Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład II

- Oddziaływanie cząstek naładowanych z materią
- Oddziaływanie elektronów i pozytonów
- Oddziaływanie fotonów

Wprowadzenie

Oddziaływanie cząstek z materią

Ze względu na oddziaływanie z materią (prowadzące do detekcji cząstek) cząstki elementarne możemy podzielić na następujące kategorie:

- cząstki naładowane (z wyłączeniem e^{\pm})
 - ⇒ główny proces: jonizacja
- elektrony i pozytony
 - ⇒ jonizacja + straty radiacyjne
- fotony

⇒ efekt fotoelektryczny, efekt Comptona, kreacja par

- (nienaładowane) hadrony
 ⇒ kaskady hadronowe
- neutrina

Wprowadzenie

Rozpraszanie elastyczne

Rozważmy zderzenie elastyczne cząstki o masie m_1

i energii E_1 ze spoczywającą cząstką o masie m_2 .

Jaki będzie maksymalny przekaz energii w tym zderzeniu?

Wiemy, że będziemy z nim mieli do czynienia, gdy w układzie środka masy (CMS) cząstka m_2 rozproszy się "do przodu" Przyjmijmy, że parametry transformacji do CMS dane są przez γ^* i β^*

Energia i pęd m_2 w CMS ($c \equiv 1$) przed zderzeniem:

$$p_2^{\star} = -\beta^{\star}\gamma^{\star}m_2$$
$$E_2^{\star} = \gamma^{\star}m_2$$

po zderzeniu:

$$p_{2}^{\prime \star} = -p_{2}^{\star} = \beta^{\star} \gamma^{\star} m_{2}$$
$$E_{2}^{\prime \star} = E_{2}^{\star} = \gamma^{\star} m_{2}$$

Transformując do układu LAB:

$$E'_{2} = \gamma^{\star} \cdot E'_{2}^{\star} + \beta^{\star} \gamma^{\star} \cdot p'_{2}^{\star}$$
$$= \gamma^{\star 2} (1 + \beta^{\star 2}) m_{2}$$

Wprowadzenie

Maksymalny przekaz energii

Przekaz energii:

$$\Delta E_{max} = E'_2 - E_2 = E'_2 - m_2$$
$$= \gamma^{\star 2} \left(1 + \beta^{\star 2} - \frac{1}{\gamma^{\star 2}} \right) m_2$$
$$= 2 \left(\beta^{\star} \gamma^{\star} \right)^2 m_2$$

Dla układu dwóch ciał mamy:

$$E = E_1 + E_2 = E_1 + m_2$$

$$P = P_1 = \sqrt{E_1^2 - m_1^2}$$

$$M^2 = E^2 - P^2 = (E_1 + m_2)^2 - P_1^2$$

$$= m_1^2 + m_2^2 + 2E_1 m_2$$

Transformacja do układu środka masy:

$$\beta^{\star}\gamma^{\star} = \frac{P}{M} = \frac{\beta\gamma m_1}{\sqrt{m_1^2 + 2\gamma m_1 m_2 + m_2^2}}$$

gdzie: γ i β - współczynniki dla cząstki m_1

Maksymalny przekaz energii:

$$\Delta E_{max} = \frac{2 \beta^2 \gamma^2 m_2}{1 + 2\gamma \frac{m_2}{m_1} + \left(\frac{m_2}{m_1}\right)^2}$$

W granicy $m_1 \gg m_2$ maksymalny przekaz energii rośnie jak $\beta^2 \gamma^2 \sim p_1^2$

$$\Delta E_{max} \approx 2 \beta^2 \gamma^2 m_2$$

Podejście klasyczne (Bohr) Ciężka ($M \gg m_e$) naładowana cząstka przelatuje w odległości *b* elektronu:

Założenia:

- zaniedbujemy zmiany w ruchu cząstki
- zaniedbujemy ruch elektronu

Z symetrii wynika, że na przekaz pędu wpływ ma wyłącznie prostopadła składowa pola:

$$\Delta \vec{p} = \int dt \vec{F} = e \int dt \vec{E}_{\perp}$$
$$\Delta p = e \int dt E_{\perp} = e \int dx \frac{dt}{dx} E_{\perp}$$
$$= \frac{e}{2\pi b V} \int 2\pi b \, dx \, E_{\perp}$$

