Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład III

- Oddziaływanie fotonów i hadronów
- Detektory gazowe

Fotony

Przekrój czynny na oddziaływanie z ośrodkiem w funkcji energii

W obszarze małych energii dominuje efekt fotoelektryczny ($\sigma_{p.e.}$)

Dla energii rzędu 1 MeV istotny wkład od efektu Comptona ($\sigma_{Compton}$) Dla energii powyżej ~ 10 MeV dominuje kreacja par e^+e^- w polu jąder (κ_{nuc})

Efekt Comptona

W obszarze małych energii straty energii fotonu są znikome - rozpraszanie elastyczne.

Straty energii dominują dla E > 2MeV

Kreacja par

Prawdopodobieństwo, że w wyniku oddziaływania fotonu powstanie para e^+e^-

Powyżej $\sim 1 \; GeV$:

praktycznie wyłącznie kreacja par.

Dla niższych energii wkład produkcji par rośnie ze wzrostem Z

Fotony

Spadek intensywności wiązki

$$I(x) = I_0 \cdot \exp\left(-\frac{x}{\lambda}\right)$$

 λ - średnia droga swobodna

W obszarze dużych energii (dominuje kreacja par):

$$\lambda = \frac{9}{7}X_0$$

Kaskada E-M

Kaskada elektromagnetyczna

Wysokoenergetyczny foton wpadając w materię konwertuje na parę e^+e^-

Elektron w polu jąder emituje kolejne fotony, które znów konwertują...

Powstaje lawina cząstek, która powiela się tak długo jak $E_e > E_c$

Gdy energie elektronów spadną poniżej $E_c \Rightarrow$ starty jonizacyjne kaskada wygasa

Profil podłużny - rozkład Gamma:

$$\frac{dE}{dt} = E_0 \ b \ \frac{(bt)^{a-1} \ e^{-bt}}{\Gamma(a)}$$

pozycja maksimum $[X_0]$

$$t_{max} = \frac{a-1}{b} \approx \ln \frac{E}{E_c} + C_j$$
$$C_{\gamma} = +0.5, C_e = -0.5$$

Droga na oddziaływanie

Prawdopodobieństwo nieelastycznego rozproszenia w funkcji drogi w materiale:

$$p(x) = \frac{1}{\lambda_I} \cdot \exp\left(-\frac{x}{\lambda_I}\right)$$

 λ_I - średnia droga na oddziaływanie w danym materiale.

$\lambda_I~pprox~35~g/cm^2~A^{1/3}$				
	λ_I	X_{0}	λ_I / X_0	
13Al	39.4 cm	8.9 cm	4	
26Fe	16.8 cm	1.76 cm	10	
$_{29}Cu$	15.1 cm	1.43 cm	11	
82 <i>Pb</i>	17.1 cm	0.56 cm	30	

y- Średnia droga na oddziaływanie maleje z Z, ale gi nie tak szybko jak X_0

Kaskada hadronowa

Wysokoenergetyczne hadrony (neutralne i naładowane) oddziałują silnie z nukleonami/jądrami ośrodka.

Produkowane są cząstki wtórne.

Krotność cząstek $N \sim \ln E$

Cząstki wtórne mogą powodować kolejne reakcje ⇒ kaskada

Cząstki tracą także energię na wzbudzenia jąder i jonizację.

Rozpady $\pi^{\circ} \Rightarrow$ składowa E-M kaskady

Deekscytacja jąder - opóźniona emisja cząstek

Hadrony

Kaskada hadronowa

Długość kaskady skaluje się w λ_I

Pozycja maksimum [λ_I]:

Grubość warstwy żelaza potrzebna do "zatrzymania" kaskady (95% lub 99% energii):

również rośnie logarytmicznie z energią

Jonizacja w gazach

Straty energii na jonizację mówią nam o tym ile energii traci przechodząca cząstka.

Rozkład przekazów energii

$$p(\Delta E) \sim \frac{1}{\Delta E}$$

Wybite elektrony mają często energię wystarczającą do wtórnej jonizacji

Średnio całkowita jonizacja w gazie (N_T) jest 2-3 razy większa niż jonizacja pierwotna (N_P) .

