Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład XI

• Systemy wyzwalania i zbierania danych

Level-1 trigger

Najważniejsza i najtrudniejsza część układu wyzwalania

- * bardzo mało czasu na podjęcie decyzji
- * możliwe tylko najprostsze operacje na danych:
 - dodawanie
 - mnożenie
 - adresowanie pamięci (!)

=> jedyny sposób na wykonanie bardziej złożonych operacji to policzyć wcześniej wszystkie możliwości i zapisac w LUT (Look-Up Table)

* musimy wprowadzać uproszczenia

(ograniczenie strumienia danych => przestrzeni adresowej)

* musimy się pogodzić z dużymi błędami

* najważniejsza jest efektywność (czystość zapewnimy potem)

Level-1 Trigger: decision loop

ATLAS and CMS Strategy

Level-1 : only calorimeters & muons

Level-1 trigger

Wykorzystuje tylko niewielką część informacji płynącej z detektora:

- dające możliwość szybkiego odczytu
- niosące najważniejsze informacje
- proste do przetworzenia (nie ma możliwości wykonywania skomplikowanych obliczeń, np. dopasowywania toru)

Często odczytujemy tylko podpróbke pomiarów z danego detektora lub sumaryczne wyniki (bez pełnej granulacji)

Pełny przypadek czeka w buforach elektroniki odczytowej na decyzję globalnego układu wyzwalania!

Pipelined Readout

[Drawing by Nick Ellis (CERN), 2006]

The information from each BC, for each detector element, is retained during the latency of the L1 trigger (few μ s)

The information retained may be in several forms

- Analogue level (held on capacitor)
- Digital value (*e.g.* ADC result)
- Binary value (*i.e.* hit / no hit)

Data reaching end of pipeline is either discarded (large majority of events) or accepted by trigger

Pipelined readout already used at HERA and Tevatron, NA48, BABAR, ...

Detector Readout: front-end types

Digitisation Options

Dead-time (here ATLAS)

Online Selection Flow in pp

- Level-1 trigger: reduce 40 MHz to 10⁵ Hz
 - This step is always there
 - Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Higher Level Triggers at the LHC

Data are transferred to large buffer memories after a Level-1 accept

The subsequent stages should not introduce further dead-time

The data rates at the HLT/DAQ input are still massive

~1 MB event size at ~100 kHz event rate → 100 GB/s data rate (*i.e.* 800 Gbit/s)

This is far beyond the capacity of the bus-based event building of LEP

• Use network-based event building to avoid bandwidth bottlenecks

No node in the system sees the full data rate — each Readout System covers only a part of the detector — each Filter System deals with only a fraction of the events

HLT and DAQ: Concepts

The massive data rate after L1 poses problems even for network-based event building — different solutions have been adopted to address this

In CMS, the event building is factorized into a number of slices each of which sees only a fraction of the rate

 Requires large total network bandwidth (→ cost), but avoids need for a very large single network switch

In ATLAS, the Region-of-Interest (RoI) mechanism is used to access the data selectively – only move data needed for Level-2 processing

- Reduces by a substantial factor the amount of data that needs to be moved from the readout systems to the processors
- Implies relatively complicated mechanisms to serve the data selectively to the Level-2 trigger processors → more complex software

Level-2 trigger

Mimo redukcji częstości zdarzeń czas wciąż jest ograniczeniem. Nie ma szans na pełną, globalną analizę przypadku...

Częstym podejściem jest sprawdzenie decyzji Level-1 trigger, czyli powtórzenie tych samych/podobnych cięć w oparciu o pełniejszą informację z detektora (lepsza granulacja, kalibracja itp.)

Wciąż uproszczone algorytmy, działające na poziomie pojedynczych detektorów.

Lokalnie możliwe łączenie informacji z różnych detektorów.

Czasami dodajemy cięcia, na które nie było czasu na pierwszym poziomie (redukcja tła).

