Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład XIV

- Pomiary przekroju czynnego
- ⇒ przekrój całkowity
- ⇒ przekrój różniczkowy

Cross Section: Experimentally

Acceptance / Efficiency

- Actually rather complex:
 - Many ingredients enter here
 - You need to know:

 $\varepsilon_{total} =$ <u>Number of Events used in Analysis</u>

Number of Events Produced

- Ingredients:
 - Trigger efficiency
 - Identification efficiency
 - Kinematic acceptance
 - Cut efficiencies
- Using three example measurements for illustration:
 - Z boson, top quak and jet cross sections

Z Boson Cross Section

12

- Trigger requires one electron with E_T>20 GeV
 - Criteria at L1, L2 and L3/EventFilter
- You select two electrons in the analysis
 - With certain quality criteria
 - With an isolation requirement
 - With $E_T > 25$ GeV and |eta| < 2.5
 - With oppositely charged tracks with p_T>10 GeV
- You require the di-electron mass to be near the Z:
 - 66<M(II)<116 GeV

Uncertainty on Cross Section

• You will want to minimize the uncertainty:

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{obs}^2 + \delta N_{BG}^2}{(N_{obs} - N_{BG})^2} + \left(\frac{\delta\mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

- Thus you need:
 - N_{obs}-N_{BG} small (I.e. N_{signal} large)
 - Optimize selection for large acceptance and small background
 - Uncertainties on efficiency and background small
 - Hard work you have to do
 - Uncertainty on luminosity small
 - Usually not directly in your power

$m_h\approx 120~GeV$

Other background

- Resolved photon(s) interactions $\gamma + \gamma \rightarrow X + Q + \bar{Q}$
- Overlaying events (high intensity of photon-beams in the low-energy part of the spectrum)

NŻK

Photon Collider

High-energy photons obtained in the Compton back-scattering

Seminarium Fizyki Wielkich Energii

P. Niezurawski

Photon Collider

 $\gamma\gamma$ -luminosity spectrum

Seminarium Fizyki Wielkich Energii

P. Niezurawski

Warszawa, 22.04.2005

Generation & Simulation. Selection.

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)

Jets: Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

- 1) Assumed bb-tagging and mistagging
 2) Using ZVTOP-B-Hadron-Tagger

- $|P_z|/E_{vis} < 0.1$

NŻK

Cuts

Cuts optimized by minimizing:

$$\frac{\Delta\sigma(\gamma\gamma\to h\to b\bar{b})}{\sigma(\gamma\gamma\to h\to b\bar{b})} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

For example:

Maximal value of $|\cos \theta_{jet}|$ over all jets in the event

All angular cuts

Detector mask Particles on Pythia level: $\cos \theta_{mask} \approx 0.99$

OE suppression Tracks & clusters: $\cos \theta_{TC} = 0.85$

 $\gamma \gamma
ightarrow Q ar{Q}(g)$ suppression Jets: $|\cos \theta_{jet}|^{\max} = 0.725$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

– p.10/20

bb-tagging

bb-tagging

B-tagging

ZVTOP-B-Hadron-Tagger

S_{-}	$\#(\gamma\gamma \rightarrow$	$b\overline{b})$
\overline{B}	$\#(\gamma\gamma \rightarrow$	$c\bar{c})$

higgs-tagging at $M_h = 120$ GeV

higgs-tagging: a cut on the ratio of $\gamma \gamma \rightarrow h \rightarrow b \overline{b}$ to $\gamma \gamma \rightarrow b \overline{b}(g), c \overline{c}(g)$ events $\Rightarrow \varepsilon_{higgs} = 70 \%$ $\varepsilon_{bb} = 66\%, \varepsilon_{cc} = 4\%$

Earlier we used *b*-tagging: a cut on the ratio of $\gamma\gamma \rightarrow b\bar{b}(g)$ to $\gamma\gamma \rightarrow c\bar{c}(g)$ events $\Rightarrow \varepsilon_{higgs} = 85\%$ $\varepsilon_{bb} = 82\%, \varepsilon_{cc} = 2\%$

