Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład XI

• Systemy wyzwalania i zbierania danych

Level-1 Trigger: decision loop

ATLAS and CMS Strategy

Level-1 : only calorimeters & muons

ATLAS LVL1 Trigger

5/25

4 technologies of muon system

	Function	Coverage	No. of chambers	No. of channels
TGC Thin Gap Chamber	Triggering 2nd coordinate	1.05< η <2.7 (<2.4 for triggering)	3588	318000
RPC Resistive Plate Chamber	Triggering 2nd coordinate	η <1.05	606	373000
MDT Monitored Drift Tube	Precision tracking (η)	η <2.7 (innermost layer : η < 2.0)	1150	354000
CSC Cathode Strip Chamber	Precision tracking (η and φ)	2.0< η <2.7	32	31000

TGC (Thin Gap Chamber)

6/25

7/25 ATLAS (A <u>Toroidal</u> LHC Apparatus) muon system

Level1 Endcap Muon Trigger System

CMS Muon Chambers

THE UNIVERS

WISCONSIN

RPC - Resistive Plate Chambers

Gaseous, fast detectors, optimized for muons measurements

- Gas gap thickness: 2 mm
- Readout Strips: **pitch: 0.5 – 4 cm**, **length: 20 -130 cm**
- High Voltage $\sim 9.5 \text{ kV}$
- Gas mixture: 96.2% C₂H₂F₄, 3.5% isoC₄H₁₀, 0.3% SF₆
- Time resolution $\sim 1 \text{ ns}$
- Efficiency > 95% @ 1kHz/cm²
- Chamber noise < 5 Hz/cm²

 ~ 2000 pieces of electronic boards

Most boards controlled by computers Kilometers of cables (electrical and optical)

PAC Tryger – zasada działania (I

 $p_t = 3.5, 4.0, 4.5, 6.0$ GeV

Tor mionu w detektorze CMS

W obszarze wewnętrznym cewki panuje pole magnetyczne o indukcji 4 Tesle, powodujące zakrzywienie torów cząstek naładowanych. W obszarze zewnętrznym pole o wartości 1.8 Tesli jest skierowane przeciwnie powodując gięcie torów w przeciwną stronę.

Promień krzywizny toru mionu zależny jest od jego pędu.

Znaczny rozrzut torów o takim samym pędzie spowodowany jest przez proces rozpraszania wielokrotnego oraz fluktuacje strat energii. Miony o niskich pędach zatrzymywane są w żelazie.

PAC Tryger – zasada działania (II

Mion przechodząc przez komory RPC znajdujące się w stacjach mionowych powoduje zapalenie pasków (stripów) komory.

PACT – znajduje koincydencje zapalonych pasków w różnych płaszczyznach. Układ przestrzenny zapaleń porównywany jest ze wzorcem umożliwiając określenie pędu mionu.

Pożądane cechy trygera:

Czystość:

np. wymaganie zapaleń pasków we wszystkich możliwych płaszczyznach

Maksymalna efektywność

akceptacja przypadków z brakiem zapalonych pasków; niskoenergetyczne "nietypowe" miony często rozpoznawane jako wysokoenergetyczne.

Opracowano różne algorytmy dla trygera PAC (baseline, memory improved) oraz różne wzorce. Ich użycie uwarunkowane wymaganiami doświadczalnymi i parametrami komór.

CMS Muon Trigger Track Finders

threshold

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Comparators give 1/2-strip resol

Sort based on P_T, Quality - keep loc.

Combine at next level - match

Sort again - Isolate?

Top 4 highest P_T and quality muons with

Hit strips of 6 layers form a vector. location coord.

Match with RPC Improve efficiency and quality

Wesley Smith, U. Wisconsin, August 12-13, 2008

Wesley Smith, U. Wisconsin, August 12-13, 2008

Projective Geometry

Projective geometry is important

- ZEUS: Used complicated cable mapping and pattern searches to reduce fake rate
- ATLAS, CMS: Calorimeters are built projective
- Mapping with muon system: Important for isolation

LvI-1 Calo Trigger: e/γ algorithm (CMS)

• Redefine jet as τ jet if none of the nine 4x4 region $\tau\text{-veto}$ bits are on Output

• Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

Missing / Total E_T Algorithm

ATLAS Calorimeter Algorithms I

Electron/photon trigger

4 x 4 window 0.1 x 0.1 elements step by 1 element IEtal<2.5

Isolation:

Hadron/tau trigger

4 x 4 window 0.1 x 0.1 elements step by 1 element IEtal<2.5

Isolation:

ATLAS Calorimeter Algorithms II

Jet trigger

Et-miss / sum-Et

Jets

 Jets: very useful (compositeness, extra dimensions, SUSY decays) but also very abundant

- Background to jets is jets; and QCD makes lots of them
- Main issue is instrumental: don't split jets, don't overcount
 - Overlapping windows: efficient, but need additional "declustering" logic to remove multiple counts

Non-Overlapping

2 mid- E_T objects

ATLAS: use ROI clusters, defined as maximum found in sliding window by half the jet window width

Overlapping

1 high- E_{T} object

Trigger Flow : ATLAS Example

ATLAS Trigger Central Processor

CMS Calorimeter Trigger Rates: 2 x 10³³ cm⁻² s⁻¹

	Trigger	Threshold	95% Eff.	Individual	Cumulative
		(GeV)	(GeV)	Rate (kHz)	Rate (kHz)
	e	20	27	4.9	4.9
	ee	15	19	0.2	<mark>5.0</mark>
	τ	89	~114	3.8	8.6
Mock	ττ	75	~100	0.7	<mark>8.8</mark>
	j	130	152	1.5	9.5
Tuissan	jj	115	131	0.8	9.5
Ingger	jjj	75	77	0.3	9.6
	jjjj	55	62	0.2	<mark>9.6</mark>
Table	e·j	10&100	15&125	0.4	9.8
	e·τ	10&75	15&~100	0.8	10.0
	Missing E _T	140	200	0.01	10.0
	e·ME _T	10&75	15&140	0.4	10.3
	j·ME _T	60&90	80&150	0.7	10.6
	Total E _T	600	1200	0.04	10.6
	H _T	400	470	0.6	10.7
	e(NI)	45	51	0.2	10.8
	ee(NI)	25	37	0.03	10.8
	Total Rate				<mark>10.8</mark>

Selected Scenario: 5 kHz e/g, 5 kHz τ , jets, 1 kHz combined, rest μ

CMS Calorimeter Physics Efficiency: 2 x 10³³ cm⁻² s⁻¹

	Channel	Total	Trigger Efficiencies by trigger type				
		Efficiency	(individual) cumulative				1
	W→ev	70	e				
Scenario:		0.1	(70)70				
	t→eX	91	e	e·τ	τ	JJJ	e·j
5 kHz e/v	77	0.4	(82) 82	(62) 86	(55) 89	(24) 90	(54) 91
o mile 0, ,,	∠→ee	94	e (02) 02	ee			
5 kHz τ iets	II (115)	00	(93) 93	(76) 94			
J KIIZ t, jets,	Н(115)→үү	99	e (00) 00	ee			
1 kUz comb	$\mathbf{U}(150) \rightarrow \mathbf{W}\mathbf{W}$	07	(99) 99	(82) 99			
I KHZ COIIID,	$H(150) \rightarrow W W$	87	e (79) 79	$e \cdot \tau$	τ (24) 92	$e \cdot \mathbf{j}$	
	$\rightarrow eVA$	0.4	(78) 78	(43) 81	(34) 83	(39) 83	(28) 87
rest μ	$H(135) \rightarrow t \tau \rightarrow e j$	84	e (70) 70	$e \cdot \tau$	$e \cdot \mathbf{j}$	τ	$\int (24) 84$
		0.0	(70) 70	(40) /9	(40) 82	(38) 84	(34) 84
	Charged higgs	98	T (95) 95	$\int (77) 06$	$j \cdot m E_T$		
	(200 GeV)	0.1	(85) 85	(77) 90	(00) 98		
No generator	H(200)→tt→JJ	61	t (75) 75	$\tau\tau$ (50) 70	(24) 81	JJ	
level cuts other	$H(500) \rightarrow \tau \tau \rightarrow ii$	00	(73)73	(30) 79	(24) 01	(9) 01	
	$\Pi(300) \rightarrow \iota \iota \rightarrow JJ$		(94) 94	(64) 94	J (94) 99	JJ (73) 99	
than requiring	t→iets	53	H	1111	iii	11	i
trigger objects	1 / 1013	55	(39) 39	(26) 43	(26) 46	(21) 47	(35) 53
within calo	mSUGRA	99	i	× ,			
within calo.			(99) 99				
$(\eta < 5)$ or	$H(120) \rightarrow bb$	41	jjj	j	τ	jj	
tracker (e.v.τ)			(12) 12	(27) 30	(26) 41	(16) 41	
	Invisible higgs	44	j∙mE _T	j	τ		
acceptance	(120 GeV)		(39) 39	(22) 41	(13) 44		

