Metody eksperymentalne w fizyce wysokich energii

#### prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład VII

Eksperymenty nieakceleratorowe

- Pomiary neutrin
- Pierre Auger
- Poszukiewanie ciemnej materii

# Neutrina

### Przekrój czynny

Przekrój czynny na oddziaływanie neutrin z materią jest niewyobrażalnie mały.

Dla neutrin o energii rzędu 1 MeV

 $\sigma_{\nu N} ~\sim~ 10^{-43} ~cm^2 ~=~ 10^{-19} ~b$ 

Odpowiada to średniej drodze swobodnej w materii rzędu lat świetlnych !!!

Przekrój czynny na oddziaływanie neutrin z materią rośnie z energią, ale tylko liniowo...

Badanie neutrin możliwe jest tylko w oparciu o bardzo intensywnego źródła...



Słońce, promieniowanie kosmiczne, reaktory jądrowe, oddziaływania cząstek... oraz ogromne detektory...

#### Produkcja neutrin

Słońce jest nie tylko źródłem promieniowania elektromagnetycznego, ale też niezwykle intensywnym źródłem neutrin elektronowych.

Ogromna większość neutrin pochodzi z reakcji **p-p**:

$$p + p \rightarrow D + e^+ + \nu_e \ (E_{\nu} \le 0.42 \ MeV)$$

jednak wyższe energie uzyskują neutrina z reakcji "pep":

 $p + e^- + p \rightarrow D + \nu_e \ (E_{\nu} \approx 1.44 \ MeV)$ 



#### Produkcja neutrin

Dalsze reakcje syntezy  ${}^{3}He$ ,  ${}^{4}He$ ,  ${}^{7}Be$  i  ${}^{7}Li$  prowadzą do emisji dodatkowych neutrin.

Neutrina z przemiany  $^7Be$ 

 ${}^7_4Be + e^- \rightarrow {}^7_3Li + \nu_e$ 

mają jednak energie poniżej 1 MeV



#### Produkcja neutrin

Źródłem wysokoenergetycznych neutrin jest przemiana  ${}^{8}B$ 

 ${}^8_5B \rightarrow {}^8_4Be + e^+ + \nu_e$ 

w której energia emitowanych neutrin dochodzi do 15 MeV

Tylko te neutrina mogą być mierzone w detektorach cząstek elementarnych.

Np. w Super-Kamiokande mierzymy neutrina o  $E_{\nu}$  > 5–7 MeV...



#### Widmo energii

Widmo energii neutrin elektronowych produkowanych w reakcjach jądrowych na słońcu ⇒

Strumień neutrin o energiach poniżej kilku MeV może być zmierzony metodami radiochemicznymi: mierzymy produkcję powstających izotopów:

 $\nu_e + Cl \rightarrow Ar + e^-$ 

(eksperyment Homestake)

 $\nu_e$  + Ga  $\rightarrow$  Gr + e<sup>-</sup>

(SAGE, GALLEX, GNO)

Tylko neutrina elektronowe !



## Neutrina

#### **Eksperyment Super-Kamiokande**

Japonia, w starej kopalni, 1 km pod górą Kamioka, komora o wysokości 40 m i średnicy 40 m, wypełniona wodą

11'000 fotopowielaczy (50 cm średnicy!) rejestruje przechodzące cząstki

rejestrowane jest promieniowanie Czerenkowa

Jak można mierzyć tak małe sygnały ( $\sim 5 MeV$ ) w tak ogromnym detektorze?







A.F.Żarnecki





A.F.Żarnecki

### Tło

- Mimo ogromnej masy detektora oczekiwano jedyni około 30 przypadków oddziaływań neutrin słonecznych na dobę.
- Przypadki skrajnie niskich energii (rzędu 10 MeV) konieczność redukcji tła.
- Główne tło: naturalna promieniotwórczość.
- Stężenie radonu w powietrzu w kopalnie  $\sim 3000 Bq/m^3$
- ⇒ hermetyczne drzwi, intensywna wentylacja powietrzem zewnętrznym
- cała komora wyłożona spejcalną platikową osłoną zabezpieczającą przed przenikanie radonu ze skał
- ⇒ hermetyczny zbiornik, dopełniony specjalnie oczyszczonym powietrzem ( $3mBq/m^3$ ) pod ciśnieniem wyższym od atmosferycznego
- ⇒ intensywne filtrowanie wody (ok. 35 t/h, czyli cały detektor w ok. 2 miesiące)

### Wyzwalanie

- Średni poziom sygnału z pojedynczego fotopowielacza: 3.5 kHz.
- Układ wyzwalania wymagał przyjścia sygnału z wielu PMT w oknie czasowym 200 ns.