Tighter cuts are needed due to OE contribution

Black stars – optimized selection Black+white stars – analysis without OE

NŻK

ECF

Durham, September 2004

– p.7/12

SM, $M_h = 120 \text{ GeV}$

Final results

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

 \mathbf{i}

– p.16/20

Missing P_T

Neutrinos from semileptonic decays of *D*- and *B*-mesons.

$$W_{corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E_{vis} + P_T)}$$

NŻK

SM, $M_h = 120 \text{ GeV}$

Final results

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

- p.16/20

NŻK

Top Quark Cross Section

SM: tt pair production, $Br(t \rightarrow bW)=100\%$, $Br(W \rightarrow l_v)=1/9=11\%$

dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets

- Trigger on electron/muon
 - Like for Z's
- Analysis cuts:
 - Electron/muon p_T>25 GeV
 - Missing E_T>25 GeV
 - 3 or 4 jets with $E_T > 20-40$ GeV

Finding the Top Quark

- Tevatron
 - Top is overwhelmed by backgrounds:
 - Top fraction is only 10% (≥3 jets) or 40% (≥4 jets)
 - Use b-jets to purify sample => purity 50% (≥3 jets) or 80% (≥4 jets)
- LHC
 - Purity ~70% w/o b-tagging (90% w b-tagging)

Systematic uncertainties

- This will likely be >90% of the work
- Systematic errors cover our lack of knowledge
 - need to be determined on every aspect of measurement by varying assumptions within sensible reasoning
 - Thus there is no "correct way":
 - But there are good ways and bad ways
 - You will need to develop a feeling and discuss with colleagues / conveners / theorists
 - There is a lot of room for creativity here!
- What's better? Overestimate or underestimate
 - Find New Physics:
 - it's fine to be generous with the systematics
 - You want to be really sure you found new physics and not that "Pythia doesn't work"
 - Precision measurement
 - Need to make best effort to neither overestimate nor underestimate!

QCD Modeling of Process

- Kinematics affected by p_T of Z boson
 - Determined by soft and hard QCD radiation
 - tune MC to describe data
- Limitations of Leading Order Monte Carlo
 - Compare to NNLO calculation

Acceptance	NNLO Calc.	PYTHIA	Difference (%)
$A_{W \to \mu\nu}$	0.1970	0.1967	+0.15
$A_{W \rightarrow e\nu}$	0.2397	0.2395	+0.08
$A_{Z \rightarrow \mu\mu}$	0.1392	0.1387	+0.36
$A_{Z \rightarrow ee}$	0.3182	0.3185	-0.09
$A_{Z \to \mu\mu} / A_{W \to \mu\nu}$	0.7066	0.7054	+0.17
$A_{Z \to ee} / A_{W \to e\nu}$	1.3272	1.3299	-0.20

MC Modeling of top

- Use different MC generators
 - Pythia
 - Herwig
 - Alpgen
 - MC @ NLO
 - **.**..

Different tunes

- Underlying event
- Initial/final state QCD radiation
- •
- Make many plots
 - Check if data are modelled well

Examples for Systematic Errors

- Mostly driven by comparison of data and MC
 - Systematic uncertainty determined by (dis)agreement and statistical uncertainties on data

Systematic Uncertainties: Z and top

source	variation	$\Delta \mathbf{A}_Z$	$\Delta \mathbf{A}_Z / \mathbf{A}_Z$
$E_T^{\rm e}$ scale	1% variation	0.03%	0.3%
$E_T^{\rm e}$ resolution	2% extra smearing	0.02%	0.2%
$p_T^{\rm e}$ scale	1% variation	0.01%	0.1%
p_T modelling		0.01%	0.1%
Material	5.5 % X ₀	0.54%	4.7%
PDFs	reweighting of y	0.34%	2.9%
overall		0.64%	5.5%

Z cross section (not all systematics)

top cross section

Systematic	Inclusive (Tight)	Double (Loose)
Lepton ID	1.8	3
ISR	0.5	0.2
FSR	0.6	0.6
PDFs	0.9)
Pythia vs. Herwig	2.2	1.1
Luminosity	6.5	2
JES	6.1	4.1
b-Tagging	5.8	12.1
c-Tagging	1.1	2.1
l-Tagging	0.3	0.7
Non-W	1.7	1.3
W+HF Fractions	3.3	2.0
Mistag Matrix	1.0	0.3
Total	11.5	14.8