IEEE NSS & MIC, Norfolk, Virginia, November 2002

Evolution of Level-1 Triggers

Technology evolution

Online Selection Flow in pp (II)

Detector Readout: front-end types

High-Level Triggers and DAQ at LHC

- In the LHC experiments, data are ٠ transferred to large buffer memories after a LVL1 accept
 - In normal operation, the subsequent stages should not introduce further dead-time
- The data rates at the HLT/DAQ input ٠ are still massive
 - ~1 MByte event size (after data _ compression) @ ~100 kHz event rate \Rightarrow ~ 100 GByte/s data rate (i.e $\sim 800 \text{ Gbit/s}$)
- This is far beyond the capacity of the • bus-based event building of, e.g., LEP
 - Use network-based event building to _ avoid bandwidth bottlenecks

CMS LVL1 Trigger TDR

Data are stored in Readout Systems until they have been transferred to the Filter Systems (associated with HLT processing), or until the event is rejected

No node in the system sees the full data rate — each Readout System covers only a part of the detector — each Filter System deals with only a fraction of the events

Nick Ellis, Seminar, DESY, 12-13 December 2006

HLT and DAQ: Concepts

- The massive data rate after LVL1 poses problems even for network-based event building different solutions are being adopted to address this, for example:
 - In CMS, the event building is factorized into a number of slices each of which sees only a fraction of the rate
 - Requires large total network bandwidth (⇒ cost), but avoids the need for a very large single network switch
 - In ATLAS, the Region-of-Interest (RoI) mechanism is used with sequential selection to access the data only as required – only move data needed for LVL2 processing
 - Reduces by a substantial factor the amount of data that need to be moved from the Readout Systems to the Processors
 - Implies relatively complicated mechanisms to serve the data selectively to the LVL2 trigger processors ⇒ more complex software

Example: electron selection (I)

"Level-2" electron:

- 1-tower margin around 4x4 area found by Lvl-1 trigger
- Apply "clustering"
- Accept clusters if H/EM < 0.05
- ◆ Select highest E_T cluster

Brem recovery:

- Seed cluster with $E_T > E_T^{min}$
- Collect all clusters in road
- \rightarrow "supercluster"

and add all energy in road:

Event Building

Form full-event-data buffers from fragments in the readout. Must interconnect data sources/destinations.

Event Building via a Switch

- Three major issues:
 - Link utilization
 - The bottleneck on the outputs
 - The large number of ports needed
- Space-division: crossbar
 - Simultaneous transfers between any arbitrary set of inputs and outputs
 - Can be both self-routing and arbiterbased (determine connectivity between S's and D's for each cycle); the faster the fabric, the smaller the arbitration complexity
 - Does not solve Output Contention issue
 - Need Traffic Shaping

Switching technologies

Myricom: Myrinet 2000

- Switch: Clos-128 @ 2.5 Gb/s ports
- NIC: M3S-PCI64B-2 (LANai9)
- Custom Firmware

wormhole data transport with flow control at all stages

Gigabit Ethernet

- Switch: Foundry FastIron64 @ 1.2 Gb/s ports
- NIC: Alteon (running standard firmware)

Implementation:

Multi-port memory system R/W bandwidth greater than sum of all port speeds **Packet switching** Contention resolved by Output buffer. Packets can be lost.

Infiniband

• 2.5 Gb/s demo products. First tests completed recently.

BS implemented in firmware

- Each source has message queue per destination
- Sources divide messages into fixed size packets (carriers) and cycle through all destinations
- Messages can span more than one packet and a packet can contain data of more than one message
- No external synchronization (relies on Myrinet back pressure by HW flow control)

zero-copy, **OS-bypass principle works** for multi stage switches

A Myrinet-based 32x32 EVB

Gigabit Ethernet-based 32x32 EVB

Processor Engines

- Final stage of the filtering process: almost an offlinequality reconstruction & selection
 - Need real programmable processors; and lots of them
 - (Almost) all experiments in HEP: using/will use a processor farm

CDF example: 16 sub-farms of 9 processors each

Processor Farm: the 90's super-<u>computer; the 2000's large computer</u>

NOW

Found at the NOW project (http://now.cs.berkeley.edu)