Selective Readout Concepts

Two concepts are used to select data subsets from the readout systems

Region-of-Interest concept (ATLAS, LHCb):

- L1 indicates the geographical location of candidate objects, *e.g.* EM clusters
- L2 only accesses data from Rols, small fraction of total data

Sequential-selection concept (ATLAS, CMS):

- Data are accessed by L2 initially only from a subset of detectors (*e.g.* muon systems and calorimeters)
- Many events rejected without accessing, *e.g.*, inner detector

Rol Mechanism

LVL1 triggers on high p_T objects

 Caloriemeter cells and muon chambers to find e/γ/τ-jet-μ candidates above thresholds

LVL2 uses Regions of Interest as identified by Level-1

 Local data reconstruction, analysis, and sub-detector matching of Rol data

The total amount of Rol data is minimal

 ~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz

Example: electron selection (I)

"Level-2" electron:

- 1-tower margin around 4x4 area found by Lvl-1 trigger
- Apply "clustering"
- Accept clusters if H/EM < 0.05
- ◆ Select highest E_T cluster

Brem recovery:

- Seed cluster with $E_T > E_T^{min}$
- Collect all clusters in road
- \rightarrow "supercluster"

and add all energy in road:

HLT Trigger Lines

Example for "e60" and "g60" signature chains in ATLAS

The early reject algorithm benefits from separating HLT algorithms into steps

- Each one requesting additional detector data or performing reconstruction, followed by a hypothesis algorithm
- As soon as one steps is unsuccessful, the trigger line is stopped

Compare to full event reconstruction *O*(10s) per event

LHCb Trigger

Level-0 Firmware Trigger Search for high- $p_T \mu$, e, γ , *h* candidates, veto pile-up

Calorimeter Trigger:

- Energy in 2x2 cell clusters
- PID from ECAL / HCAL energy / PS and SPD information

Muon Trigger:

- Straight line search in M2-M5
- Look for compatible hits in M1 (before calorimeters)
- p_T from a look-up table

High-Level Trigger

HLT-1:

- Rols around L0 candidate (*alleys*)
- Confirm L0 candidate on tracker, VELO

HLT-2:

- Search for all tracks using VELO segments as seeds
- Inclusive selection based on few tracks
- Exclusive selection of ~100 final states

Higher Level Trigger

Na ostatnim poziomie mamy już dość czasu na pełną rekonstrukcję. Zakładając, że dysponujemy odpowiednią liczbą CPU...

Możemy przeanalizować wszystkie dane, łącząc informacje z różnych detektorów (podejście globalne).

Korzystamy z pełnych kodów rekonstrukcji przypadków, wciąż przybliżone mogą być jednak parametry (kalibracja, alignment).

ale

Zanim przypadki zostaną przeanalizowane na poziomie HLT, dane z poszczególnych detektorów muszą zostać zsynchronizowane i połączone w przypadki.

Trzeba to zrobić nie hamując przepływu danych !

ATLAS and CMS HLT Concepts

Online Selection Flow in pp (II)

Event Building

Form full-event-data buffers from fragments in the readout. Must interconnect data sources/destinations.

Event Building via a Switch

- Three major issues:
 - Link utilization
 - The bottleneck on the outputs
 - The large number of ports needed
- Space-division: crossbar
 - Simultaneous transfers between any arbitrary set of inputs and outputs
 - Can be both self-routing and arbiterbased (determine connectivity between S's and D's for each cycle); the faster the fabric, the smaller the arbitration complexity
 - Does not solve Output Contention issue
 - Need Traffic Shaping

Switching technologies

Myricom: Myrinet 2000

- Switch: Clos-128 @ 2.5 Gb/s ports
- NIC: M3S-PCI64B-2 (LANai9)
- Custom Firmware

wormhole data transport with flow control at all stages

Gigabit Ethernet

- Switch: Foundry FastIron64 @ 1.2 Gb/s ports
- NIC: Alteon (running standard firmware)

Implementation:

Multi-port memory system R/W bandwidth greater than sum of all port speeds **Packet switching** Contention resolved by Output buffer. Packets can be lost.

Infiniband

• 2.5 Gb/s demo products. First tests completed recently.