 Relative importance and evaluation methods of systematic uncertainties are very, very analysis dependent

Final Result: Z cross section

 Now we have everything to calculate the final cross section
 TABLE XXXVII: Summary of the input parameters to the of 1/2 and 0/4 gross section calculations for the electron

TABLE XXXVII: Summary of the input parameters to the $\gamma^*/Z \rightarrow \ell \ell$ cross section calculations for the electron and muon candidate samples.

97 	$\gamma^*/Z \rightarrow ee$	$\gamma^*/Z \rightarrow \mu \mu$
N_Z^{obs}	4242	1785
N_Z^{bck}	62 ± 18	13 ± 13
Az	$0.3182 \begin{array}{c} +0.0039 \\ -0.0041 \end{array}$	$0.1392 \begin{array}{c} +0.0027 \\ -0.0033 \end{array}$
€Z	0.713 ± 0.012	0.713 ± 0.015
$\int \mathcal{L}dt$ (pb	$^{-1}$) 72.0 ± 4.3	72.0 ± 4.3

$$\sigma_{\gamma^*/Z} \cdot Br(\gamma^*/Z \to ee) = 255.8 \pm 3.9(stat.)$$
$$\pm \frac{5.5}{5.4}(syst.)$$
$$\pm 15.3(lum.) \text{ pb}$$

Measurement gets quickly systematically limited

Comparison to Theory

- Experimental uncertainty: ~2%
- Luminosity uncertainty: ~6%
- Theoretical uncertainty: ~2%

3.6 EW Z(x10) Tevatron 3.4 (Run 2) 3.2 3.0 (qu) 2.8 NNLO 2.6 2.4 m CDF D0(e) D0(µ) ь. 2.2 CDF D0(e) D0(µ) 2.0 LO 1.8 1.6 24 W Z(x10) LHC 23 22 21 NLO (qu) 20 NNLO. 19 ₫ 18 ь. 17 LO 16 15 14

partons: MRST2002 NNLO evolution: Moch, Vermaseren, Vogt NNLO W,Z corrections: van Neerven et al. with Harlander, Kilgore corrections σ_{Th,NNLO}=251.3±5.0pb (Martin, Roberts, Stirling, Thorne)

Can use these processes to normalize luminosity absolutely

However, theory uncertainty larger at LHC and theorists don't agree (yet)⁴⁷

Differential Cross Section

- Measure jet spectra differentially in E_T and η
- Cross section in bin i: $\sigma(i) = \frac{N_{obs}(i) N_{BG}(i)}{\int Ldt \epsilon(i)}$

Differential Cross Section: Unfolding

- "Unfolding" critical for jet cross sections
- Measure:
 - Cross section for calorimeter jets
- Want:
 - Cross section for hadron-jets
- Unfolding factor (bin by bin):

$$C_i = \frac{N_{JET \ i}^{HAD}}{N_{JET \ i}^{CAL}}$$

• Then:

 $N_{JET~i}^{DATA~UNFOLDED} = C_i \cdot N_{JET~i}^{DATA~NOT~UNFOLDED}$

• But, unfolding factors depend on MC E_T spectrum

Differential Cross Section: Unfolding

- Problem:
 - Steeply falling spectrum causes migrations to go from low to high p_T
 - Measured spectrum "flatter" than true spectrum
 - Size of migration depends on input spectrum
- **Requires iterative procedure** (bin-by-bin unfolding):
 - 1. Measure using spectrum from MC
 - 2. Fit measurement
 - 3. Reweight MC to reflect data measurement => go back to 1.