Processor Farms: conclusion

Explosion of number of farms installed

- Very cost-effective
 - Linux is free but also very stable, production-quality
 - Interconnect: Ethernet, Myrinet (if more demanding I/O); both technologies inexpensive and performant
- Large number of message-passing packages, various API's on the market
 - Use of a standard (VIA?) could be the last remaining tool to be used on this front
- Despite recent growth, it's a mature process: basic elements (PC, Linux, Network) are all mature technologies. Problem solved. What's left: Control & Monitor. A Standard (Web/Java-based?) could do lots here.
 - Lots of prototypes and ideas. Need real-life experience.
 - Problem is human interaction

HLT requirements and operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

Physics, Signatures and Triggers

Some physics and their experimental signatures:

- Higgs
 - γγ, bbar, WW, ZZ (peak)
- Supersymmetry
 - multi-leptons or same-sign lepton pairs
 - jets and Missing $E_{\rm T}$
- Z'
 - di-electron, di-muon (peak)
- W'
 - electron or muon and Missing $E_{\rm T}$
- Large Extra dimensions
 - jet + Missing E_T (mono-jet)
 - di-fermion, di-boson
- Compositeness
 - di-jet (hi mass tail)
 - lepton and jet (LeptoQuark)

Corresponding "primary" triggers:

- di-photon
- di-electron
- di-muon
- di-jet
 - with b-tagging
- Inclusive leptons, either:
 - higher threshold
 - Isolation cut
 - Pre-scale applied
- Missing E_{T_1}
 - Jet(s)
 - leptons
- "mixed" or "composite" triggers
 ...

HLT menu

- Illustrative menu for LHC at 2×10^{33} cm⁻²s⁻¹ luminosity (CMS):
 - $p_T^e > 29 \text{ GeV or } 2 \text{ electrons } p_T^e > 17 \text{ GeV}$
 - Rate ~ 34 Hz
 - $p_T^{\gamma} > 80 \text{ GeV or } 2 \text{ photons } p_T^{\gamma} > 40, 25 \text{ GeV}$
 - Rate ~ 9 Hz
 - $p_T^{\mu} > 19 \text{ GeV or } 2 \text{ muons } p_T^{\mu} > 7 \text{ GeV}$
 - Rate ~ 29 Hz
 - $p_T^{\tau} > 86 \text{ GeV} \text{ or } 2 \text{ taus } p_T^{\tau} > 59 \text{ GeV}$
 - Rate ~ 4 Hz
 - p_T^{jet} > 180 GeV and missing E_T > 123 GeV
 - Rate ~ 5 Hz
 - $p_T^{jet} > 657 \text{ GeV or 3 jets } p_T^{jet} > 247 \text{ GeV or 4 jets } p_T^{jet} > 113 \text{ GeV}$
 - Rate ~ 9 Hz
 - Others (electron•jet; b-jets, etc.)
 - Rate ~ 7 Hz
 - Total ~ 100 Hz of which a large fraction is "physics" large uncertainty on rates!
 - Need to balance physics coverage against offline computing cost

Electrons, Photons, τ -jets, Jets, Missing E_T, Muons

HLT refines L1 objects (no volunteers)

Goal

• Keep L1T thresholds for electro-weak symmetry breaking physics

Start with L1 Trigger Objects

- However, reduce the dominant QCD background
 - From 100 kHz down to 100 Hz nominally

QCD background reduction

- Fake reduction: e±, γ, τ
- Improved resolution and isolation: μ
- Exploit event topology: Jets
- Association with other objects: Missing E_T
- Sophisticated algorithms necessary
 - Full reconstruction of the objects
 - Due to time constraints we avoid full reconstruction of the event L1 seeded reconstruction of the objects only
 - Full reconstruction only for the HLT passed events

CMS tracking for electron trigger

Present CMS electron HLT

Factor of 10 rate reduction γ: only tracker handle: isolation

• Need knowledge of vertex location to avoid loss of efficiency

Układ wyzwalania

Powinien zapewnić zebranie/zapisanie

- * możliwie największej liczby przypadków "sygnału", np. poszukiwanych procesów "nowej fizyki", produkcji bozonu Higgsa
- * możliwie różnorodnych topologii tych przypadków
 różne kanały produkcji i/lub rozpadu, różne zakresy kinematyczne
 => konieczne dla weryfikcji modeli, dopasowania parametrów
- * odpowiedniej (minimalizacja błędów) liczby przypadków dla:
 - synchronizacji detektora
 - kalibracji detektora
 - pozycjonowania detektora
 - pomiaru procesów tła
 - pomiaru procesów dających wkład do modeli (np. PDF)
 - pomiaru procesów pozwalających na wyznaczenie świetlności