Jonizacja cząstki minimalnej jonizacji (MIP) na 1 cm gazu:

	N_P	N_T
Ne	13	50
Ar	25	106
Xe	41	312
CH_4	37	54
CO_2	35	100

A.F.Żarnecki

<u>Budowa</u>

Najprostszy licznik gazowy

np. licznik Geigera-Mülera

- Wpadająca cząstka jonizuje gaz między elektrodami.
- Przyłożone napięcie + swobodne nośniki
- ⇒ mierzymy przepływ prądu (impuls ładunku)

W geometrii cylindrycznej pole elektryczne zależy od odległości od drutu

Przy określonym napięciu pole przy drucie rośnie z malejącą średnicą drutu

Mody pracy

Tryb pracy komory zależy od przyłożonego napięcia.

Wszystkie mody pracy są wykorzystywane w praktyce.

Najczęściej wykorzystywany jest tryb licznika proporcjonalnego, gdyż pozwala na pomiar początkowej jonizacji.

Wzmocnienie gazowe

Elektron dryfujący w polu elektrycznym, jeśli jest ono wystarczająco silne, może między kolejnymi zderzeniami zyskać energię wystarczającą do jonizacji kolejnych atomów.

Pierwszy współczynnik Townsend'a określa ile nowych elektronów powstaje na jednostkę drogi:

$$dn = \alpha \cdot n_{\circ} dx$$
$$\Rightarrow n = n_{\circ} e^{\alpha x}$$

w jednorodnym polu

W pierwszym przybliżeniu otrzymujemy eksponencjalną zależność od napięcia

 $n = n_{\circ} e^{\eta (V-V_{\circ})}$

wzmocnienie gazowe

Wzmocnienie gazowe

Warunki odpowiednie do wzmocnienia gazowego najłatwiej wytworzyć w bezpośrednim sąsiedztwie cienkiego drutu Możliwe jest powielenie ładunku o cznnik $10^4 - 10^5$ W modzie ograniczonej proporcjonalności nawet do 10^{10}

Dobór gazu

Najlepszy wybór powinien zapewnić:

- niskie napięcie pracy
- wysokie wzmocnienie gazowe
- proporcjonalny mod pracy
- krótki czas martwy

Ze względu na wysoką jonizację często używany jest argon (Ar)

Wzbudzone atomy Ar ($\Delta E = 11.6 eV$) emitują fotony, które mogą wybijać elektron z katody.

Może to prowadzić do wyładowania.

W czystym argonie nie można uzyskać wzmocnienia większego niż $10^3 - 10^4$

Aby zwiększyć wzmonienie trzeba dodać inny gaz, który będzie tłumił wyładowania pochłaniając fotony.

Są to cząsteczki wieloatomowe (pochłanianie wzbudza mody rotacyjne): metan, alkohole, BF_3 , CO_2 .

Wystarczy niewielka domieszka.

Typowa mieszanka $90\% Ar + 10\% CH_4$ \Rightarrow wzmocnienie do 10^6 .

Odczyt

W wyniku przejścia cząstki cząstki rejestrowany jest impuls ładnuku.

Jedynie $\sim 1-2\%$ tego impulsu powstaje w momencie gdy elektrony z kaskady otaczającej drut docierają do jekgo powierzchni.

Większość rejestrowanego ładunku indukuje się w wyniku dryfu jonów.

Typowy układ i kształt impulsu:

1-

Komory wielodrutowe

MWPC - Multi Wire Proportional Chamber Wiele równoległych drutów (anod) pomiędzy dwoma płaszczyznami katodowymi.

Działa tak samo jak szereg pojedynczych komór

<u>MWPC</u>

Można rejestrować impulsy z poszczególnych drutów.

Można też rejestrować ładunki indukowane na katodzie.

Możliwy jest podział dwóch płaszczyzn w prostopadłych kierunkach

 \Rightarrow dwuwymiarowy odczyt pozycji.

Podział ładunku pomiędzy sąsiednie paski (strips) ⇒ pozycja wyznaczana metodą środka ciężkości (CoG) może być znacznie dokładniejsza niż szerokość paska.

<u>MWPC</u>

Efektywność komór wielodrutowych spada przy wysokich strumieniach cząstek.

Wiąże się to z małą mobilnością (prędkością dryfu) powstających w wyniku wzmocnienia gazowego jonów.

"Zalegające" w pobliżu drutu jony obniżają pole elektryczne i zmniejszają wzmocnienie gazowe.

Nowe rozwiązania MSGC - Micro Strip Gas Chamber

Druty są słabym punktem MWPC.

Bardzo komplikują produkcję, są delikatne i nie mogą być zbyt blisko siebie ogranicza to dokładność pomiaru.

Można je zastąpić ścieżkami drukowanymi:

Brak drutów \Rightarrow łatwiejszy montaż, stabilność mechaniczna.