Example for Bin-by-Bin Unfolding

- Correction to unfolding factors <10%
 - One iteration sufficient in this example
 - Starting spectrum was already quite close to data

Systematic Uncertainties: Jet Cross Section

- For Jet Cross Section the Jet Energy Scale (JES) uncertainty is dominant systematic error
 - 3% uncertainty on JES results in up to 60% uncertainty on cross section
 - 8% uncertainty on JE resolution causes <10% uncertainty on cross section</p>

Jet Cross Section Result

- Cross section falls by 8 orders of magnitude in measured E_T range
- Data in good agreement with QCD prediction
 - Experimental and theoretical errors comparable

A.F.Żarnecki Searches for Contact Interactions at HERA

Introduction

HERA

electron(positron)-proton collider at DESY

HERA II 2002-2007 about $400pb^{-1}$ per experiment similar amount of e^-p and e^+p data

 $\sim 20 pb^{-1}$ of data from low and medium energy running: not considered here

– p.3/17

Main process studied at H1 and ZEUS

NC DIS

Kinematic variables:

$$Q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2P \cdot (k - k')}$$

|virtuality| of the exchanged boson
$$\Rightarrow$$
 spatial resolution $\Rightarrow \pm 1/0$

spatial resolution $\lambda \sim 1/Q$

sensitivity to mass scales $\Lambda \sim Q$

ZR View

CC DIS

Przypadek NC DIS Ekspertment ZEUS

Rekonstrukcja przypadków

Pomiar w detektorze

W przypadkach NC DIS w detektorze mierzymy:

• elektron o energii E'_e rozproszony pod kątem θ

 \Rightarrow możemy wyznaczyć efektywny kąt rozproszenia γ i energię E_q jetu \Rightarrow partonu

Chcemy wyznaczyć **dwie** zmienne, np. $x i Q^2$ (trzecią zmienną mamy z relacji: $Q^2 = xys$) Mamy **cztery** wielkości mierzone: E'_e , θ , $E_q i \gamma \Rightarrow$ mamy dużą swobodę wyboru metody Teoretycznie (nieskończenie dokładny pomiar) wszystkie metody są równoważne. Efekty doświadczalne (błędy pomiarowe) powodują jednak znaczne różnice w dokładności wyznaczenia x, y i Q^2 różnymi metodami \Rightarrow wybór zależy od eksperymentu...

 E_h, \bar{p}_h

Nominal

Using MEPS

Syed Umer Noor (York University)

NC DIS in e^-p

Wyznaczanie funkcji struktury

Przekrój czynny

Funkcję struktury $F_2(x, Q^2)$ wyznaczamy bezpośrednio z pomiaru różniczkowego przekroju czynnego na NC DIS:

$$\frac{d^2\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} (1 - y + \frac{y^2}{2}) \ F_2(x, Q^2) \ (1 + \delta_L + \delta_Z + \delta_{rad})$$

Wyznaczane teoretycznie poprawki pochodzą od:

- δ_L tzw. podłużnej funkcji struktury F_L (wkład gluonów powoduje, że $F_L \equiv F_2 - 2xF_1 \neq 0$)
- δ_Z wymiany bozonu Z° (istotne tylko dla bardzo dużych Q^2)
- δ_{rad} procesów radiacyjnych (poprawki radiacyjne; emisja γ przez elektron przed lub po zderzeniu)

Wyznaczanie funkcji struktury

Przekrój czynny

Różniczkowy przekrój czynny wyznaczamy mierząc liczbę przypadków zrekonstruowanych w przedziałach x i Q^2 :

$$\Delta N^{\left(x \pm \frac{\Delta x}{2}, Q^2 \pm \frac{\Delta Q^2}{2}\right)} = \frac{d^2 \sigma}{dx \ dQ^2} \cdot \Delta x \cdot \Delta Q^2 \cdot \mathcal{L}_{int} \cdot \mathcal{E} \cdot \mathcal{A}$$

gdzie:

- \mathcal{L}_{int} scałkowana świetlność
- *E* efektywność selekcji przypadków
- *A* poprawka związana z niedokładnością pomiaru ("przesypywanie" przypadków pomiędzy przedziałami)

Alignment and e- Energy Backsplash NC analysis Systematics Cross Sections Comparisons Summary Backup