Układ wyzwalania

Aby zgromadzić wszystkie potrzebne informacje wykorzytujemy całą gamę wmożliwych triggerów:

- przypadki fizyczne (wybrane na podstawie kryteriów LV1/HLT)
- przypadki "minimum bias" ("cokolwiek w detektorze")

weryfikacja algorytmów selekcji

- przypadki losowe: przypadkowe przecięcie z wiązką

ocena tła wiązki

przypadkowe przecięcie bez wiązki

ocena poziomu szumów, pile-up

- przypadki kalibracyjne (różnego typu)

w zależności od typu detektora może to być impuls lasera, impuls ładunku, pomiar sygnału przy wydłużonej bramce...

- przypadki "środowiskowe"

każdy detektor odsyła istotne informacje o swoim działaniu

- przypadki testowe (różnego rodzaju)

każdy detektor wykonuje zadaną procedurę

(np. generacja pseudo danych)

HLT Trigger Table - Example (CMS)

Trigger	Threshold (GeV) for L= $2x10^{33}$ cm ⁻² s ⁻¹	Prescale	Rate [Hz]	
Single Electron	26		23.5 +- 6.7	
Double Electron	12, 12		1.0 +- 0.1	
Relaxed Double Electron	19, 19		1.3 +- 0.1	
Single Photon	80		3.1 +- 0.2	
Double Photon	30,20		1.6+-0.7	Electron photon
Relaxed Double Photon	30, 20		1.2+-0.6	Licetion, photon
Single Photon Prescaled	23	400	0.3+-0.02	
Double Photon Prescaled	12, 12	20	2.5+-1.4	
Relaxed Double Photon Prescaled	19, 19	20	0.1+-0.03	
Single Muon	19		25.8+-0.8	
Relaxed Single Muon	37		11.9+-0.5	muon
Double Muon	7, 7		4.8+-0.4	
Relaxed Double Muon	10, 10		8.6+-0.6	
Double Pixel TauJet	100 SingleTau@L1 or 66 DoubleTau@L1		4.1+-1.1	
Double Tracker TauJet	100 SingleTau@L1 or 66 DoubleTau@L1		6.0+-1.1	
Electron-TauJet	16, 52		~0	
Muon-TauJet	15, 40		0.1+-0.06	lau
TauJet-MET	93, 65		0.5 +- 0.1	
Single jet	400		4.8 +- 0.02	
Single jet Prescale 1	250	10	5.2+-0.02	
Single jet Prescale 2	120	1000	1.6+-0.008	
Single jet Prescale 3	60	100000	0.4+-0.002	
Dijet	350		3. +- 0.02	
Trijet	195		1.1 +- 0.01	Jeis
Fourjet	80		8.8 +- 0.2	
Acoplanar Dijet	200, DeltaPhi(dijets)<2.1		0.2+-0.008	
Single jet - MET acoplanar	100, 80, DeltaPhi(jet,MET)<2.1		0.1+-0.02	
Single jet - MET	180, 80		3.2+-0.07	
Dijet - MET	155, 80		1.6+-0.03	
Trijet - MET	85, 80		0.9+-0.07	
Fourjet - MET	35, 80		1.7+-0.2	► liets.met. HT
MET	91		2.5 + -0.2	j oto, m ot, m
H _T - MET	350, 80		5.6+-0.2	
H _T - Single Electron	350, 20		0.4+-0.1	ノ
B-jets (leading jet)	350, 150, 55 (1,3,4-jet event cuts)		10.2 + 0.3	I
B-jets (second jet)	350, 150, 55 (1,3,4-jet event cuts)		8.5 +- 0.3	
TOTAL		R	129.8 +- 7.3	

13-June-2007

~60%

Pre-scales

- Inclusive jet triggers rate too high to take them all
 Sample
- Lower threshold -- higher pre-scale
- Lower threshold at lower trigger level
 - "sharp" cut at HLT
- "assemble" spectrum
- Fancy: dynamic prescales

Pre-requisites, Volunteers

- Pre-Requisite:
 - Only muons that have a L1 accept are pursued in the HLT.
 - Moreover, only that region may be even looked-at (reconstructed).
- Volunteer:
 - A muon "found" in the HLT, without a corresponding L1 accept
 - Possible Convention: such cannot be the cause of a trigger decision (CDF/CMS)
 - Cannot happen if only "seeded" (on L1 muon track) reconstruction is pursued in HLT
 - Can happen if global reconstruction is performed.
 - Very useful in understanding trigger efficiencies (more later).

