Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład IV

Detektory krzemowe

Wprowadzenie

Pierwsze detektory półprzewodnikowe: lata '50 XX w. (pomiar energii) Pierwsze próby wykorzystania do pomiaru pozycji: ~1980 (NA32) Lawinowy rozwój w latach '90: eksperymenty przy LEP, SLC i Tevatronie. Ogromne korzyści z rozwoju komercyjnych technologii...

Dziś nikt nie wyobraża sobie eksperymentu bez detektorów krzemowych...

Struktura pasmowa

Elektrony w paśmie walencyjnym są "związane" z danym atomem

Elektrony w paśmie przewodzenia są "uwspólnione" - mogą się swobodnie przemieszczać po całym krysztale.

Pasmo przewodzenia wypełnione

 \Rightarrow przewodnik

Puste pasmo przewodzenia i duża przerwa energetyczna \Rightarrow izolator

Puste pasmo przewodzenia ale mała przerwa energetyczna ⇒ półprzewodnik

Przerwa energetyczna

"Mała" przerwa energetyczna: porównywalna z energią termiczną elektronów.

Temperatura pokojowa: $kT \approx 0.025 \ eV \Rightarrow$ przerwy rzędu 1 eV

Typowe materiały półprzewodnikowe:

	Diamond	SiC (4H)	GaAs	Si	Ge
Atomic number Z	б	14/6	31/33	14	32
Bandgap E _g [eV]	5.5	3.3	1.42	1.12	0.66
E(e-h pair) [eV]	13	7.6-8.4	4.3	3.6	2.9
density [g/cm³]	3.515	3.22	5.32	2.33	5.32
e-mobility μ _e [cm²/Vs]	1800	800	8500	1450	3900
h-mobility μ _h [cm²/Vs]	1200	115	400	450	1900

Średnia energia jonizacji $\sim 3 \times E_g$

Prawdopodobieństwo samoistnego przejścia elektronu do pasma przewodzenia

$$p \sim \exp\left(-\frac{E_g}{kT}\right)$$

Rozkład Fermiego-Diraca

Prawdopodobieństwo obsadzenia stanu o energii *E*:

$$p(E) = \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1}$$

 E_F - energia Fermiego, $p(E_F) \equiv 0.5$

Dla $T \rightarrow 0$ półprzewodnik jest izolatorem.

W temperaturze pokojowej obsadzenie pasma przewodnictwa $p\sim 10^{-9}$

Ale to wystarcza! Koncentracja swobodnych nośników $n\sim 10^{10}/cm^3$

<u>Domieszkowanie</u>

W krysztale krzemu każdy atom ma 4 wiązania, które tworzą jego 4 elektrony walencyjne.

Bardzo nieliczne elektrony ($\sim 10^{-9}$) przechodzą do pasma przewodzenia pozostawiając dziurę w paśmie walencyjnym Liczbe wolnych nośników można zwiększyć wprowadzając domieszki:

typu *n* - donory np. P, As,...

pierwiastki V grupy "nadmiarowy" elektron typu *p* - akceptory np. B...

pierwiastki III grupy "brakujący" elektron "nadmiarowa" dziura

Typowe domieszki $n \sim 10^{12}/cm^3$

Złącze pn

Półprzewodniki typu n i typu p pozostaja el. obojętne.

Nadmiar/niedobór elektronów kompensowany jest ładunkiem jonów domieszek (nieruchomuch).

Różnica koncentracji elektronów

⇒ różnica poziomów Fermiego

Przy zetknięciu następuje przepływ ładunków aż do wyrównania poziomów:

A.F.Żarnecki

Złącze pn

Szerokość warstwy zubożonej:

Bez zewnętrznego napięcia:

$$W = \sqrt{\frac{2\epsilon}{Ne}} V_{pn}$$

 $N_d = N_a = N$ - koncentracja domieszek

- V_{pn} różnica potencjału na złączu
- ϵ stała dielektryczna ($\sim 1 pF/cm$)

Obszar zubożony można powiększać przykładając dodatkowe napięcie

$$W = \sqrt{\frac{2\epsilon}{Ne}(V + V_{pn})}$$
$$W = \sqrt{2\epsilon\rho\mu(V + V_{pn})}$$