BS implemented in firmware

- Each source has message queue per destination
- Sources divide messages into fixed size packets (carriers) and cycle through all destinations
- Messages can span more than one packet and a packet can contain data of more than one message
- No external synchronization (relies on Myrinet back pressure by HW flow control)

zero-copy, **OS-bypass principle works** for multi stage switches

A Myrinet-based 32x32 EVB

Gigabit Ethernet-based 32x32 EVB

CMS Slicing Concept – 3D Event Builder

Eight slices: each slice sees only 1/8th of the events

HLT requirements and operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

Physics, Signatures and Triggers

Some physics and their experimental signatures:

- Higgs
 - γγ, bbar, WW, ZZ (peak)
- Supersymmetry
 - multi-leptons or same-sign lepton pairs
 - jets and Missing $E_{\rm T}$
- Z'
 - di-electron, di-muon (peak)
- W'
 - electron or muon and Missing $E_{\rm T}$
- Large Extra dimensions
 - jet + Missing E_T (mono-jet)
 - di-fermion, di-boson
- Compositeness
 - di-jet (hi mass tail)
 - lepton and jet (LeptoQuark)

Corresponding "primary" triggers:

- di-photon
- di-electron
- di-muon
- di-jet
 - with b-tagging
- Inclusive leptons, either:
 - higher threshold
 - Isolation cut
 - Pre-scale applied
- Missing E_{T_1}
 - Jet(s)
 - leptons
- "mixed" or "composite" triggers
 ...

High-Level Trigger Menu

Illustrative HLT menu for LHC at 2×10³³ cm⁻²s⁻¹ luminosity (CMS)

Refinement of Level-1 selection criteria and additional signatures

Signature	Approximate rate
≥ 1 µ > 19 GeV or ≥ 2 µ > 7 GeV	29 Hz
≥ 1 γ > 80 GeV or ≥ 2 γ > 40, 25 GeV	9 Hz
≥ 1 e > 29 GeV or ≥ 2 e > 17 GeV	34 Hz
≥ 1 τ > 86 GeV or ≥ 2 τ > 59 GeV	4 Hz
\geq 1 jet \geq 180 GeV and $E_{T,miss}$ > 123 GeV	5 Hz
≥ 1 jet > 657 GeV or ≥ 3 jets > 247 GeV or 4 jets > 113 GeV	9 Hz
Others (e/γ-jet, b-jets, etc.)	7 Hz

Total of ~ 100 Hz (large uncertainties), large fraction of interesting physics

Need to balance physics coverage against offline computing cost

HLT Efficiency for Physics

Expected CMS results for HLT menu at 2×10³³ cm⁻²s⁻¹ luminosity

Channel	Efficiency (in detector accept.)
$W \rightarrow ev$	67 % (fid: 60 %)
$W \rightarrow \mu \nu$	69 % (fid: 50 %)
$tt \rightarrow \mu + X$	72 %
<i>Н</i> (115 GeV) → үү	77 %
$H(160 \text{ GeV}) \rightarrow WW^* \rightarrow 2\mu$	92 %
<i>H</i> (150 GeV) → <i>ZZ</i> * → 4μ	92 %
<i>A/H</i> (200 GeV) → 2τ	45 %
<i>H</i> ⁺ (200 − 400 GeV) → τ _V	58 %
SUSY (≈ 0.5 TeV squarks/gluinos)	≈ 60 %

LHCb also expects good (fiducial) efficiencies for primary physics modes

- 40% (total) for $B_s \rightarrow D_s^+ \pi^-$, 70% for $B_s \rightarrow J/\psi(\mu\mu)\phi$, 40% for $B \rightarrow K^* \gamma$
- 1 billion fully contained (decay-unbiased) B mesons for 2 fb⁻¹ from inclusive trigger

Electrons, Photons, τ -jets, Jets, Missing E_T, Muons

HLT refines L1 objects (no volunteers)

Goal

• Keep L1T thresholds for electro-weak symmetry breaking physics

Start with L1 Trigger Objects

- However, reduce the dominant QCD background
 - From 100 kHz down to 100 Hz nominally

QCD background reduction

- Fake reduction: e±, γ, τ
- Improved resolution and isolation: μ
- Exploit event topology: Jets
- Association with other objects: Missing E_T
- Sophisticated algorithms necessary
 - Full reconstruction of the objects
 - Due to time constraints we avoid full reconstruction of the event L1 seeded reconstruction of the objects only
 - Full reconstruction only for the HLT passed events