Z prawa Gaussa dla ładunku *ze*:

$$\int dS E_{\perp} = \frac{z e}{\varepsilon_0}$$
$$\Rightarrow \quad \Delta p = \frac{2 z e^2}{4\pi\varepsilon_0 b V}$$

$$\Delta E(b) = \frac{\Delta p^2}{2m_e} = \frac{2 z^2 e^4}{(4\pi\varepsilon_0)^2 m_e b^2 V^2}$$

Podejście klasyczne

Liczba elektronów w przedziale odległości [b, b + db] n_e - gęstość elektronów

 $N_e = n_e dV = 2\pi b n_e db dx$

Łączna strata energii cząstki na odległości dx: $\frac{e^2}{4\pi\varepsilon_0} = \alpha$

$$-dE = \Delta E(b) N_e = \frac{4\pi z^2 \alpha^2 n_e}{m_e b V^2} db dx$$

Całkując po parametrze zderzenia otrzymujemy całkowitą stratę na jednostkę długości:

$$-\frac{dE}{dx} = \frac{4\pi \ z^2 \ \alpha^2 \ n_e}{m_e \ V^2} \cdot \ln \frac{b_{max}}{b_{min}}$$

Wyrażając granice całkowania przez przekaz energii: $\Delta E(b) \sim b^{-2}$

$$-\frac{dE}{dx} = \frac{2\pi \ z^2 \ \alpha^2 \ n_e}{m_e \ V^2} \cdot \ln \frac{\Delta E_{max}}{\Delta E_{min}}$$

Podejście klasyczne

Gęstość elektronów w materiale:

$$n_e = Z \cdot N_A \cdot \frac{\rho}{A} \qquad \qquad N_A = 6.022 \ 10^{23}$$

gdzie: ρ - gęstość, A - liczba masowa , Z - liczba porządkowa (ładunek jądra)

Podstawiając uzyskany wzór na ΔE_{max} $M \gg m_e$

$$-\frac{dE}{dx} = \frac{2\pi N_A z^2 \alpha^2}{m_e V^2} \cdot \rho \frac{Z}{A} \cdot \ln\left(\frac{2\beta^2 \gamma^2 m_e}{\Delta E_{min}}\right)$$

 ΔE_{min} powinno być rzędu energii jonizacji atomów ośrodka - I

Wyprowadzenie klasyczne, choć niedokładne, daje poprawny charakter zależności:

- w obszarze małych V im szybsza cząstka tym mniej czasu ma na oddziaływanie z elektronem, siły wykonują mniejszą pracę
- dla $V \rightarrow c$ logarytmiczny wzrost związany ze wzrostem maksymalnego dozwolonego przekazu energii

Wzór Bethe-Blocha

Uwzględniając w rachunku efekty kwantowe otrzymujemy:

$$-\frac{1}{\rho}\frac{dE}{dx} = K \cdot z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e\beta^2\gamma^2\Delta E_{max}}{I^2} - \beta^2 - \frac{\delta}{2}\right]$$

gdzie: $K = \frac{4\pi N_A z^2 \alpha^2}{m_e} \approx 0.307 \frac{MeV}{g/cm^2}$

 δ - poprawka związana z polaryzacją ośrodka

Przy założeniu $m \gg m_e$ jonizacja zależy wyłącznie od $eta \gamma$

$$-\frac{1}{\rho}\frac{dE}{dx} = K \cdot z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{2m_e \beta^2 \gamma^2}{I} - \beta^2 - \frac{\delta}{2} \right]$$

Średnia energia jonizacji elektronów $I \sim Z \cdot 10 eV$

Zależność straty energii na jonizację od energii ma uniwersalny kształt! Dla różnych cząstek skaluje się z $\beta\gamma$.

Wysokość strat zależy od materiału.

Straty minimalne dla $\gamma \sim 3$

poniżej: szybki wzrost powyżej: wzrost logarytmiczny

Straty dla cząstek minimalnej jonizajcji: $-\frac{dE}{dx}\Big|_{min} \sim 1 - 2MeV/\frac{g}{cm^2}$

Minimalna jonizacja (w przeliczeniu na jednostkę gęstości) dla róznych pierwiastków:

Jonizacja największa dla wodoru, dla Z > 6 maleje w przybliżeniu logarytmicznie z Z.