NC Selection Part 1

- EVtake, POLtake, MVDtake, REG trk
- FLT: 28, 30, 39, 40, 41, 43, 44, 46
- SLT: DIS07, EXO1, EXO2, EXO3
- TLT: DIS03
- Q²_{DA} > 185 GeV²
- 38 GeV < δ < 65 GeV
- |Z_{vtx}| < 50 cm
- ∎ y_e < 0.95
- y_{JB}(1 x_{DA})² > 0.004
- Elastic QEDC rejection

Syed Umer Noor (York University)

P_T balance

- $P_T / \sqrt{E_T} < 4 \text{ GeV}^{1/2}$
- $P_T / E_T < 0.7$
- Chimney, supercrack, box cuts
- R^{RCAL}_e < 175 cm</p>
- R^{FCAL}_{had} > 18 cm
- Electron identification
 - First EM candidate
 - EM_{prob} > 0.001
 - E'_e > 10 GeV
 - E^{cone}(not e-) < 5 GeV</p>
- Yongdok's new alignment and electron energy corrections
- Umer's new backsplash cut for CorAndCut

Backsplash

MC CC Event (MC tracks overlayed)

- Proper reconstruction of hadronic final state important
- Can use to determine kinematic variables
- Measured hadronic quantities can be altered by
 - Backsplash from the CAL
 - Scattering from dead material
- Cause energy deposits far from true particle direction
- Noticably increases measured $(E P_z)_h$ and γ_h at low y

Alignment and e- Energy Backsplash NC analysis Systematics Cross Sections Comparisons Summary Backup

Using Data to Derive Backsplash Cut Parameters

- We began a new jet based approach
- Use most backward jet found and associate its jet axis with the "true entry" position
- Look for cone islands backward from the jet
- Use distance from jet axis to cone islands to flag backsplash deposits
- Method can be applied to data and MC

NC Selection Part 2

Inside CTD acceptance:

- CTD exit Radius > 45 cm
- P^{trk}_{ele} > 3 GeV
- DCA < 10 cm</p>
- DME > 1.5 cm
- Forward of CTD acceptance:
 - P_{T,ele} > 30 GeV

Changes to standard selection:

- $\blacksquare \ Q^2_{D\!A} > 200 \rightarrow 185 \ GeV^2$
 - Lower bin edge of reduced cross section

$$\blacksquare R_{had}^{FCAL} > 20 \rightarrow 18 \text{ cm}$$

- $\blacksquare \mathsf{P}_{ele}^{trk} > 5 \to 3 \; \mathrm{GeV}$
 - Contrain systematics

Wykład IV

Statistical Error in Bins used for $d^2\sigma/dxdQ^2$

Syed Umer Noor (York University)

NC DIS in e^-p

$d\sigma/dQ^2$: Bias and Resolution

000000

Systematics

Efficiency and Purity for $d\sigma/dQ^2$

Efficiency = Generated & Accepted Generated Purity = Generated & Accepted Accepted Efficiency Purity Acceptance =

Efficiency and Purity in $d^2\sigma/dxdQ^2$

Efficiency = Generated & Accepted Generated

Syed Umer Noor (York University)

NC DIS in $e^- p$

Unfolding Cross Sections

Cross sections extracted using:

- With Born-level unpolarised MC and theory values
- See backup for bin selection (based on HERA I binning)
 - Finer in dσ/dQ²
 - Higher/lower bins in $d\sigma/dx$, $d\sigma/dy$
 - Keep same for reduced cross sections

$d\sigma/dQ^2$

Wyznaczanie funkcji struktury

Liczba mierzonych przypadków decyduje o błędzie statystycznym wyznaczonych wartości $F_2(x, Q^2)$:

$$\frac{\sigma_{F_2}^{stat}}{F_2} = \frac{1}{\sqrt{\Delta N}}$$

Błędy statystyczne dominują przy dużych Q^2 , przy małych Q^2 są zaniedbywalne.

Błąd systematyczny pomiaru wynika z niepewności:

- poprawek teoretycznych δ_L , δ_Z i δ_{rad}
- pomiaru świetności *L_{int}*
- wyznaczenia poprawek *E* i *A* (niepewności związane z symulacją Monte Carlo badanego procesu i działania detektora)

Błędy systematyczne dominują przy małych Q^2 .

