Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład VII

- Eksperymenty neutrinowe
- Eksperyment Pierre Auger

Neutrina atmosferyczne

Eksperyment Super-Kamiokande

Japonia, w starej kopalni, 1 km pod górą Kamioka, komora o wysokości 40 m i średnicy 40 m, wypełniona wodą

11'000 fotopowielaczy (50 cm średnicy!) rejestruje przechodzące cząstki

rejestrowane jest

promieniowanie Czerenkowa

emitowane w kierunku ruchu przez cząstki poruszające się z prędkością większą od prędkości światła (w wodzie)

Super-Kamiokande

Super-Kamiokande Milestones

- April 1996: Data-taking begins
- June 1998: Evidence for atmospheric oscillation announced
- Spring 1999: K2K long-baseline experiment begins
- June 2001: Detector shutdown for PMT maintenance
- August 2001: Refilling of detector begins
- November 2001: Implosion disaster; end of SK-I
- December 2002: SK-II phase begins with half PMT coverage and acrylic housings
- Summer 2005: K2K long-baseline experiment ends
- Fall 2005: Restoration of full PMT coverage (SK-III) begins
- 2008?: Start of T2K long-baseline experiment

How Water Cherenkov Works

- Cheap target material
- Surface instrumentation
- Vertex from PMT timing
- Direction from ring edge
- Energy from pulse height, range and opening angle
- Particle ID from hit pattern and delayed muon decay signature
- Cherenkov threshold: $\beta > 1/n \sim 0.75$

CHERENKOV EFFECT $\beta = \mathbf{v}/\mathbf{c}$ n(water) = 1.33 $\cos \theta = 1/\beta n$ $\beta = 1$ $\theta = 42$ degrees νμ

Low Energy Calibrations

High-Energy Calibration

- For high-energy events, the energy scale is calibrated using:
 - Through-going cosmic-ray muons
 - Stopping cosmic-ray muons
 - Electrons from muon decay
 - Reconstructed π⁰ from neutral-current interactions
 - The energy scale for all types of events agrees to within about 2%

Super-Kamiokande

Klasyfikacja przypadków

Przypadki które rozpoznajemy jako oddziaływania neutrin:

FC: Fully Contained

Elektron lub niskoenergetyczny mion wyprodukowany w detektorze zatrzymuje się w nim

PC: Partially Contained

Wysokoenergetyczny mion wyprodukowany w środku ucieka z detektora

Upward

Miony wpadające do detektora od dołu

Data Reduction and Ring Counting

- Fully-contained events are selected by requiring no activity in the outer detector
- Partially-contained and upward-muon events are selected by reconstructing the vertex and direction
- Contained events are required to originate at least 2m from the walls
 - Vertex resolution is about 25 cm
- A maximum likelihood algorithm automatically identifies Cherenkov rings

Super-Kamiokande

Neutrino elektronowe

Przypadek $\nu_e \ n \to e^- p$

Krótki zasięg elektronu - "cienki" pierścień

Neutrino mionowe

Przypadek $\nu_{\mu} \ n \rightarrow \mu^{-} p$

Długa droga w wodzie - "gruby" pierścień.

Particle Identification

- Single-ring events are identified as e-like or µ-like, based on the geometry of the Cherenkov cone
 e-like events shower
 - μ-like events have a sharp ring edge

 Particle ID perfomance can be tested on cosmic-ray muons, muon-decay electrons, π⁰. It has also been verified in a test beam

Solar Neutrino Rate

- SK observes a clear excess of electrons pointing from the direction of the Sun
- Principal solar neutrino backgrounds come from Radon, spallation products, and radioactivity
- Only about 40% of the expected interaction rate is observed:

⁸B flux = $2.35 \pm 0.02 \pm 0.08$ [x10⁶/cm²/s] Data / SSM_{BP2004} = 0.406 ± 0.004 (stat.) +0.014 -0.013 (syst.)

"Direct" Evidence for Oscillation

SuperK I: $p \rightarrow e^+ \pi^0$ Results

✓ Require 2-3 showering rings, 0 μ →e

- π^0 mass cut if 3 rings
- Overall Detection Efficiency: 43%
- No candidates

 $\tau/\beta > 5.7 \times 10^{33}$ yrs (90% CL)

SuperK I: 1489 days = 0.091 Mty

Antarctic Muon And Neutrino Detector Array

(Antarctic Muon And Neutrino Detector Array)

677 modułów na 19 "strunach", 1500–2000 m pod lodem (biegun południowy)

promieniowanie Czerenkowa mierzone przez skierowane do dołu fotopowielacze

Obszar aktywny: ok. 40 mln. ton lodu (!)

Rejestracja mionów o energiach \geq 50 GeV.