Straty energii dla mionu μ^+ , w funkcji pędu:

Wzór Bethe-Blocha przestaje obowiązywać dla:

 $\beta < 0.05$ - nie można zaniedbać wiązania i ruchu elektronu oraz rozproszenia cząstki

 $eta\gamma>$ 300 (dla mionów) - istotne stają się straty radiacyjne

W przypadku mionów przewidywania dokładne w zakresie pędów 10 MeV do 30 GeV

⇒ zakres najczęściej spotykany w eksperymentach

Straty radiacyjne bardzo istotne dla mionów powyżej 100 GeV (LHC, IceCube,...)

Zasięg cząstek

Wzór Bethego-Blocha można zcałkować i uzyskać oczekiwany zasięg cząstki.

 $R(E_{kin}) = \int_{E_{min}}^{E_{kin}} \left(\frac{dE}{dx}\right)^{-1} dE' + R(E_{min})$ W obszarze małych energii

$$-\frac{dE}{dx} \sim \beta^{-2} \sim E_{kin}^{-1} \Rightarrow R \sim E_{kin}^{2}$$

W obszarze dużych energii:

$R \sim E_{kin}$

R/M wyrażone jako funkcja $\beta\gamma$ jest takie samo dla różnych cząstek.

Dla różnych materiałów: $R \sim \frac{\sqrt{A}}{\rho}$

Zasięg cząstek

Dla mionu o pędzie (energii) 1 GeV zasięg w żelazie: $R/M \approx 5500 \ g/cm^2/GeV$ Gęstość żelaza $\rho = 7.87g/cm^3 \Rightarrow R \approx 73 \ cm$

Zakładając, że straty na jonizację są stałe i równe: $-\frac{dE}{dx}\Big|_{min} \approx 11.4 \ MeV/cm$ Możemy oszacować zasięg 1 GeV mionu w żelazie: $\tilde{R} \approx 88cm$

⇒ Założenie, że mion jest "cząstką minimalnej jonizacji" jest często wystarczające dla szacunkowych wyliczeń.

Zasięg "jonizacyjny" odpowiada rzeczywistemu zasięgowi cząstki tylko wtedy, gdy inne procesy można pominąć (np. nieelastyczne oddziaływania z jądrami).

W przypadku hadronów oznacza to energie poniżej 1 GeV.

Dla mionów do energii rzędu 100 GeV.

Protony i fotony w tkance:

Krzywa Bragga

Zależność strat na jonizację od długości drogi w materiale:

Cząstki α w powietrzu:

Gdy cząstka znajdzie się poniżej minimum jonizacji, straty energii gwałtownie rosną → depozyt energii największy blisko miejsca zatrzymania cząstki (terapia hadronowa)

Rozkład strat energii

Wzór Bethe-Blocha określa średnią wartość strat energii na jonizację.

Dla grubych warstw absorbera oczekujemy, że rozkład strat będzie rozkładem Gaussa

Tak jednak nie jest!

Straty energii w pojedynczym oddziaływaniu mają rozkład typu

$$p(\Delta E) \sim rac{1}{\Delta E} \ \Delta E_{min} < \Delta E < \Delta E_{max}$$

Ponieważ $\Delta E_{max} \gg \Delta E_{min}$ rozkład pozostaje niesymetryczny nawet po zsumowaniu dużej liczby oddziaływań \Rightarrow rozkład Landaua

Ze względu na dużą asymetrie rozkładu Landaua i długi ogon (do $\Delta E_{max} \gg \langle E \rangle$) pomiar średniej wartości strat na jonizację jest obarczony dużym błędem.

Znacznie dokładniej mierzona może być wartość najbardziej prawdopodobna (MPV)

W granicy dużych energii MPV dąży do stałej!

Porównanie średnich strat na jonizację, średnich strat liczonych w ograniczonym zakresie energii i wartości najbardziej prawdopodobnej, w funkcji energii mionu.

⇒ relatywistyczny wzrost średnich strat wynika wyłącznie z wydłużania się ogona

Wielokrotne rozpraszanie

Cząstka naładowana w ośrodku rozprasza się elastycznie na jądrach atomów Dla pojedynczego rozproszenia (wzór skala logarytmiczna! Rutherforda) Angular distribution of 15.7 MeV e- after Au foils

 $rac{d\sigma}{d\Omega}~\sim~rac{1}{sin^4(heta/2)}$

podobnie jak w przypadku energii: średni kąt rozproszenia jest bardzo niewielki, ale rozkład ma długi ogon...

Wielokrotne rozpraszanie: rozkład kąta rozproszenia zbliża się do rozkładu Gaussa, ale pozostaje wyraźnie niegaussowski ogon!