- ${\cal V}$ napięcie w kierunku zaporowym
- ho przewodnictwo ($\sim 1-10k\Omega\cdot cm$)
- μ ruchliwość ładunków ($v = \mu \cdot E$) $\mu_e \approx 1350 cm^2 V^{-1} s^{-1}$ $\mu_h \approx 450 cm^2 V^{-1} s^{-1}$

W odróżnieniu od detektorów gazowych ruchliwości elektronów i dziur są do siebie zbliżone

Złącze pn

Obszar zubożony można powiększać przykładając dodatkowe napięcie

Uzyskujemy częściowe lub całkowite zubożenie diody.

Zone without free charge

carriers positively charged.

Sensitive Detector Volume.

Field

e ctri c

யி

Obszar zubożony ⇒ pole elektryczne, brak ładunków Obszar nie zubożony ⇒ ładunki

swobodne, brak pola

Rozmiar obszaru zubożonego możemy mierzyć poprzez pomiar pojemności złącza:

A.F.Żarnecki

Komora jonizacyjna

Spolaryzowana zaporowo dioda półprzewodnikowa działa jak komora jonizacyjna

Przechodząca cząstka jonizuje półprzewodnik ⇒ tworzy pary elektron (w paśmie przewodnictwa) - dziura.

Pole elektryczne powoduje dryf elektronów w kierunku anody i dziur w kierunku katody ⇒ przepływ prądu

Straty na jonizację w krzemie: $\frac{dE}{dx} \approx 3.88 \ MeV/cm$

- \Rightarrow około 100 par e h na każdy μm grubości złącza (tyle co 1 cm gazu)
 - ⇒ detektory krzemowe nie wymagają powielania ładunku !

SPI

detektor germanowy na satelicie INTEGRAL

Pomiar widma promieniowania γ

Mierzona całkowita jonizacja powstająca w wyniku oddziaływania fotonu w diodzie. Brak pomiar pozycji...

Krztałt impulsu

Fig. 5.4. Signal current formation induced by the separation of an electron-hole pair in the electric field of the space-charge region of the detector. The electron-hole pair is created in the center plane of a slightly (20%) overdepleted diode (see Example 5.2). Plotted are the electron-induced (*dashed line*), hole-induced (*dash-dot line*) and total (*continuous line*) currents

Podobnie jak w przypadku detektorów gazowych, kształt rejestrowanego impulsu odzwierciedla ruch ładunków w złączu.

Duża ruchliwość ładunków, cienkie złącze → bardzo krótkie impulsy

Równomierny rozkład pierwotnej jonizacji → równy wkład od elektronów i dziur

W przypadku jednorodnego pola elektrycznego (v=const) kształty impulsów pochodzących od elektronów i dziur powinny być płaskie.

Detektory pozycyjne

Zwykła dioda nie dostarcza żadnej informacji o pozycji cząstki.

Ale w jednym detektorze możemy wytworzyć więcej złącz i uzyskać w ten sposób dodatkową informację. Jest kilka możliwości:

detektor paskowy

także dwustronny \Rightarrow

detektor dryfowy

detektor pikslowy

Zasada działania

Na jednym podłożu typu n tworzymy paski typu p, z których ładunek wyprowadzany jest przez metalowe styki.

Napięcie polaryzujące doprowadzane przez rezystory

Technologia produkcji

Krzem uzyskiwany jest z piasku. Po chemicznym oczyszczeniu przetapiany jest wraz z domieszkami.

Polikrystaliczny krzem jest następnie topiony warstwowo w specjalnym piecu ⇒ monokryształ

Cięty piłą diamentową i odpowiedniej grubości następnie polerowany

na plastry o $(300-500 \mu m)$,

Technologia produkcji

Na jednym plastrze tworzonych jast naogół wiele elementów

Plaster musi zostać pocięty, a następnie wykonane układy muszą zostać przylutowane do "podstawek"

<u>BaBar</u>

Detektor wierzchołka złożony z pięciu warstw dwustronnych detektorów paskowych.