South Pole

Look for upwards going Muons from Neutrino Interactions. Cherekov Light propagating through the ice.

 \rightarrow Find neutrino point sources in the universe !

200 TeV v_e candidate

<u>Badania</u>

Duże odległości między licznikami powodują, że detektor czuły jest tylko na neutrina o bardzo wysokiej energii wyprodukowane w ich oddziaływaniach cząstki muszą mięć zasięg porównywalny z rozmiarami detektora.

Poszukiwanie neutrin stowarzyszonych z:

- wybuchami supernowych
- błyskami gamma (GRB)
- gwiazdami neutronowymi

IceCube

"Następca" AMANDY
Sensory mają wypełnić obszar 1 km³ lodu
⇒ 1 gigatonowy detektor

The detector, at the South Pole

Very large scale hybrid observatory

- 1km approximate diameter

<u>lceTop</u>

- Surface Air-Shower detector array
- Approximate threshold: 300 TeV

IceCube:

starting.

- Plan to deploy

- 80 strings with 60 Digital OM's per string

- 125m interstring spacing, 17m DOM spacing

The first DOMs have been frozen into IceTop test tanks.

IceTop-DOM freezing into place, January 2004

Picture by John Kelly / NSF

Proof of principle for IceTop

Muon telescope mounted on top of tank, UTC time stamps

- DOMs collect UTC time-stamped waveforms
- match-up nicely shows a muon peak from DOM data

Digital optical modules (DOMs) are the lceCube building blocks.

In AMANDA, String 18, timing has been checked with muons.

DeltaT neighboring DOMs [ns]

DeltaT = T (DOM N) - T (DOM N+1)

Zoom around [-1,+1] µsec :

- Mean at \sim -24 nsec
- Consistent with expectation for downgoing muons with $v \sim c$

12m

Ν

N+

14

DOMs trigger on, digitize, and time-stamp PMT signals.

Waveforms get buffered while the trigger is formed.

Inlce- and IceTop-triggers form an IceCube trigger.

Design and Status of IceCube

CERN Neutrino Gran Sasso

(CNGS)

CNGS Project

CNGS (CERN Neutrino Gran Sasso)

- → A long base-line neutrino beam facility (732km)
- → send v_{μ} beam produced at CERN
- detect v_{τ} appearance in OPERA experiment at Gran Sasso

 $\Rightarrow \operatorname{direct proof of } v_{\mu} - v_{\tau} \operatorname{oscillation} (appearance experiment) _{47}$

For 1 day of CNGS operation, we expect:

protons on target	2 x 10 ¹⁷	
pions / kaons at entrance to decay tunnel	3 x 10 ¹⁷	
ν_{μ} in direction of Gran Sasso	10 ¹⁷	
v_{μ} in 100 m ² at Gran Sasso	3 x 10 ¹²	

$$ν_{μ}$$
 events per day in OPERA ≈ 25 per day
 $ν_{τ}$ events (from oscillation) ≈ 2 per year

(Bern, Brussels, Dubna, Neuchâtel, Orsay, Strasbourg)

M. Dracos

Photomultipliers

H8804MOD-1 (OPERA)

- Hamamatsu multianode photomultipliers
- 8x8 cannels
- Quantity: 1040
- Suitable for OPERA dimensions

M. Dracos

Detector installation

VCI2007

X (cm)

"rock" muon

Y (cm)

X (cm)

neutrino interaction

in magnet slaps

VCI2007

Y (cm)

400 300 200 100 -100 -200 -300

-400

400 300 200

° -100

-300

-500

400 300 200

100 0 -100 -200 -300

-400

-100 -200 -300 -400 -500 -800

-800

-80

-400

-400

-400

-400

600

600

Automatic high-speed microscopes (~ 40 in the collaboration)

LHEP Bern: Swiss Scanning Station with 5 microscopes. ~10 physicist from Bern and ETHZ involved. Largest european laboratory

Goal: analyze ~ 20% of the total OPERA brick statistics (up to1000 brick/year).

A. Ereditato - RECFA CH - 6 March. 09

From trigger to vertex finding: from meters to microns

~ 1.5 m

3D-track segments found in 8 consecutive films

Passing-through and low momentum tracks rejection

OPERA recent history

May 2006: electronic detector commissioning Aug 2006: technical run, 0.76x10¹⁸ pot collected 319 interactions in the rock, mechanical structure and iron of the spectrometer Oct 2006: start of brick production Oct 2007: pilot physics run (~40% target) 0.82x10¹⁸ pot first 38 neutrino events in the lead/emulsion target

Jun 2008: OPERA detector filled with brick and fully commissioned Jun 2008: Start first OPERA production run Nov 2008: 18x10¹⁸ pot and ~1700 neutrino events in the target: 54 charm events, ...0.6 τ

2009 run: 35x10¹⁸ pot expected. Secure "some" tau candidates ?

