Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład IX

• Eksperymenty akceleratorowe

D* (excited D-meson, carrying the "charm" quantum number): production and decay during a wide band exposure in experiment WA21, in the BEBC liquid hydrogen bubble chamber.

Pojedyncze detektory pozwalają bardzo precyzyjnie zmierzyć:

- pozycję cząstki (detektory krzemowe, detektory śladowe)
- tor cząstki (detektory śladowe)
 => w polu magnetycznym: pęd cząstki
- prędkość cząstki (TOF, detektory Czerenkowa)
- energię cząstki (kalorymetry)
- typ cząstki (TRD, na podstawie oddziaływania w materii)

Na tej podstawie jesteśmy często w stanie zidentyfikować cząstkę ale naogół tylko w ograniczonym zakresie kinematycznym

Let's find some tools ...

and put everything together !

How do you design a detector?

It starts with the Physics

- What is the physics measurement that is driving the experiment?
- What are the final states how will you measure them? Examples include
 - Pizero ID (separation of two photons?)
 - J/Psi good tracking
 - Light quarks good calorimeter
 - b and c quarks (tagging)
- What level of precision are you after?
 - Precision has a cost; dollars, complexity, and readout speed

It continues with the Physics

- Can you trigger on the physics process of interest?
 - Separate the unique signature of the physics of interest from the literally billions of collisions that go on each day
- What is the rate?
 - Drives both the trigger and data acquisition system
 - Do you need to worry about "dead-time"?
 - How will you calibrate your detector?
 - How will you measure the various detector efficiencies

Global Detector Systems

Overall Design Depends on:

- -Number of particles
- -Event topology
- -Momentum/energy
- -Particle identity

Limited solid angle (dΩ) coverage (forward)
Easy access (cables, maintenance)

No single detector does it all...

Collider Geometry

• "full" solid angle $d\Omega$ coverage

Very restricted access

Ideal Detectors

An "ideal" particle detector would provide...

- Coverage of full solid angle, no cracks, fine segmentation
- Measurement of momentum and energy
- Detection, tracking, and identification of all particles (mass, charge)
- •Fast response: no dead time

However, practical limitations: Technology, Space, Budget, and engineering prevent perfection...

We can't build a perfect detector

- A perfect detector has no "holes"
 - Reality is that in order to read the detector, we need to get the signals out. This is done with cables. Cable paths force us to have "seams" in the detector where we don't know what is happening
- A perfect detector is identical in every direction with respect to the collision point
 - We need to support these detectors which means that the material is not isotropic.
- A perfect detector is 100% efficient

Detector Design Constraints

- What is the current technology and where do we expect technology to be when the experiment is ready to take data
 - Most experiments these days take a long time. The time between "the expression of interest" to "ready for collisions" is measured in years
 - All of the technology required for the experiment to work does not have to be "ready" (commercial) at the proposal stage
 - Typically time for R&D
 - Moore's law for computing is often relied upon

Detector Design Constraints

Total construction cost

- How much \$\$\$ do you have to work with
- How many physicists are available to participate in construction (how big is your collaboration?)
- When do you want to be ready for collisions?
- How "hard" will you be pushing current technology -
 - how much financial and schedule contingency is required? (more below)
- An honest assessment of how well the collaborations skills and interests align to the work that lies ahead
- Amount of time it takes to read the detector out after a collision – or reversed, how quickly do you need to read out the detector
 - Sets the drift time tracking chambers,
 - Integration time in calorimeters
 - Digitization time
 - Logging Time

Detector Design Constraints

- Size of the collision hall and specific characteristics of the building
 - Floor space
 - Weight?
 - How far underground?
 - Crane coverage?
 - Accessability of detector components
 - Gasses, cryogens, flammability, explodability, and ODH issues
 - Available AC power
 - Cooling

RISK!

- Is the level tolerable
 - Can't push the envelope of technology for every detector
 - Will guarantee a blown schedule and cost over runs
 - Need to use new technologies judiciously
 - New Technology should not be used as a "carrot" to draw in collaborators that might otherwise pass.