Nowe rozwiązania

MSGC - Micro Strip Gas Chamber

Pole elektryczne:

Więcej "drutów" - możliwy wyższy rate:

Micromegas

Wąski obszar, oddzielony siatką, w którym następuje powielanie ładunku.

Płaszczyzna anodowa może być podzielona na dowolnie małe elementy odczytu.

GEM Gas Electron Multiplier

Obszar wysokiego pola elektrycznego można też uzyskać w małych otworach dwustronnie metalizowanego izolatora

Bardzo wysokie wzmocnienie (powielenie ładunku) można uzyskać stosując kilka warstw GEM

RPC Resisitve Plate Chambers

Współczesna wersja "komory iskrowej"

Napięcie między równoległymi płytami jest na tyle duże, że przejście cząstki powoduje wyładowanie.

Warstwa izolatora ogranicza zakres przestrzenny wyładowania.

bakielit ($\rho = 10^{10} - 10^{12}\Omega cm$) lub szkło ($\rho = 10^{12} - 10^{13}\Omega cm$)

Wyładowanie obniża lokalną efektywność rejestracji.

Czas relaksacji rzedu $\mu s - s$ \Rightarrow ograniczenie do $\sim kHz/cm^2$

Dryf ładunków

Prędkość dryfu elektronów w gazie w funkcji natężenia pola:

Prędkość dryfu bardzo zależy do mieszanki gazowej i od przyłożonego napięcia.

Dla niektórych mieszanek prędkość dryfu bardzo słabo zależy od napięcia (w pewnym przedziale wartości) ⇒ korzystny wybór dla układów o niejednorodnym polu

Komora dryfowa

Pomiar czasu dryfu elektronów umożliwia rekonstrukcję pozycji przechodzącej cząstki. Możliwe jest to nawet w przypadku A także w przypadku komór typu MWPC

zwykłych komór

Wersja uproszczona:

Komora dryfowa

Ale najczęściej spotykamy konstrukcje dedykowane do pomiaru czasu dryfu

Konstrukcja pojedynczej komory

0 0 0 0 0 anoda katoda druty kształtujace pole + 1.7 kV - 3.5 kV 0 0 0 0 0 - 1 - 1.5 - 2 - 2,5 - 3 kV Path of charged particle

cząstka

- Electron drift region
 Field shaping wires (-HV)
- Sense wire (+HV)
- Positive ions
- Electrons

Wysoka jednorodność pola.

- Możliwe długości dryfu do kilku cm.
- Pomiar czasu dryfu "wyzwalany" innym detektorem

A.F.Żarnecki

Komora dryfowa

Pojedyncza cela komory dryfowej detektora CDF przy Tevatronie:

Rekonstruowany przypadek

A.F.Żarnecki

Komora dryfowa

Dokładność pomiaru pozycji cząstki jest ograniczona przez dyfuzję ładunku

Dyfuzja w kierunku poprzecznym do kierunku dryfu (σ_T) większa niż wzdłuż kierunku dryfu (σ_L)

Pole magnetyczne wzdłuż kierunku dryfu zmniejsza dyfuzję ładunku Możliwe zmniejszenie dyfuzji nawet o czynnik ~ 10

Komora projekcji czasowej TPC

Idea: komora wielodrutowa z bardzo Typowa konstrukcja długim obszarem dryfu

ALICE TPC (5m długości, 5m średnicy)

Długa droga dryfu

 \Rightarrow duże opóźnienie sygnału (10 – 100 μs)

Komora projekcji czasowej TPC

Przekrój poprzeczny 1/4 komory

Ogromna zaleta: bardzo mało materiału (tylko gaz) - cząstki nie oddziałują

A.F.Żarnecki

Komora projekcji czasowej TPC

TPC zapewnia bardzo dokłądną rekonstrukcję torów także przy wysokiej krotności Możliwy też dokładny pomiar jonizacji (identyfikacja cząstek)

STAR

NA49

Komora projekcji czasowej TPC

- TPC są powszechnie używane w FWE
- Zasada ich działania praktycznie się nie zmieniła

Zmieniają się wciąż metody odczytu - można stosować wszystkie technologie detektorów gazowych: MSGC, Micromegas, GEM...

Istotnym ograniczeniem, podobnie jak w przypadku innych detektorów gazowych są gromadzące się jony dodatnie.

Niezbędne efektywne oddzielenie obszaru aktywnego od obszaru powielania ładunku