CMS tracking for electron trigger

Present CMS electron HLT

Factor of 10 rate reduction γ: only tracker handle: isolation

• Need knowledge of vertex location to avoid loss of efficiency

Pre-requisites, Volunteers

- Pre-Requisite:
 - Only muons that have a L1 accept are pursued in the HLT.
 - Moreover, only that region may be even looked-at (reconstructed).
- Volunteer:
 - A muon "found" in the HLT, without a corresponding L1 accept
 - Possible Convention: such cannot be the cause of a trigger decision (CDF/CMS)
 - Cannot happen if only "seeded" (on L1 muon track) reconstruction is pursued in HLT
 - Can happen if global reconstruction is performed.
 - Very useful in understanding trigger efficiencies (more later).

HLT Trigger Table - Example (CMS)

Trigger	Threshold (GeV) for L= $2x10^{33}$ cm ⁻² s ⁻¹	Prescale	Rate [Hz]	
Single Electron	26		23.5 +- 6.7	
Double Electron	12, 12		1.0 +- 0.1	
Relaxed Double Electron	19, 19		1.3 +- 0.1	
Single Photon	80		3.1 +- 0.2	
Double Photon	30,20		1.6+-0.7	Electron photon
Relaxed Double Photon	30, 20		1.2+-0.6	Licetion, photon
Single Photon Prescaled	23	400	0.3+-0.02	
Double Photon Prescaled	12, 12	20	2.5+-1.4	
Relaxed Double Photon Prescaled	19, 19	20	0.1+-0.03	
Single Muon	19		25.8+-0.8	
Relaxed Single Muon	37		11.9+-0.5	muon
Double Muon	7, 7		4.8+-0.4	
Relaxed Double Muon	10, 10		8.6+-0.6	
Double Pixel TauJet	100 SingleTau@L1 or 66 DoubleTau@L1		4.1+-1.1	
Double Tracker TauJet	100 SingleTau@L1 or 66 DoubleTau@L1		6.0+-1.1	
Electron-TauJet	16, 52		~0	
Muon-TauJet	15, 40		0.1+-0.06	lau
TauJet-MET	93, 65		0.5 +- 0.1	
Single jet	400		4.8 +- 0.02	
Single jet Prescale 1	250	10	5.2+-0.02	
Single jet Prescale 2	120	1000	1.6+-0.008	
Single jet Prescale 3	60	100000	0.4+-0.002	
Dijet	350		3. +- 0.02	
Trijet	195		1.1 +- 0.01	Jeis
Fourjet	80		8.8 +- 0.2	
Acoplanar Dijet	200, DeltaPhi(dijets)<2.1		0.2+-0.008	
Single jet - MET acoplanar	100, 80, DeltaPhi(jet,MET)<2.1		0.1+-0.02	
Single jet - MET	180, 80		3.2+-0.07	
Dijet - MET	155, 80		1.6+-0.03	
Trijet - MET	85, 80		0.9+-0.07	
Fourjet - MET	35, 80		1.7+-0.2	► liets.met. HT
MET	91		2.5 + -0.2	j oto, m ot, m
H _T - MET	350, 80		5.6+-0.2	
H _T - Single Electron	350, 20		0.4+-0.1	ノ
B-jets (leading jet)	350, 150, 55 (1,3,4-jet event cuts)		10.2 + 0.3	I
B-jets (second jet)	350, 150, 55 (1,3,4-jet event cuts)		8.5 +- 0.3	
TOTAL		R	129.8 +- 7.3	

13-June-2007

~60%

Pre-scales

- Inclusive jet triggers rate too high to take them all
 Sample
- Lower threshold -- higher pre-scale
- Lower threshold at lower trigger level
 - "sharp" cut at HLT
- "assemble" spectrum
- Fancy: dynamic prescales

Trigger Efficiencies (from Data)

The knowledge of the trigger efficiency is required for most LHC analyses

- Corrections to be applied for cross section measurements
- But also kinematic measurements (masses, spin, *CP* asymmetries) require the correction of trigger inefficiencies

Don't trust Monte Carlo simulation – use data driven methods !