The Bottom Line!

- There is no single "correct" answer to the above constraints
 - Every experiment finds its own "way"
- Detector designers perform a difficult and almost impossible optimization task

Detectors are an amazing blend of science, engineering, management and human sociology

Individual Detector Types

Modern detectors consist of many different pieces of equipment to measure different aspects of an event.

Measuring a particle's properties:

Modern Collider Detectors

• the basic idea is to measure charged particles, photons, jets, missing energy accurately

want as little material in the middle to avoid multiple scattering

• cylinder wins out over sphere for obvious reasons!

ZEUS (HERA) 🛞

Software (SDRC-IDEAS level VI i Performed by Casten Hatticana Status : October 1993

Compact Muon Solenoid

SiD Projekt detektora dla eksperymentu przy ILC

Koncepcja detektora opartego w całości o detektory półprzewodnikowe (krzemowe)

Lepton Identification

- **Electrons:** compact electromagnetic cluster in calorimeter Matched to track **Muons**: Track in the muon chambers Matched to track Taus: Narrow jet Matched to one or three tracking chamber tracks **Neutrinos:** Imbalance in transverse momentum
 - Inferred from total transverse energy measured in detector

Particle Identification Methods

Constituent	Si Vertex	Track	PID	Ecal	Hcal	Muon
electron	primary	Ĵ	Ĵ	ĵ	_	_
Photon γ	primary	_	—	j	—	—
u, d, gluon	primary		—	j	Î	—
Neutrino v			—	—	_	—
S	primary		Î	Ĵ		—
c, b, τ	secondary		1	j	1	—
μ	primary	Í	_	MIP	MIP	
PID = Particle ID (TOF, Č, dE/dx)			MIP = Minimum Ionizing Particle			

Higgs at the LHC: the challenge

D. Froidevaux, CERN, 11/06/2007

Generic features required of ATLAS and CMS

- Detectors must survive for 10 years or so of operation
 - Radiation damage to materials and electronics components
 - Problem pervades whole experimental area (neutrons): NEW!
- <u>Detectors must provide precise timing and be as fast as</u> <u>feasible</u>
 - 25 ns is the time interval to consider: NEW!
- Detectors must have excellent spatial granularity
 - Need to minimise pile-up effects: NEW!
- <u>Detectors must identify extremely rare events, mostly in</u> real time
 - Lepton identification above huge QCD backgrounds (e.g. /jet ratio at the LHC is ~ 10⁻⁵, i.e. ~ 100 worse than at Tevatron)
 - Signal Y-continue as low as 10-14 of total Y-continue NEW/

Physics at the LHC: the environment

CDF's 1st Top Event... (run 1)

CDF Top Pair Event

Vertex Resolution

for good resolution on angles (ϕ and θ) and intercepts (d, z_0)

- Precision track point measurements
- Maximize separation between planes for good resolution on intercepts
- Minimize extrapolation first point close to interaction

Co jeszcze wpływa na precyzję pomiaru?

W oddziaływaniu pomiędzy wiązkami powstają pary e^+e^- o małych pędach poprzecznych, z których część zostawia ślady (ang. "hit") w detektorze wierzchołka utrudniając rekonstrukcję innych torów. W pięciowarstwowym detektorze oczekuje się około 60 000 dodatkowych "hitów".

Gęstość śladów w pierwszej warstwie [1/mm²/BX]

Pary e⁺e⁻ symulowane za pomocą Guinea Pig. Gęstości liczone dla różnych wartości promienia pierwszej warstwy.

Detektory dla akceleratora liniowego ILC (International Linear Collider)

Jet flavour tagging performance

Spatial resolution 4 μ m, layer thickness 0.1% X_0 . R₁ = 26 mm - only 4 layers.