Wielokrotne rozpraszanie

Przybliżenie małych katów

Rozproszenie przy przejściu ośrodka o grubości *x*

Rozważamy rozproszenie w jednej płaszczyźnie. Średni (kwadratowy) kąt rozproszenia (dyspersja rozkładu)

$$\theta_0 = \sqrt{\langle \theta_{plane}^2 \rangle}$$

W przybliżeniu rozproszeń pod małymi kątami (odrzucając ogony $\pm 1\%$)

$$\theta_0 \approx \frac{13.6 \ MeV}{\beta \ cp} z \sqrt{\frac{x}{X_0}} \cdot \left[1 + 0.038 \ ln \left(\frac{x}{X_0}\right)\right]$$
(blizenie dobre dla $10^{-3} < \frac{x}{X_0} < 100$)

przybliżenie dobre dla $10^{-3} < \frac{x}{X_0} < 100$

Rozpraszanie maleje jak $\frac{1}{p}$!

Przesunięcie toru:

 $\sqrt{\langle y_{plane}^2 \rangle} \approx \frac{1}{\sqrt{3}} x \theta_0$

Elektrony i pozytony

Straty energii

Cząstka rozpraszająca się w polu jądra (podelgająca przyspieszeniu) może emitować promieniowanie hamowania.

Prawdopodobnieństwo emisji:

 $p \sim \frac{1}{M^2}$

⇒ efekt istotny dla najlżejszych cząstek Straty energii elektronów w funkcji energii:

Wysokoenergetyczne elektrony (pozytony) tracą energię praktycznie wyłącznie na promieniowanie hamowania

Elektrony i pozytony

Straty radiacyjne

Wiązka elektronów o energii E_0 Rozkład energii emitowanego fotonu: przy przejściu przez ośrodek o grubości x:

$$E(x) = E_0 \cdot \exp\left(-\frac{x}{X_0}\right)$$

 X_0 - droga radiacyjna w danym materiale. Przybliżona formuła:

$$X_{0} = \frac{A \cdot 716.4 \frac{g}{cm^{2}}}{Z(Z+1) \ln(287/\sqrt{Z})}$$

Bardzo szybko maleje z Z !
13Al: 8.9 cm, 26Fe: 1.76 cm
29Cu: 1.43 cm, 82Pb: 0.56 cm

Odstępstwo dla bardzo energetycznych elektronów: promieniowanie coraz "twardsze"

0.25

10 TeV

 $\frac{d\sigma}{dE_{\gamma}} = \frac{A}{X_0 N_A E_{\gamma}} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$

Bremsstrahlung

1 PeV 10 Pe

0.5

y = k/E

0.75

1

10 GeV

1 TeV

'100 GeV

1.2

0.8

0.4

 $(X_0 N_{\rm A}/A) y d\sigma_{\rm LPM}/dy$

 $y = \frac{E\gamma}{E\gamma}$

Straty radiacyjne

Energia krytyczna

Energia powyżej której straty radiacyjne przewyższają straty na jonizację ośrodka.

Energia krytyczna E_c maleje szybko z Z (podobnie do X_0)

Powyżej E_c cząstka traci energię prawie wyłącznie na promieniowanie.

Straty radiacyjne

Straty radiacyjne istotne także dla innych cząstek, przy odpowiednio wysokich energiach. Szczególne znaczenie ma to dla mionów (brak oddziaływań silnych)

Dla energii powyżej 100 GeV pomiar pędu mionów w żelaznym jażmie detektora może być zakłucony przez straty radiacyjne...

Straty radiacyjne

Ponieważ emitowane fotony mogą przejąć znaczną część energii mionu, procesy radiacyjne powodują bardzo dużą asymetrię rozkładu strat energii

Promieniowanie Czerenkowa

Jeśli cząstka porusza się w ośrodku z prędkością większą niż prędkość światła ($\beta > \frac{1}{n}$) wzbudzone atomy mogą wypromieniować niewielka część traconej energii w postaci spójnej fali.

Kąt emisji promieniowania:

Widmo promieniowania jest ciągłe.

Liczba emitowanych fotonów na jednostkę energii:

$$\frac{d^2 N_{\gamma}}{dE_{\gamma} dx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c$$
$$\approx 370 \frac{1}{eV \cdot cm} \cdot \sin^2 \theta_c$$

Pomiar kąta rozwarcia stożka pozwala na bezpośredni pomiar prędkości cząstki!