- Tag-and-probe method using known resonances, in particular $Z \rightarrow ee, \mu\mu, \tau\tau$
- Orthogonal triggers

HCPSS - 2009, CERN

- Bootstrapping methods
- Reference measurements

Tag-and-Probe Method

With sufficient statistics the efficiency can be evaluated in bins of p_T , η , ϕ Usually, the result has to be corrected for combinatorial background under the *Z* peak The Tag-and-Probe Method is very flexible, many versions of the same idea exist

Simplest case (ignoring backgrounds), just compare rates of $Z \rightarrow ee$ for two triggers:

- e15 (N_1 observed events) and 2e15 (N_2)
- *ε* = e15 efficiency

$$N_2 = \varepsilon^2 \cdot N_{\text{prod}}$$

$$N_1 = \left(2\varepsilon - \varepsilon^2\right) \cdot N_{\text{prod}}$$

$$\Rightarrow \varepsilon = \frac{2N_2}{N_1 + N_2}$$

Simulated $Z \rightarrow ee$ tag-and-probe results for the "e20" trigger signature

- Trigger efficiencies with respect to tight offline electron selection
- Signal statistics corresponds to 100 pb⁻¹ (background neglected)

Combining Triggers

Issue: how to combine data samples collected by several triggers in a physics analysis analysis (*e.g.*, cross section measurement) ?

- Limited bandwidth → rate prescaling by factor: d

Goal:
$$\sigma = \frac{N_{\text{prod}}}{\underline{f}}$$

However, only $N_{\rm rec} < N_{\rm prod}$ events recorded

Fortunately, knowing *d* and
$$\varepsilon$$
, one finds: $N_{\text{prod}} = N_{\text{rec}} d / \varepsilon$

But – what if several trigger lines overlap, or if d_{ik} and ε_{ik} (for trigger line *i* and run *k*) depend on *time* ?

HCPSS – 2009, CERN

Why Do We Need to Combine Triggers ?

Cover different phase space regions, detectors with maximum statistics

- **Different sub-detectors** (*e.g.* di-muon analysis with one μ in barrel and one in endcap)
- **Different signals** (*e.g.* use jets *or* electron triggers)
- **Different energies** (*e.g.* combine trigger lines with different p_T thresholds)

HCPSS – 2009, CERN

The Goal is...

...to calculate the weights w(j) for each event j, such that: $N_{prod} = \sum w(j)$

Simplest approach for single trigger: $w_k(j) = d_k / \varepsilon_k$ for (stable-d) run k

• In case of stable conditions compute **average** w(j) over **all runs**, instead of individual $w_k(j)$ per run, even if prescales and efficiencies vary between runs \rightarrow smaller error !

Toy example (single trigger line):

- 10 runs with d = 1...5 good LHC conditions
- 10 runs with *d* =100 huge beam backgrounds
- 1000–1500 events per run

Averaged weights always better than or equal to run-wise weights !

Note that averaging requires that the definition of the trigger line did not change between the runs !

Combining Triggers

Consider combination of triggers for single trigger level

Distinguish three methods, with rising complexity

- 1. Division method (basic)
 - Divide phase space into distinct regions with only one trigger line per region
 - Choose the region providing largest statistics for analysis
 - Determine trigger efficiency for this region
- 2. Exclusion method (better)
 - Divide data sample according to trigger lines and prescale factors
- 3. Inclusion method (Rolls Royce)
 - A combined weight based on all considered trigger lines is determined for the entire event sample …

For simple final states, or measurements not limited by statistics, the *Division Method* can be a straightforward choice.

HCPSS – 2009, CERN

Exclusion Method (assuming FETC)

Need to first introduce concept of fully efficient trigger combinations (FETC)

- ••• "**OR**" of the combination of trigger lines has $\varepsilon = 1$ with respect to offline selection
- Example: $s_1 = \{N_{\text{tracks}} > 2\}, s_2 = \{N_{\text{tracks}} < 4\} \rightarrow \{s_1 \mid | s_2\}$ is fully efficient

Split data sample according to trigger lines and prescale factors

- Choose the trigger line i^* with the smallest d_{i^*k} for which the "raw trigger" passed
- The raw trigger of a line is the trigger response before prescale
- Event weight then given by: $w_k(j) = d_{i^*k} a_{i^*}(j)$, where "actual trigger" $a_{i^*}(j) = 1$ (0) if event passed (did not pass) trigger line *i** after applying prescale
- Again, instead of computing w_k(j) per run k, compute average weight over runs w'_{i*}, giving the event weight: w(j) = w'_{i*} a_{i*}(j)