Na ogół są na poziomie kilku % (obecne pomiary w HERA)

Updates	Control Plots	Systematics	Summary	Backup
	000			

Control Plots

Updates	Control Plots	Systematics	Summary	Backup
	000			

Control Plots

Updates	Control Plots	Systematics	Summary	
	000			

Control Plots

CAL alignment with respect to CTD

Stat error only.

	RHES left	RHES right
δφ	$+1.6\pm0.1$ mrad	$+0.9 \pm 0.1$ mrad
δz	$+2.0\pm0.2$ mm	-0.9 ± 0.2 mm
δx	+1.9±0.1mm	<u>-1.7±0.1mm</u>
δy	+1.4±0.1mm	<u>-1.0±0.1mm</u>

RCAL is aligned within 2.0mm in x and y direction.

BCAL is aligned within 1.0mm. (Only z shift is checked.)

FCAL position correction : Shift the e position with -4mm in y for data.(Hadronic system is neglected.)

FCAL is aligned within 2.0mm.

1

For more details, see talk at F_L review meeting on 09/Feb/2007.

Uncertainty of CAL position

Estimate the effect on cross section by varying the θ_{e} .

 $\delta \theta = \delta 1 / r$

•RCAL :
$$\delta$$
 l=2mm, r=1.5m

– L.JIIII au

•BCAL : δ l=1mm, r=1.2m $\rightarrow \delta \theta = 0.8$ mrad

•FCAL : δ 1=2mm, r=2.2m $\rightarrow \delta \theta$ =0.9mrad

 $\theta_{\rm e} \pm 1$ mrad is adequate as systematic check.

BCAL electron energy

E_e is corrected by dead-material map and non-uniformity.

80 E_{DA}(GeV)

100

2

 $\phi(rad)$

z(cm)

0

40

60

80 E_{DA}(GeV)

Scale uncertainty is 2%.

Smearing factor is 3.4%.

2

 $\phi(rad)$

Systematics in $d^2\sigma/dxdQ^2$ for EM \rightarrow SINISTRA

Systematics in $d^2\sigma/dxdQ^2$ for CorAndCut \rightarrow ZUFO

Using ZUFOs from EM_HAD block

Largest Systematics in Dbl Diff bins - MEPS

Dominates low Q² region

Updates 000	Control Plots	Xsecs 000000	Systematics ooooooo●oooo	Backup 0000000

Largest Systematics in Dbl Diff bins - $E - P_Z$

Updates	Control Plots	Systematics	Summary	Backup
				000000

Largest Systematics in Dbl Diff bins - *E_e* scale

Updates	Control Plots	Systematics	
		000000000000	

Largest Systematics in Dbl Diff bins - θe

Updates ooo	Control Plots	Xsecs 000000	Systematics	Backup

Largest Systematics in Dbl Diff bins - R_{FCAL}

- Projection of γ_h onto face of FCAL

Systematic Checks

- DCA > 10 cm; 8cm
- $E_{note-}^{cone} < 5 \text{ GeV}; \pm 2 \text{ GeV}$
- 38 GeV < E P_Z < 65 GeV; interval ± 4 GeV
- $\blacksquare P_T/\sqrt{E_T} < 4\sqrt{GeV}; \pm 1\sqrt{GeV}$
- *P*^e_{trk} > 3 GeV; ± 1 GeV
- *R_{FCAL}* > 18 cm; ± 3 cm
- *y_e* < 0.95; 0.9
- *E*_e scale ± 2% (MC)
- E_e smeared \pm 1% (MC)

- $\theta_e \pm 1 \text{mrad} (\text{MC})$
- *E_h* scale ± 3% (MC)
- PHP MC normalization ± 100%
- Checks not used in error calculations:
 - ARIADNE \rightarrow MEPS
 - EM → Sinistra
 - $\blacksquare \ CorAndCut \rightarrow ZUFOs$

 Alignment and e- Energy
 Backsplash
 NC analysis
 Systematics
 Cross Sections
 Comparisons
 Summary
 Backup

 000000
 000000
 000000
 00000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00000
 00000
 000000
 000000
 000000
 0000000

Systematics in $d^2\sigma/dxdQ^2$