Measurement of the Higgs Boson Branching Ratios

 $H \to b\overline{b}$

 $H \to c \overline{c}$

Layer thickness 0.1% X_0 , radius of the first layer 15 mm.
Maintain 2 alternative long-barrel approaches :

Two read-out modes considered :

☆ continuous read-out

read-out delayed after bunch-train → 3 double layers expected to help
 \Rightarrow mini-vectors

Vertex Detector

Electrons and photons in ATLAS/CMS

Electrons and photons in ATLAS/CMS <u>ATLAS LAr EM Calorimeter description</u>

EM Calo (Presampler + 3 layers):

- **Presampler** $0.025 \times 0.1 (\eta \times \phi)$ \Rightarrow Energy lost in upstream material
- Strips 0.003x0.1 (ηxφ)
 ⇒ optimal separation of showers in non-bending plane, pointing
- Middle $0.025 \times 0.025 (\eta \times \phi)$ \Rightarrow Cluster seeds
- Back $0.05 \times 0.025 (\eta x \phi)$ \Rightarrow Longitudinal leakage

- •LAr-Pb sampling calorimeter (barrel)
 •Accordion shaped electrodes
- •Fine longitudinal and transverse segmentation
- •EM showers (for e[±] and photons) are reconstructed using calorimeter cell-clustering

34

Electrons and photons in ATLAS/CMS

ATLAS EM Calorimeter energy reconstruction

Two main clusterization methods:

- Fixed size sliding window:
 - •3×3, 3×7... cells, 2^{nd} sampling $\eta \times \phi$;
 - •Some energy left out, especially for small sizes.

• Topological clusters:

- •Variable size cluster, minimize noise impact;
- •Additional splitting algorithm is also provided.

- 1. Before PS
- 2. Between PS & Calo
- 3. Outside cluster: depends on clustering method
- 4. After calorimeter: ~ Energy in BACK

SM $H \rightarrow \gamma \gamma$

SM H $\rightarrow \gamma \gamma$ <u>Backgrounds</u>

- 1) Irreducible background from $qq \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$ (box)
- 2) Reducible background from π^0 , η ($\rightarrow \gamma\gamma$) in jet fragmentation:
 - final states with many photons → look for single photons
 - non-isolated photons inside jets → look for isolated photons
 - Very difficult problem: at $p_T \approx 50$ GeV, jet-jet / $\gamma\gamma \approx 10^7$ \rightarrow need to reject each jet by a factor 10,000 to bring the reducible background well below the irreducible one
 - However, at $p_T \approx 50$ GeV, π^0 /jet $\approx 10^{-3}$
 - \rightarrow separate isolated photons from π^0 decays at 50 GeV
 - → photons from π^0 decays will be distant by \approx 1 cm

D. Froidevaux SRN need aranular position detector Summer School, CARNS 1/X/2007 to 14/08/2007

SM $H \rightarrow \gamma \gamma$

Rejection of QCD jet background

Most rejection from longitudinal calo segmentation and 4 mm η -strips in first compartment (γ / π^0 separation)

SM $H \rightarrow \gamma \gamma$

Angular resolution and acceptance

- \rightarrow vertex measured using secondary tracks from underlying event
- \rightarrow often pick up the wrong vertex
- → smaller acceptance in the Higgs mass window D. Froidevaux, CERN

Can lessons be learned from Tevatron?

Can lessons be learned from Tevatron?

Can lessons be learned from Tevatron? Material: X-raying the detector

- Conversions can indicate location of material in detector
 Normalized to inner
 - cylinder of tracking chamber
 - Overall normalization difficult
 - Acceptance and efficiency depend on r
- Useful to find missing (or misplaced!) pieces

Electrons and photons in ATLAS/CMS

ATLAS and CMS will know the amount of material in their Inner Detector sub-systems very well (15 years of simulation work and preparation). But there is a lot more material than in Tevatron/LEP detectors (0.4 to 1.5 X₀ compared to 0.1-0.2 X₀)!!