Średnia oczekiwana liczba zliczeń: ok. 8.

- Różne progi wyzwalania:
  - High Energy (HE) 33 PMT
  - Low Energy (LE) 29 PMT
  - Super Low Energy (SLE) 24 PMT



Próg wyzwalania mógł być obniżany w miarę oczyszczania detektora.

#### Wyzwalanie

Typowy rozkład rekonstruowanych wierzchołków po wstępnej selekcji przypadków niskiej energii (próg 5 MeV).

Wyraźny wkład naturalnej promieniotwórczości ścian komory.

Przerywana linia: "fiducial volume" obszar z którego wybieramy przypadki do dalszej analizy.



### Kalibracja

Fotony przebiegają w wodzie do 60 m - atenuacja światła musi być dokładnie znana i monitorowana.

Można ją wyznaczyć z obserwacji sygnału z rozpadu zatrzymujących się mionów.

Około 1500 "kalibracyjnych" rozpadów dziennie.

Wystarcza do bardzo dokładnego monitorowania zmian w skali tygodni.



#### Kalibracja

Kalibracja energetyczna: kluczowa przy niskich energiach.

Główna metoda: własny akcelerator (!) 5-16 MeV (zakres energii mierzonych neutrin)

Wiązka wprowadzana pionowo w kilku wybranych punktach.



#### Kalibracja

Wyniki kalibracji przy pomocy akceleratora

Rozdzielczość energetyczna

- 18.4% przy 5 MeV
- 14.2% przy 10 MeV
- 11.3% przy 20 MeV

Tłumacząc to na parametry kalorymetru

$$\frac{\sigma}{E} \approx \frac{1.2\%}{\sqrt{E[GeV]}} \oplus 7.6\%$$



### Kalibracja

#### Wyniki kalibracji przy pomocy akceleratora

Skala energii



Rozdzielczość

### Kalibracja

Wada akceleratora: tylko wybrane pozycje i jeden kierunek wiązki (pionowy).

Drugie narzędzie: "generator DT" - źródło neutronów.

 $^{3}H + ^{2}H \rightarrow ^{4}He + n$ 

Izotropowy strumień neutronów 14.2 MeV.

W oddziaływaniu z tlenem (w wodzie):

 $n + {}^{16}O \rightarrow p + {}^{16}N$ 



#### Kalibracja

Rozpady  ${}^{16}N$  dokładnie znane:

- 66%: 6.129MeV  $\gamma$  + 4.29MeV  $\beta$
- 28%: 10.419MeV β





Rozpady <sup>16</sup>*N* mierzone po wyciągnięciu "generatora"

#### Kalibracja

Mierzone rozkłady dla przypadków kalibracyjnych <sup>16</sup>N: Energii Położenia wierzchołka





### Kalibracja

Skala energii nie zależna od pozycji i kąta emisji elektronu



#### Klasyfikacja przypadków

Przypadki które rozpoznajemy jako oddziaływania neutrin:

#### **FC: Fully Contained**

Elektron lub niskoenergetyczny mion wyprodukowany w detektorze zatrzymuje się w nim

#### **PC: Partially Contained**

Wysokoenergetyczny mion wyprodukowany w środku ucieka z detektora

#### Upward

Miony wpadające do detektora od dołu







#### Neutrino elektronowe

Przypadek  $\nu_e \ n \to e^- p$ 

Krótki zasięg elektronu - "cienki" pierścień

#### Neutrino mionowe

Przypadek  $\nu_{\mu} \ n \rightarrow \mu^{-} p$ 

Długa droga w wodzie - "gruby" pierścień.