Sufficient for many statistically non-critical analysis

[e.g. used for inclusive measurements of structure functions at low Q² by H1]

Inclusion Method

Determine combined weight based on all considered trigger lines

Use all events passing at least one trigger

• Probability to trigger event:

 $\boldsymbol{P}_{k}(\boldsymbol{j}) = 1 - \prod_{i=1}^{N_{\text{lines}}} \left(1 - \frac{\boldsymbol{r}_{i}(\boldsymbol{j})}{\boldsymbol{d}_{ik}}\right)$

- Run-wise weight: $w_k(j) = 1 / P_k(j)$, or better run-averaged: $w(j) = \frac{\sum_{k=1}^{N_{runs}} \mathcal{L}_k}{\sum_{k=1}^{N_{runs}} \mathcal{L}_k P_k(j)}$
- Note: assumes independent application of prescales !

Optimum correction in presence of prescaled triggers that significantly overlap (unless equivalent to exclusion method)

Comparison between Methods

Toy Monte Carlo example:

• 20 runs with varying luminosity, 500-600 events per run

Similar performance for many practical cases ...

Recommendations for Trigger Operation

[From: arXiv:0901.4118]

Include all trigger bits in event record. Raw bits must not be omitted

- For efficiency determination
- For FETC methods

Provide all bits from all levels

• Compute all HLT trigger bits when event has been accepted

Do not use the actual decision at lower levels as input to higher levels

Correlates triggers and invalidates FETC

Avoid overlaps between trigger lines

Correlates trigger lines

Keep trigger definitions simple and stable !

- Simplifies efficiency calculations
- allows to average over runs !

Układ wyzwalania

Powinien zapewnić zebranie/zapisanie

- * możliwie największej liczby przypadków "sygnału", np. poszukiwanych procesów "nowej fizyki", produkcji bozonu Higgsa
- * możliwie różnorodnych topologii tych przypadków
 różne kanały produkcji i/lub rozpadu, różne zakresy kinematyczne
 => konieczne dla weryfikcji modeli, dopasowania parametrów
- * odpowiedniej (minimalizacja błędów) liczby przypadków dla:
 - synchronizacji detektora
 - kalibracji detektora
 - pozycjonowania detektora
 - pomiaru procesów tła
 - pomiaru procesów dających wkład do modeli (np. PDF)
 - pomiaru procesów pozwalających na wyznaczenie świetlności

Układ wyzwalania

Aby zgromadzić wszystkie potrzebne informacje wykorzytujemy całą gamę wmożliwych triggerów:

- przypadki fizyczne (wybrane na podstawie kryteriów LV1/HLT)
- przypadki "minimum bias" ("cokolwiek w detektorze")

weryfikacja algorytmów selekcji

- przypadki losowe: przypadkowe przecięcie z wiązką

ocena tła wiązki

przypadkowe przecięcie bez wiązki

ocena poziomu szumów, pile-up

- przypadki kalibracyjne (różnego typu)

w zależności od typu detektora może to być impuls lasera, impuls ładunku, pomiar sygnału przy wydłużonej bramce...

- przypadki "środowiskowe"

każdy detektor odsyła istotne informacje o swoim działaniu

- przypadki testowe (różnego rodzaju)

każdy detektor wykonuje zadaną procedurę

(np. generacja pseudo danych)

ECAL Calibration and Alignment

• Goal: approximately 0.5% constant term

$$E = G \times F \times \sum C_i A_i$$

- G = overall gain
- F = correction function depending on type of particle, position, energy and cluster algorithm used
- C_i = intercalibration constant
- A_i = signal amplitude (ADC) in channel i

ECAL Calibration and Alignment

- During construction, often possible to calibrate with radioactive sources (e.g. ⁶⁰Co), pulsers and so on.
 - Design mechanical tolerances for resolution goal.

• Test beams used to get overall gain factor.

- Test beam conditions (material in front of calorimeter often different, electronics used may not be final, cables almost certainly not final.
- Understand response as function of position

• Cosmic ray muons can be useful.