Jak najbliżej punktu oddziaływania:

- precyzja wyznaczania wierzchołka
- pokrycie w kącie brylowym

ATLAS

Dwa sensory wraz z elektroniką odczytową

Pojedynczy sensor: $64 \times 64mm^2$ 768 pasków grubości $12\mu m$, co $80\mu m$ ~ 3500 połączeń drucikami $25\mu m$ Al

Precyzja pomiaru położenia $\sim 16 \mu m$

Detektor ATLAS: 15'552 sensory łącznie $61m^2$, 6.3 mln. pasków

<u>CMS</u>

Centralny detektor śladowy oparty na krzemowych detektorach paskowych.

Około 24 tys. sensorów, 200 m^2 powierzchni.

11 milionów pasków ! Kapton foil silicon sensors aluminium carrier plate pitch adapter far sensor front-end hybrid near sensor frame (carbon fibre) hybrid supply and readout ceramic connection cross piece HV connector (graphite)

hisso Picso Cos

Rekordzista!

<u>CMS</u>

Detektor śladowy gotowy do instalacji.

Instalacja w grudniu 2007.

A.F.Żarnecki

Detektory paskowe zapewniają pomiar pozycji tylko w jednym wymiarze

(choć możliwe jest uzyskanie pasków po obu stronach).

Krzemowy detektor dryfowy

Podobnie jak w gazowej komorze dryfowej, znając czas dryfu ładunków można określić pozycję w drugim wymiarze

(pierwsza współrzędna z pozycji złącza)

Konieczne jest zapewnienie wysokiej czystości i jednorodności sensora, dokładna kontrola napięcia i temperatury...

Wykorzystane np. w eksperymencie ALICE przy LHC

Problem odczytu paskowego - tło kombinatoryczne.

Przy dużej krotności cząstek bardzo utrudnia rekonstrukcję torów.

Rozwiązanie: podział detektora na piksle.

Podstawowy problem: odczyt sygnałów ze wszystkich kanałów !

Hybrid Active Pixel Sensors (HAPS)

Hybrid Active Pixel Sensors (HAPS)

Inny typ materiału wykorzystywany jako detektor, inny do elektroniki odczytowej.

Połączenie poprzez "mikro luty" (bump bonding) średnicy 6 – 20 μm .

Detektor wierzchołka HAPS w detektorze ATLAS:

moduły 6 × 2 cm^2 , z pikslami 50 × 400 μm , 17 tys. modułow, łącznie 80 milionów piksli. Elektronika: około 1000 tranzystorów na każdy pixel (pełna obróbka analogowa i cyfrowa).

Detektor pixlowy CMS

Także oparty na Hybrid Active Pixel Sensors (HAPS)

Rozmiar pixli: $100 \times 150 \mu m^2$ (ATLAS: $50 \times 400 \mu m^2$)

A.F.Żarnecki

Zniszczenia radiacyjne

W wyniku oddziaływania cząstek jonizujących i neutronów powstają defekty sieci.

Pojawiają się dodatkowe poziomy energetyczne, zwiększa się przewodnictwo.

Zmienia się efektywny typ domieszkowania. $n \rightarrow p$

W pewnym zakresie zmiany można kompensować zmieniając odpowienio napięcie polaryzujące diodę >

Detektor pikslowe

CCD

Rozwój technologii półprzewodnikowych doprowadził do powstania nowych koncepcji odczytu detektorów pikslowych

Odpowiednie domieszkowanie tworzy studnie potencjału, w której zbiera się ładunek.

Direction of transfer

Ionizing particle

Potential we

Collected charge

P2

SiO2

P3

P₂

PIXEL

P1 = Low P2 = High P3 = Low

P1 = Low P2 = High P3 = High

P1 = Low

P2 = Low P3 = High P1 = High

P2 = Low P3 = High Przy pomocy przykładanego napięcia można ładunek przesuwać w kierunku kanału odczytowego

A.F.Żarnecki

Μ

<u>CP CCD</u>

CCD pozwala odczytać macierz milionów piksli przy użyciu jednego kanału elektroniki.

proste i tanie, ale często zbyt wolne

wrażliwe na zniszczenia radiacyjne Readout time ≈

N×M/fout

Μ Column Parallel CCD

Readout time = N/f_{out}

Szybkość odczytu można istotnie zwiekszyc czytając każdą kolumnę oddzielnie

Column Parallel CCD (CPCCD)

Ładunek spływa do bramki tranzystora FET i tam się gromadzi.