ECAL Calibration and Alignment

• Goal: approximately 0.5% constant term

$$E = G \times F \times \sum C_i A_i$$

- G = overall gain
- F = correction function depending on type of particle, position, energy and cluster algorithm used
- C_i = intercalibration constant
- A_i = signal amplitude (ADC) in channel i

ECAL Calibration and Alignment

- During construction, often possible to calibrate with radioactive sources (e.g. ⁶⁰Co), pulsers and so on.
 - Design mechanical tolerances for resolution goal.

• Test beams used to get overall gain factor.

- Test beam conditions (material in front of calorimeter often different, electronics used may not be final, cables almost certainly not final.
- Understand response as function of position

• Cosmic ray muons can be useful.

CMS ECAL Calibration & Monitoring

ECAL Calibration (Resolution : 'Constant Term of the Resolution Formula') :

Raw (uncalibrated) Supermodule : 6%-10% 'Resolution' Spread among channels before calibration Beam Test Precalibration : 2 % 'Resolution' With a 'fast' calibration 'Lab Precalibration' : 4 % 'Resolution' In-Situ Physics Calibration : 0.5 % 'Resolution' Timescale for calibration : Weeks

ECAL Monitoring (Monitor Stability and Measure Radiation Effects) :

ECAL Stability (<< 0.5%), Monitored with Laser Monitoring System

Transparency Loss Correction, Signal Change under Irradiation ~5% Measured with Laser Monitoring System

CMS: Radiation Effects PWO Transparency

ECAL Laser Monitoring System

Cosmic Muon Calibration

CMS In-situ : φ-uniformity method BARREL ENDCAPS

Idea: ϕ -uniformity of deposited energy in crystals at constant η

Limitations : non-uniformities in φ

- in-homogeneity of tracker material
- geometrical asymmetries

Used: Min-bias / Level-1 jet trigger events

Method: Compare $\langle E_T \rangle_{CRYSTAL}$ with $\langle E_T \rangle_{RING}$.

Inter-calibration of η *rings:* $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-\gamma$, isolated electrons

CMS In-situ: using $Z \rightarrow e^+e^-$

Tune algorithmic corrections for electron reconstruction

Events Selection: Low brem electrons.

Algorithm:

Iterative (~10-15), constants are obtained from the peak of ε^i distribution.

$$\bar{\epsilon}^i = \frac{1}{2} \cdot \left[\left(\frac{M_{inv}^i}{M_Z} \right)^2 - 1 \right]$$

Results:

Assuming 5% mis-calibration between the rings and 2% mis-calibration between the crystals within a ring

0.6% ring inter-calibration precision

Statistics: 2.0 fb⁻¹

CMS In-situ: using isolated electrons

Target: **0.5%** calibration precession Sources: $W \rightarrow ev$ (10Hz HLT @ $2x10^{33}cm^{-2}s^{-1}$), $Z \rightarrow e^+e^-$ (2Hz HLT @ 2x10³³cm⁻²s⁻¹), $J/\Psi \rightarrow e^+e^-$, $b/c \rightarrow e_+ \dots$

Event Selection

We need a narrow $E/P \Rightarrow$ Low brem e^{\pm} Variables related to electron bremsstrahlung : (S_{3x3}/S_{5x5}) ECAL TRACKER (track valid hits, $\chi^2/n.d.f.$, P_{out}/P_{in}) Efficiency after HLT: 20-40% Barrel, 10-30% Endcaps

E / P <width minimization> **Method**: ECAL TRACKER 5x5 electron $E = \sum_{i=1}^{\infty} c_i E_i$ momentum

> Background: S/B~8 (isol. electrons from W/QCD) Part of it might be useful $(b/c \rightarrow e)$.

Calibration Constants extraction Techniques:

- L3/LEP iterative (~20 iterations),
- matrix inversion

Calibration Steps

- Calibrate crystals in small η - ϕ regions
- Calibrate regions between themselves using tighter electron selection, $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-\gamma_e$ Nick Hadley