CMS ECAL Calibration & Monitoring

ECAL Calibration (Resolution : 'Constant Term of the Resolution Formula') :

Raw (uncalibrated) Supermodule : 6%-10% 'Resolution' Spread among channels before calibration Beam Test Precalibration 2 % 'Resolution' With a 'fast' calibration 'Lab Precalibration' : 4 % 'Resolution' In-Situ Physics Calibration : 0.5 % 'Resolution' Timescale for calibration : Weeks

ECAL Monitoring (Monitor Stability and Measure Radiation Effects) :

ECAL Stability (<< 0.5%), Monitored with Laser Monitoring System

Transparency Loss Correction, Signal Change under Irradiation ~5% Measured with Laser Monitoring System

CMS: Radiation Effects PWO Transparency

ECAL Laser Monitoring System

First Di-photon Distribution in CMS

First shown on Thur 27th Nov, Today's distributions shown below

- Data and MC comparison (uncorrected distributions)
- Almost identical S/B, mass and width compatible
- M(π⁰) is low in both data and MC -Mostly due to the readout threshold (100 MeV/Crystal) and conversions

Cosmic Muon Calibration

CMS In-situ : φ-uniformity method BARREL ENDCAPS

Idea: ϕ -uniformity of deposited energy in crystals at constant η

Limitations : non-uniformities in φ

- in-homogeneity of tracker material
- geometrical asymmetries

Used: Min-bias / Level-1 jet trigger events

Method: Compare $\langle E_T \rangle_{CRYSTAL}$ with $\langle E_T \rangle_{RING}$.

Inter-calibration of η *rings:* $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-\gamma$, isolated electrons

CMS In-situ: using $Z \rightarrow e^+e^-$

Tune algorithmic corrections for electron reconstruction

Events Selection: Low brem electrons.

Algorithm:

Iterative (~10-15), constants are obtained from the peak of ε^i distribution.

$$\bar{\epsilon}^i = \frac{1}{2} \cdot \left[\left(\frac{M_{inv}^i}{M_Z} \right)^2 - 1 \right]$$

Results:

Assuming 5% mis-calibration between the rings and 2% mis-calibration between the crystals within a ring

0.6% ring inter-calibration precision

Statistics: 2.0 fb⁻¹

CMS In-situ: using isolated electrons

Target: **0.5%** calibration precession Sources: $W \rightarrow ev$ (10Hz HLT @ $2x10^{33}cm^{-2}s^{-1}$), $Z \rightarrow e^+e^-$ (2Hz HLT @ 2x10³³cm⁻²s⁻¹), $J/\Psi \rightarrow e^+e^-$, $b/c \rightarrow e_+ \dots$

Event Selection

We need a narrow $E/P \Rightarrow$ Low brem e^{\pm} Variables related to electron bremsstrahlung : (S_{3x3}/S_{5x5}) ECAL TRACKER (track valid hits, $\chi^2/n.d.f.$, P_{out}/P_{in}) Efficiency after HLT: 20-40% Barrel, 10-30% Endcaps

E / P <width minimization> **Method**: ECAL TRACKER 5x5 electron $E = \sum c_i E_i$ momentum

> Background: S/B~8 (isol. electrons from W/QCD) Part of it might be useful $(b/c \rightarrow e)$.

Calibration Constants extraction Techniques:

- L3/LEP iterative (~20 iterations),
- matrix inversion

Calibration Steps

- Calibrate crystals in small η - ϕ regions
- Calibrate regions between themselves using tighter electron selection, $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-\gamma_e$ Nick Hadley

Reconstruction of Electrons

2.5 GeV electron with bremstrahlung

Alignment Strategy

- Applies to tracking detectors including muon chambers.
 - Then use tracks to align calorimeters as trackers measure position better (usually) than calorimeters

• Typically 3 step process

- 1. Measure element (e.g. wire, pixel) position during construction of subdetector using coordinate measuring machines and similar devices.
- 2. Measure relative position of subdetectors after assembly using surveying techniques such as lasers.
 - Only works for detectors you can see.
- 3. Track based alignment