Każda kolumna ma swój wzmacniacz, wybór rzędu przez przyłożenie napięcia.

<u>MAPS</u>

warstwa aktywna bez pola (tzw. warstwa epitaksjalna)

ładunki powstające w wyniku jonizacji rozpływają się isotropowo

zbierane są na złączach rozłożonych na powierzchni

technologia CMOS umożliwia integrację elektroniki odczytowej na powierzchni sensora p+ n+ n+ p-well n-well p-epi + region p++ substrate p++ substrate p++ combination

technologia przemysłowa

 \Rightarrow stosunkowo tania

<u>MAPS</u>

Wyniki testów detektora MAPS, rozmiar pixla $30 \times 30 \mu m$

Rozkład mierzonego sygnału.

Dokładność wyznaczenia pozycji

Dobrze opisany przez konwolucję rozkładu Landaua z rozdzielczością aparaturową

Maksimum sygnału $\sim 15 - 20 \times szum$ \Rightarrow wysoka efektywność detekcji (> 99%)

$$\sigma \approx 3\mu m \ (\approx \frac{1}{10} \text{ piksla !})$$

MAPS

Wyniki testów detektora MAPS, rozmiar pixla $30 \times 30 \mu m$

Błąd pozycji vs pozycja na pikslu.

Pozycja wyznaczana metodą środka ciężkości (CoG) (

Pozycja CoG po zastosowaniu poprawki (tzw. funkcja Eta)

Pojedyncza cząstka "zapala" średnio 4 pixle ⇒ systematyczny błąd pozycji zależny od punktu przejścia cząstki wyznaczana z danych poprawka prawie całkowicie eliminuje efekty systematyczne

ISIS In-situ Storage Image Sensor

Wąskim gardłem pikslowych detektorów krzemowych jest odczyt - konieczność transferu ogromnych ilości danych.

W przypadku detektorów dla ILC rozwiązaniem może być sensor z pamięcią umożliwiającą buforowanie pomiarów:

Wiązka ILC: \sim 3000 przecięć co \sim 400 ns, następnie \sim 200 ms przerwy

<u>3D</u>

Nowa koncepcja

Obszar zubożony wytwarzany pomiędzy domieszkowanymi "kolumnami" prostopadłymi do powierzchni sensora.

- ⇒ krótsza droga/czas dryfu
- ⇒ mniejsze napięcie zasilania
- ⇒ większa odporność na zniszczenia radniacyjne

Detektory pikslowe jak i paskowe (!)

Niestety skomplikowane (\Rightarrow drogie)

Ale obiecujący kierunek rozwoju...

<u>3D'</u>

Detektory typu HAPS (Hybrid Active Pixel Sensor): skomplikowane i drogie.

W innych układach zawsze tracimy część powierzchni na elektronikę przetwarzania i odczytu sygnału.

Pojawiają się jednak nowe technologie umożliwiające tworzenie trójwymiarowych struktur w krzemie.

Mogą być zastosowane do tworzenia samej elektroniki, ale także do integracji elektroniki z sensorem na etapie produkcji.

Conventional MAPS

<u>3D'</u>

Rozważane i testowane są różne technologie łączenia warstw.

Projekt 3D procesora odczytu dla detektora pikslowego (FNAL)

<u>3D"</u>

Rekonstrukcja torów cząstek znacząco się poprawia, gdy zamiast jednej warstwy detektora zastosujemy kilka cieńszych zintegrowanych warstw.

Oprócz pozycji możemy rekonstuować także kierunek cząstki.

Integracja na poziomie produkcji układu - brak niepewności związanych ze względnym pozycjonowaniem.

Podsumowanie

W najbliższych latach bez wątpienia technologie detektorów krzemowych będą dalej intensywnie rozwijane... (dla SLHC, ILC/CLIC i innych)

A.F.Żarnecki