# Particle identification



# Particle ID results



=99%

#### Obserwacja neutrin słonecznych

Oddziaływania neutrin słonecznych możemy odróżnić od oddziaływań neutrin atmosferycznych mierząc kąt rozproszenia elektronu względem kierunku od słońca:



Wykład VII

Super-Kamiokande "Zdjęcie" Słońca w "świetle" neutrin

rzeczywisty rozmiar Słońca  $\sim \frac{1}{2}$  pixla



Neutrina słoneczne obserwowane w SK pochodzą głównie z reakcji typu CC

$$\nu_e + e^- \rightarrow e^- + \nu_e$$

$$-$$
 +  $\nu_e$  +  $e^- \rightarrow \nu_e$  +  $e^-$ 

Możliwa jest też detekcja  $\nu_e$  poprzez proces typu NC:

Ale proces typu NC możliwy jest też dla innych neutrin, np:

$$u_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$







przekrój czynny  $\sim 5$  razy mniejszy...

Pomiar Super-Kamiokande:

$$\Phi^{SK} \approx \Phi_{\nu_e} + 0.154 \cdot \left( \Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}} \right)$$

(także dla  $\nu_{\tau}$ )

# SNO

#### Eksperyment SNO (Sudbury Neutrino Observatory)



- ogromny zbiornik wypełniony
   7000 t wody (H<sub>2</sub>0)
- w środku kula wypełniona
   1000 t ciężkiej wody (D<sub>2</sub>0)
- promieniowanie Czerenkowa mierzone przez ok. 9500 fotopowielaczy.
- całość umieszczona na głębokości ponad 2000 m



**SNO** 

A.F.Żarnecki





#### A.F.Żarnecki

SNO

#### Detekcja neutrin

Jak w SK możemy zmierzyć sygnał pochodzący z rozpraszania neutrin na elektronach:

$$u_X + e^- \rightarrow \nu_X + e^- \quad (ES)$$
 $\sim \Phi_{\nu_e} + 0.154 \cdot (\Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}) \quad \Rightarrow \text{ informacja o wszystkich typach neutrin}$ 

Zastosowanie ciężkiej wody umożliwia dodatkowo pomiar rozpraszania na deuterze:



 $\Rightarrow$  informacja o neutrinach elektronowych



 $\Rightarrow$  informacja o wszystkich neutrinach



#### Wyniki

Wkłady od poszczególnych procesów można rozdzielić na podstawie mierzonych rozkładów energii i kąta rozproszenia:



Wyniki ("Phase I" -  $D_2$ 0) Z dopasowania uzyskujemy (w jednostkach  $10^6 \ cm^{-2}s^{-1}$ ):

$$\Phi_{CC} = 1.76 \pm 0.05 \pm 0.09 = \Phi_{\nu}$$

- $\Phi_{ES} = 2.39 \pm 0.24 \pm 0.12$ 
  - $= \Phi_{\nu_e} + \varepsilon (\Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}})$  $(SK: 2.32 \pm 0.09)$
- $\Phi_{NC} = 5.09 \pm 0.44 \pm 0.46$ 
  - $= \Phi_{\nu_e} + \Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}$

Przewidywania SSM

 $\Phi^{SSM}(\nu_e) = 5.15 \pm 0.95$ 



Dobra zgodność dla całkowitego strumienia neutrin. W miejsce "brakujących"  $\nu_e$  obserwujemy  $\nu_{\mu}$  i  $\nu_{\tau}$ 

 $\Phi(\nu_{\mu} + \nu_{\tau}) = 3.41 \pm 0.45 \pm 0.48 \approx 2 \times \Phi \nu_{e}$  (po równo)

**SNO** 



#### Pomiar procesów NC

Największy błąd statystyczny ma pomiar strumienia w procesie NC.