Alignment Concept & Typical Numbers

	Muon	Tr	Tracker		
		Strip	Pixel		
Assembly:	O(mm)	0.1-0.5mm	50-100 μm		
Hardware Alignment:	~<100µm	<100µm	50-100 μm (no HA foreseen)		
+ Track Based Alignment	~100µm (perhaps below)	~10µm	~5 µm		

Remarks:	Hardware Alignment will provide the operational alignment level. Track based alignment will be a cross check and	Hardware Alignment will insure pattern recognition. Track Based Alignment must provide the final alignment	Only Track based Alignment. Nothing else!
	eventually a completion		VERSITA

Mis-Alignment: Impact on Physics (important for Z', LED)

CMS Data Samples for Alignment

<u> The Golden Alignment Channels:</u>

 $Z \rightarrow \mu \mu O(20K \times 2)$ per day $W \rightarrow \mu \nu O(100K)$ per day

⇒ Isolated well measured track statistic of one day nominal running should enable us to align all higher lever tracker structures (rod level)

channel, NLO σx Br	Level-1+ HLT efficiency	events for10 fb ⁻¹
W-≫e V, 20.3 nb	0.25	5.1 x 10 ⁷
W->µv, 20.3 nb	0.35	7.1 x 10 ⁷
Z->ee, 1.87 nb	0.53	$1.0 \ge 10^7$
Z->μμ, 1.87 nb	0.65	1.2 x 10 ⁷
tt~->µ+X, 187 pb	0.62	1.2 x 10 ⁶

A dedicated trigger stream for these event types would be very beneficial in order to insure <u>immediate</u> access to the data and, thus, a speedy alignment of the tracker!

Bottom Line:

Isolated high momentum ($p_T \sim 50-100 \text{ GeV}$) muon tracks seem to be the first choice for the alignment

 \Rightarrow Need special stream for these events!

Exploit mass constraint:

Properly including the mass constraint for $Z \rightarrow \mu\mu$ (or even $J/\phi \rightarrow \mu\mu$) will significantly enlarge our capability two align also detectors wrt each other which are not crossed by single collision tracks

CMS implementation of Millepede II Algorithm (Millepede see www.desy.de/~blobel)

Original Millepede method solves matrix eqn. A x = B, by inverting huge matrix A. This can only be done for < 12000 alignment parameters.

New Millepede method instead minimises |A x - B|. Is expected to work for our 100000 alignment parameters.

Both successfully aligned ~12% of Tracker Modules using 2 million Z $\rightarrow \mu$ + μ - events. Results identical, but new method 1500 times faster !

CMS Hits and Impact Points (HIP) Algorithm

- Collect a sample of tracks
- Align individual sensors independently
- Reconstruct tracks and iterate
- Low computational cost, 6 x 6 matrix per sensor
- Algorithm studied with <u>real</u> <u>data</u>: CRack test beam and cosmic data (8 genuine alignable strip detectors)
- Proof of principle for alignment software implementation in CMS software
- Larger cosmic data sample expected

• Tests using testbeam and cosmic data ongoing

CMS HIP Algorithm

- Stand-alone alignment of Pixel Barrel modules
- Track curvature obtained from track-fit of full Tracker (even mis-aligned Tracker)

Nick Hadley

I4.ATLAS Cosmic Event

Gregor Herten / 14. Tracking Systems

Residual distribution in x, integrated over all hits-on-tracks in the pixel barrel for the nominal geometry and the preliminary aligned geometry.

The residual is defined as the measured hit position minus the expected hit position from the track extrapolation. Shown is the projection onto the local x coordinate, which is the precision coordinate.

Tracks are selected to have pT > 2 GeV, Id0l<50mm, Iz0l<400mm (in other words they are required to go through the pixel L0).

14. ATLAS ID Results: Cosmic Rays

Cosmic tracks crossing the entire ID leave hits in both the upper and lower halves of the ID.

These tracks can be split near the interaction point and fit separately, resulting in two collision-like tracks that can then be compared.

The plots shows the difference in the d0 track parameter between the two split tracks. Tracks are selected to have pT > 2 GeV, |d0| < 50mm, |z0| < 400mm (in other words they are required to go through the pixel L0).

Tracks also are required to have a hit in the Pixel B layer, 3 Pixel hits and in total 7 Silicon hits.