than for a single chip

(C. Muhl, DESY)

max T ~4.8°C

D. Contarato,  MAPS for the Vertex Detector 
at the International Linear Collider 

Warsaw University

18 May 2005



Simulation for outer VXD ladder 

 

22 mm

450 pixels

450 pixels

cooling to –16°C

(C. Muhl, DESY)

max T ~16.5°C

• 3 mm long portion of 22 mm wide ladder, 30 µm thick
• Thermal coupling: 2500 W/m2K to a –16°C fluid, via two 0.5 mm wide strips 
on both sides of the bottom (a better coupling is feasible)
• No convective coupling to environment gas
• Higher maximum temperature than for central ladder
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