Identyfikacja tych przypadków wymaga pomiaru niskoenergetycznych neutronów:

 $\nu_X + D \rightarrow p + n + \nu_X$ 

Eksperyment SNO próbował to zrobić na 3 sposoby:

• Phase I (1999-2001): pomiar oddziaływań neutronów z  $D_2O$ 

 $n + d \rightarrow t + \gamma$   $E_{\gamma} = 6.3 MeV$ 

• Phase II (2001-2002): pomiar oddziaływań neutronów z jądrami chloru

 $n + {}^{35}Cl \rightarrow {}^{36}Cl + n\gamma \qquad \sum E_{\gamma} = 8.6 MeV$ 

• Phase III (2004-2006): pomiar przy użyciu dedykowanych liczników



#### Phase II

Oddziaływanie z jądrami chloru stało się możliwe gdy w roku 2001 w dektorze SNO do wody... dosypano soli.

Jądra chloru mają dużo większy przekrój czynny na wychwyt neutronu - ponad dwukrotnie podniosła się efektywność rejestracji przypadków typu NC.

⇒ mniejszy błąd statystyczny w pomiarze całkowitego strumienia neutrin




#### Wyniki (Phase I + Phase II)

Z łącznego dopasowania (w jednostkach  $10^6 \ cm^{-2} s^{-1}$ ):

$$\Phi_{CC} = 1.68 \pm 0.06 \pm 0.09 = \Phi_{\nu_e}$$
  

$$\Phi_{ES} = 2.35 \pm 0.22 \pm 0.15$$
  

$$= \Phi_{\nu_e} + \varepsilon (\Phi_{\nu_\mu} + \Phi_{\nu_\tau})$$
  

$$(SK: 2.32 \pm 0.09)$$
  

$$\Phi_{NC} = 4.94 \pm 0.21 \pm 0.36$$

$$P_{NC} = 4.94 \pm 0.21 \pm 0.36$$

 $= \Phi_{\nu_e} + \Phi_{\nu_\mu} + \Phi_{\nu_\tau}$ 

Przewidywania SSM (nowe)

$$\Phi^{SSM}(\nu_e) = 5.82 \pm 1.34$$





#### Phase III

Pomiar neutronów przy pomocy dedykowanych liczników.

Liczniki gazowe: mieszanka  ${}^{3}He$  :  $CF_{4}$ .

 $n + {}^{3}He \rightarrow p + t$ 

Pojedynczy licznik: 2-3 m.

36 strun z licznikami rozmieszczonych na siatce  $1 \times 1m^2$ 







#### Phase III

Wyniki kalibracji





#### Wyniki (Phase III)

Wyniki dopasowania (w jednostkach  $10^6 \ cm^{-2}s^{-1}$ ):

 $\Phi_{CC} = 1.67 \pm 0.09 = \Phi_{\nu_e}$   $\Phi_{ES} = 1.77 \pm 0.26$   $= \Phi_{\nu_e} + \varepsilon (\Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}})$   $(SK : 2.32 \pm 0.09)$   $\Phi_{NC} = 5.54 \pm 0.48$   $= \Phi_{\nu_e} + \Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}$ 

Przewidywania SSM (nowe)

 $\Phi^{SSM}(\nu_e) = 5.69 \pm 0.91$ 



**LAGUNA:** Large Apparatus for Grand Unification and Neutrino Astrophysics

**Three detector technologies:** 

- water Cherenkov: MEMPHYS, mass 420-1000 kton
- liquid scintillator: LENA, mass 30-70 kton
- liquid argon: GLACIER, mass 50-100 kton

# **MEMPHYS (water Cherenkov)**

- extrapolation of Super-Kamiokande detector
- 3-5 tanks in shafts 65m diameter and 65m height
- ~81000 12" PMTs (30% surface coverage) or 20" PMTs (40% coverage)
- possibility of introducing GdC (decrease of background by tagging neutrons from inverse beta decay)



a)

# LENA (liquid scintillator)

- one cylindrical tank (vertical or horizontal)
- inner volume contains about 50000m<sup>3</sup> of liquid scintillator
- scintillation light detected by 12000 20" PMTs (30% surface coverage)
- outer part (muon veto) filled with water
- technology used in KamLAND and Borexino detectors



# **GLACIER (liquid argon)**

- liquid argon (LAr) Time Projection Chamber (TPC)
- 3D reconstruction of events using information provided by ionization in LAr and light (scintillation and Cherenkov) readout by PTMs
- bi-phase mode (drifting electrons from liquid phase are extracted into gas phase and amplified)
- LAr TPC pioneered by the ICARUS experiment





# Pierre Auger Cosmic Ray Observatory

#### Obserwatorium Pierre Auger

Badanie promieni kosmicznych w zakresie najwyższych obserwowanych energii, E > 10 EeV (>10<sup>19</sup> eV):

skład lekkie czy ciężkie jądra, fotony, neutrina, ?? widmo energii kształt widma w zakresie efektu GZK rozkład kierunkowy anizotropia, źródła punktowe

 $\rightarrow$  wyjaśnienie ich pochodzenia ???