A charm decay candidate

Clear kink topology Two EM showers pointing to the vertex

Flight length	3247.2 µm
θ _{kink}	0.204 rad
P _{daughter}	3.9 (+1.7 -0.9) GeV
P _T	796 MeV

 $4x10^{-4}$ probability for a hadron re-interaction to have a $P_T > 600$ MeV

Pierre Auger Cosmic Ray Observatory

Obserwatorium Pierre Auger

Badanie promieni kosmicznych w zakresie najwyższych obserwowanych energii, E > 10 EeV (>10¹⁹ eV):

skład lekkie czy ciężkie jądra, fotony, neutrina, ?? widmo energii kształt widma w zakresie efektu GZK rozkład kierunkowy anizotropia, źródła punktowe

 \rightarrow wyjaśnienie ich pochodzenia ???

- obserwacja całego nieba detektory w Argentynie i w USA
- 2 * 3000 km² \rightarrow duża statystyka danych
- hybrydowa detekcja wielkich pęków: dwa układy detektorów

Wielki pęk atmosferyczny

Pierre Auger Cosmic Ray Observatory

Use earth's atmosphere as a calorimeter. 1600 water Cherenkov detectors with 1.5km distance.

Placed in the Pampa Amarilla in western Argentina.

Detektor naziemny

Obserwatorium Pierre Auger

Detektor Fluorescencyjny

Detektory fluorescencyjne

20 May 2007 E ~ 10¹⁹ eV

Event 1234800

See CR incoming direction | See individual station data

37 EeV = Exa Electron Volt = 37 x 10^{18} eV

Generic Information	
Id	1234800
Date	Sat Mar 5 15:54:48 2005
Nb Station	14
Energy	37.4 ± 1.2 <u>EeV</u>
<u>Theta</u>	43.4 ± 0.1 deg
<u>Phi</u>	-27.3 ± 0.2 deg
Curvature	15.8 ± 0.8 km
Core Easting	460206 ± 20 m
Core Northing	6089924 ± 11 m
Reduced Chi ²	2.30

Event 1234800

See event reconstruction data | See CR incoming direction

Signal in $\underline{\text{VEM}}$ for the 3 $\underline{\text{PMT}}\text{s}$ of station 159 (Marion) as a function of time

Signal in $\underline{\text{VEM}}$ for the 3 $\underline{\text{PMT}}\text{s}$ of station 160 (DAD) as a function of time

SNO (Sudbury Neutrino Observatory)

Water detector with a difference:

- 2 km underground
- 1000 tonnes D₂O
- ➢ 10⁴ 8" PMTs
- ≻ 6500 tons H₂O

SNO under construction

Neutrino reactions in heavy water (SNO)

Neutral Current Reaction:

1-2 or 6-8 events per day (different detection mechanisms) Total solar ⁸B active neutrino flux

 $E_{thresh} = 0 \text{ MeV}$

 $V_x + d \rightarrow V_x + p + n$

 $V + e \rightarrow V + e^{-1}$

Elastic Scattering Reaction:

1-2.5 events per day

Directional sensitivity (very forward peaked) V_{e}

Completing the oscillation picture at small dm^2 (solar)

Solar Neutrino Program

Results from SNO NCD Phase & Super-K

KamLAND detector

external container
filled with 3.2 ktons of water

- inner spherical container filled with 2 ktons of mineral oil
- inside a transparent baloon
 filled with 1 kt of liquid
 scintillator
- 2100 photomultipliers to measure scintillation light
- Iocated in Kamioka mine at depth of 1 km

ources, DK&ER,

Detection of reactor antineutrinos

reaction process : inverse- β decay $(\overline{v}_e + p \longrightarrow e^+ + n)$ + $p \longrightarrow d + \gamma$

distinctive two-step signature

$$E_{th} = \frac{(M_n + m_e)^2 - M_p^2}{2M_p} = 1.806 \, MeV$$

• prompt part : e⁺

 \overline{v}_{e} energy measurement $E_{v} \sim (E_{e} + \Delta)[1 + \frac{E_{e}}{M_{p}}] + \frac{\Delta^{2} - m_{e}^{2}}{M_{p}}$ $\Delta = M_{n} - M_{p}$

- o delayed part : γ (2.2 MeV)
- tagging : correlation of time, position and energy between prompt and delayed signal

KamLAND results

$$\overline{v_e} + p \rightarrow e^+ + n$$

"Prompt energy" is equal to positron energy, which gives the antineutrino energy (when corrected for mass differences).

Very good signal separation from background.

Fit to scaled no-oscillation spectrum excluded at 5.1 σ
Kamland - oscillation signature