Example: weight of an ATLAS pixel stave (2005)

	Simulation (2003)	Measurement
13 Modules	25.48 g	25.74 g
TMT+omega+Tube (no liquid)	32.35 g	37.95 g +glue
Cooling liquid	~ 4.2 g	10.9 g (estimate)
Pigtails+connectors+ cables	6.39 g	7.8+13.2=21.0 g

ATLAS/CMS: from design to reality Amount of material in ATLAS and CMS inner tracker

 Active sensors and mechanics account each only for ~ 10% of material budget

 Need to bring 70 kW power into tracker and to remove similar amount of heat

• Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs

Electrons and photons in ATLAS/CMS

Radiography $|\eta| < 2.5$ ATLAS tracker

ATLAS/CMS: from design to reality

Actual performance expected in real detector quite different!!

Momentum measurement.

Error in momentum measurement

O. Ullaland/2006

Magnets for 4π DetectorsSolenoidToroid

- + Large homogeneous field inside
- Weak opposite field in return yoke
- Size limited by cost
- Relatively large material budget

Examples: •Delphi: SC, 1.2 T, 5.2 m, L 7.4 m •CDF: SC, 1.4T, 2 m, L 6m •CMS: SC, 4 T, 5.9 m, L 12.5 m

- + Field always perpendicular to p
- + Rel. large fields over large volume
- + Rel. low material budget
- Non-uniform field
- Complex structural design

Example: •ATLAS: Barrel air toroid, SC, ~1 T, 9.4 m, L 24.3 m

Charge and Momentum Two ATLAS toroid coils

Superconducting CMS Solenoid Design

CMS muon spectrometer

- Superior combined momentum resolution in central region
- Limited stand-alone resolution and trigger (at very high luminosities) due to multiple scattering in iron
- Degraded overall resolution in the forward regions ($|\eta|$ > 2.0) where solenoid bending power becomes insufficient

7

ATLAS muon spectrometer

- Excellent stand-alone capabilities and coverage in open geometry
- Complicated geometry and field configuration (large fluctuations in acceptance and performance over full potential $\eta \ x \phi$ coverage ($|\eta| < 2.7$)

D. Froidevaux, CERN

8

Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

9

Barrel: $\approx 5 \times$ higher bending power in CMS, but $\approx 14 \times$ larger multiple scattering.

- $\rightarrow \approx 3 \times$ worse p_t resolution in CMS.
- Endcap: similar bending powers, $\approx 10 \times$ large multiple scattering.
 - $ightarrow \lesssim 5 imes$ worse p_t resolution in CMS.

Spectrometer Overview

Pellet or cluster jet target

Solenoid magnet for high p, tracks: Superconducting coil & iron return yoke Dipole magnet for forward tracks

Spectrometer Overview

L. Schmitt, VCI '07

Silicon Micro Vertex Detector

Layout of MVD

- General structure:
 - 4 Barrels & 6 disks
 - Inner layers pixels
 - Outer layers strips (forward mixed)
- Pixel part:
 - Hybrid pixels 100 x100 μm²
 - 140 modules
 - 13 M channels
 - 🖲 0.15 m²
- Strip part:
 - Double sided silicon
 - 400 modules
 - 70k channels
 - 0.5 m²

panda

Tracking in PANDA

Central Tracker - TPC Option

General layout: GEM-TPC

- 2 half cylinders
- Drift field E || B
- Gas: Ne/CO₂ (+CH₄/CF₄)
- Multi-GEM stack for amplification and ion backflow suppression
- 100 k pads of 2 x 2 mm²
- 50-70 µs drift, 500 events overlap
 Simulations:
 - δ*p/p* ~ 1%
 - dE/dx resolution ~ 6%

Challenges:

- space charge build-up
- continuous sampling

Tracking in PANDA

Spectrometer Overview

DIRC Concept

Particle Identification

PANDA Endcap DIAC

Particle Identification

L. Schmitt, VCI '07

CERN Academic Training 97/98 Particle Detectors

Christian Joram

V/29

PANDA Spectrometer

Spectrometer Overview

- <u>Two-jet mass resolution</u> comparable to the natural widths of W and Z for an unambiguous identification of the final states.
- Excellent <u>flavor-tagging</u> efficiency and purity (for both b- and cquarks, and hopefully also for s-quarks).
- Momentum resolution capable of reconstructing the <u>recoil-mass</u> to di-muons in Higgs-strahlung with resolution better than beamenergy spread.
- Hermeticity (both crack-less and coverage to very forward angles) to precisely determine the <u>missing momentum</u>.
- <u>Timing</u> resolution capable of separating bunch-crossings to suppress overlapping of events .

Energy flow in jets

- Some processes where WW and ZZ need to be separated without beam constraints (e.g. $e^+e^- \rightarrow \nu\nu WW$, $\nu\nu ZZ$)
- This requires a resolution of about $\Delta E/E = 30\%/\sqrt{E}$
 - WW-ZZ separation for $\Delta E/E = 60\%/\sqrt{E}$ and $\Delta E/E = 30\%/\sqrt{E}$

Jet Reconstruction @ ILC

- Q. How to achieve the best attainable jet energy resolution?

- A. Since the momentum resolution for the charged particle measured by trackers is much better than the energy resolution of calorimeters, the best energy resolution is obtained by reconstructing momenta of individual particles avoiding double counting among Trackers and Calorimeters.
 - Charged particles (~60%) measured by Tracker.
 - Photons (~30%) by electromagnetic CAL (ECAL).
 - Neutral hadrons (~10%) by ECAL + hadron CAL (HCAL).

 $E_{TOT} = p_e + p_{\mu} + p_{charged hadron} + E_{\gamma} + E_{neutral hadron}$ [tracks only] [calorimeter only]

Particle Flow Algorithm (PFA)

Particle Flow: Basics

Effect of changing the resolutions by a scale factor

5

1. tracking (Silicon and TPC)

- 1. tracking (Silicon and TPC)
- 2. find photon candidates

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons
- 5. clustering (ECAL and HCAL)
 - variable, depending on track and photon candidates
 - → different algorithms

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons
- 5. clustering (ECAL and HCAL)
 - variable, depending on track and photon candidates
 - → different algorithms
- 6. particle ID for $e^{+/-}$, $h^{+/-}$

Main problem: Confusion

- At high energy jets are very narrow
- ➡ Tracks are very close at the calorimeter
 - Need very fine granularity of calorimeter and sophisticated software to separate showers
 - Energy resolution still dominated by confusion term

Particle Flow Algorithm

 In order to get good energy resolution by PFA, separation of particles is important. → Reduce the density of charged and neutral particles at calorimeter surface.

- For transverse separation of particles at the ECAL surface, stronger B-field and/or large ECAL radius are preferable.
 - * Fine segmentation of CAL is also important for pattern recognition.

Radius vs. B-field

SiD (the Silicon Detector)

CALORIMETRY IS THE STARTING POINT IN THE SID DESIGN

assumptions

- Particle Flow Calorimetry will result in the best possible performance
- Silicon/tungsten is the best approach for the EM calorimeter
- Silicon tracking delivers excellent resolution in smaller volume
- Large B field desirable to contain electron-positron pairs in beamline
- Cost is constrained

SiD Configuration

Scale of EMCal & Vertex Detector

Jim Brau, Bangalore - LCWS 2006, March 11, 2006

6 Detector Optimisation Studies

★ Lots of progress....no time

Cost vs. tracker radius

SiD "Baseline"

- Rtrkr = 1.25 m
- B = 5 T
- HCalA = 4.5
- △E/E(180 Gev) = 0.0378

SiD "Baseline" is optimal for this value of $\Delta E/E(180 \text{ Gev})$ (Pandora parameterization,

Checked with Pandora version of SiD, SiD PFA) 16 November 2008 M. Breidenbach LCW 508

A sequence of "Optimized SiD's"

Selected Physics Process Errors vs Cost