- obserwacja całego nieba detektory w Argentynie i w USA
- 2 \* 3000 km<sup>2</sup>  $\rightarrow$  duża statystyka danych
- hybrydowa detekcja wielkich pęków: dwa układy detektorów

#### Wielki pęk atmosferyczny



#### **Pierre Auger Cosmic Ray Observatory**



Use earth's atmosphere as a calorimeter. 1600 water Cherenkov detectors with 1.5km distance.

Placed in the Pampa Amarilla in western Argentina.





#### Detektor naziemny



#### Obserwatorium Pierre Auger



#### Detektor Fluorescencyjny



#### Detektory fluorescencyjne



# Goals of the Observatory

Detection with high statistics of cosmic rays with energies >10<sup>19</sup>eV.

- Spectrum
  - Requiers a good energy determination ≈ 20 30 %
- Arrival directions
  - ➡ Angular resolution ≈1°
- Somposition
  - Fast electronics to measure details of the shower front (SD)
  - Field of view to observe shower development (FD)



Science results

## **Detector** Calibration



#### Fluorescence Telescopes





## Primary energy determination: SD

SD measures the lateral structure of the shower at ground



- Reconstruct geometry (arrival direction & impact point)
- + Fit particle lateral distribution (LDF)
- S(1000) [signal at 1000 m] is the Auger energy estimator
   ("ideal" distance depends on detectors spacing)

# Primary energy determination: FD

FD records the longitudinal profile of the shower during its development in atmosphere





#### One event seen by FD



- Reconstruct geometry (shower detector plane, SDP, and shower axis in SDP)
  - Fit longitudinal shower profile
  - $\mathsf{E} \propto \mathsf{area}$  under the curve



Calorimetric measurement

## Primary energy determination: SD+FD



Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the median zenith angle, S38) from the FD calorimetric energy



## Primary energy determination: SD+FD



Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the mediam zenith angle, S38) from the FD calorimetric energy



Energy resolution: statistical ≈ 19%

# FD Energy systematic uncertainty



Stereo events ⇒ reconstruction uncertainty

10%, consistent with MC

| Source             | Systematic uncertainty |
|--------------------|------------------------|
| Fluorescence yield | 14%                    |
| P,T and humidity   | 7%                     |
| effects on yield   |                        |
| Calibration        | 9.5%                   |
| Atmosphere         | 4%                     |
| Reconstruction     | 10%                    |
| Invisible energy   | 4%                     |
| TOTAL              |                        |



# Total FD E uncertainty: 22%



## 20 May 2007 E ~ 10<sup>19</sup> eV

#### Extending the energy range with hybrid events



- energy threshold  $10^{18} \, \mathrm{eV}$  covering the ankle region
- good energy resolution  $\sigma(E)/E < 10\%$
- calorimetric energy measurement

#### Energy spectrum from hybrid data





**Direct detection of WIMPs** (Weakly Interacting Massive Particles):



3 V.Yu. Kozlov | EDELWEISS II | HEP'09 | 16 July 2009

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ



Szukamy bardzo rzadkiego procesu: konieczna koincydencja dwoch sygnatur.

## Direct Detection of WIMPs



#### Spherical Isothermal Halo Max. Boltz. v distribution, <v>~230km/s



#### Build a good mousetrap!

- Choose target material to "see" recoils
- Discriminate NRs from ERs
- Reduce background



"See" Nuclear Recoils <Er>~30 keV, < ~levent/kg/l00days

## CDMS-2 in a nutshell

Ge & Si target masses



#### Allow <1 background event to maximize discovery potential



Event by event **discrimination** of nuclear and electron recoils using **ionization** and **phonon** signals





**Control Backgrounds** by going underground, using clean materials and shielding

## ZIP: Z-sensitive Ionization & Phonon Detectors



## **Basic Discrimination principles**



## Background Control in CDMS-2



#### Passive shielding



RF shielded class 10,000 clean room



Plastic scintillator muon veto

# CDMS-2 @ Soudan



|           | T1  | T2  | ТЗ  | T4  | T5  |  |  |
|-----------|-----|-----|-----|-----|-----|--|--|
| Z1        | G6  | S14 | S17 | S12 | G7  |  |  |
| Z2        | G11 | S28 | G25 | G37 | G36 |  |  |
| Z3        | G8  | G13 | S30 | S10 | S29 |  |  |
| Z4        | S3  | S25 | G33 | G35 | G26 |  |  |
| Z5        | G9  | G31 | G32 | G34 | G39 |  |  |
| Z6        | S1  | S26 | G29 | G38 | G24 |  |  |
| Side View |     |     |     |     |     |  |  |

- 30 detectors installed and operating in Soudan since June 2006.
  - 4.75 kg of Ge, 1.1 kg of Si
- Seven Total Data Runs:
  - R123 R124:
    - taken: (10/06 3/07) (4/07 7/07)
    - exposure: ~400 kg-d (Ge "raw")
    - PRL 102, 011301 (2009)
  - R125 R128
    - taken: (7/07 1/08) (1/08 4/08)
      - (5/08 8/08) (8/08 9/08)
    - exposure: ~ 750 kg-d (Ge "raw")
    - Under Analysis
  - R129:
    - taken: (11/08 3/09)

## **CDMS-2** : First Five Tower Result

#### **Blind Analysis:**

PRL 102, 011301 (2009)

Event selection and efficiencies were calculated without looking at the signal region of the WIMP-search data.



**Event Selection:** 

- Energy threshold (10-100 keV)
- Veto-anticoincident
- Single-scatter
- Inside fiducial volume
- 2-sigma Nuclear Recoil
- Phonon timing
# CDMS-2 : First Five Tower Result

#### PRL 102, 011301 (2009)

# Surface Background

Estimated number of background events to pass surface cut in Ge

$$0.6^{+0.5}_{-0.3}(stat.)^{+0.3}_{-0.2}(syst.)$$



#### **Neutron Backround**

Poly Cu (α,n): <0.03 Pb (fission): <0.1 Cosmogenic: <0.1 (MC 0.03-0.05) 398 raw kg-d 121 kg-d WIMP equiv. @ 60 GeV/c<sup>2</sup> (10 - 100 keV analysis energy range)

# CDMS-2 : First Five Tower Result

#### PRL 102, 011301 (2009)

 $10^{1}$ 



### Dark Matter Direct Detection



## Double phase TPC







- •Primary scintillation signal (S1)
- •Electrons drift over 30 cm max distance
- •Electrons are extracted and accelerated generating secondary scintillation signal
- •The time difference between the two signals gives information on event position in *z*





# Why Liquid Xenon?

- √large mass (ton scale)
- ✓ easy cryogenics
- $\checkmark$  low energy threshold (a few keV)
- ✓A~131 (good for SI)
- √~50% odd isotopes (SD)
- $\checkmark$ background suppression
  - good self shielding features (~3 g/cm<sup>3</sup>)
  - low intrinsic radioactivity
  - gamma background discrimination
  - position sensitive (TPC mode)



## Xenon100: PMT light calibration











## Xenon100: Position reconstruction





3 different methods for xy position reconstruction: neural network support vector machine Least squares minimization

18000

### What is inside has to be carefully selected







100 kg LXe Active veto (side, top and bottom)

#### Install the detector underground...





# Warm Liquid Dark Matter Detector

#### **\*** COUPP

#### Room Temp Bubble Chamber, CF<sub>3</sub>I, 2 kg tested



A CCD camera takes pictures at 50 Hz. Chamber triggers on appearance of bubble in the frame.

Single bubble DM signature.

- New 20 and 60 kg chambers will go underground in 2010