Metody eksperymentalne w fizyce wysokich energii

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład XIV

- Pomiary przekroju czynnego
- ⇒ przekrój całkowity
- ⇒ przekrój różniczkowy

Cross Section: Experimentally

Acceptance / Efficiency

- Actually rather complex:
 - Many ingredients enter here
 - You need to know:

 $\varepsilon_{total} =$ <u>Number of Events used in Analysis</u>

Number of Events Produced

- Ingredients:
 - Trigger efficiency
 - Identification efficiency
 - Kinematic acceptance
 - Cut efficiencies
- Using three example measurements for illustration:
 - Z boson, top quak and jet cross sections

Z Boson Cross Section

12

- Trigger requires one electron with E_T>20 GeV
 - Criteria at L1, L2 and L3/EventFilter
- You select two electrons in the analysis
 - With certain quality criteria
 - With an isolation requirement
 - With $E_T > 25$ GeV and |eta| < 2.5
 - With oppositely charged tracks with p_T>10 GeV
- You require the di-electron mass to be near the Z:
 - 66<M(II)<116 GeV

Uncertainty on Cross Section

• You will want to minimize the uncertainty:

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{obs}^2 + \delta N_{BG}^2}{(N_{obs} - N_{BG})^2} + \left(\frac{\delta\mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

- Thus you need:
 - N_{obs}-N_{BG} large (I.e. N_{signal} large)
 - Optimize selection for large acceptance and small background
 - Uncertainties on efficiency and background small
 - Hard work you have to do
 - Uncertainty on luminosity small
 - Usually not directly in your power

Optymalizacja selekcji

Aby uzyskać możliwie najdokładniejszy pomiar przekroju czynnego musimy optymalizować kryteria selekcji (cięcia).

W pierwszym przybliżeniu (dominują błędy statystyczne) optymalizujemy

k = S / sqrt(S+B) znaczoność sygnału nie S/B !

Najczęstsze podejście: optymalizacja "krok po kroku" (cięcie po cięciu) naogół wymaga kilku iteracji

Istnieją też metody uwzględniające jednoczeście całą wiedzę o przypadku (np. sieci neuralne, "boosted decision tree", etc.)

Optymalizacja praktycznie zawsze oparta jest na symulacjach MC!

Top Quark Cross Section

SM: tt pair production, $Br(t \rightarrow bW)=100\%$, $Br(W \rightarrow l_v)=1/9=11\%$

dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets

- Trigger on electron/muon
 - Like for Z's
- Analysis cuts:
 - Electron/muon p_T>25 GeV
 - Missing E_T>25 GeV
 - 3 or 4 jets with $E_T > 20-40$ GeV

Finding the Top Quark

- Tevatron
 - Top is overwhelmed by backgrounds:
 - Top fraction is only 10% (≥3 jets) or 40% (≥4 jets)
 - Use b-jets to purify sample => purity 50% (≥3 jets) or 80% (≥4 jets)
- LHC
 - Purity ~70% w/o b-tagging (90% w b-tagging)

$m_h\approx 120~GeV$

Other background

- Resolved photon(s) interactions $\gamma + \gamma \rightarrow X + Q + \bar{Q}$
- Overlaying events (high intensity of photon-beams in the low-energy part of the spectrum)

NŻK

Generation & Simulation. Selection.

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)

Jets: Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

- 1) Assumed bb-tagging and mistagging
 2) Using ZVTOP-B-Hadron-Tagger

- $|P_z|/E_{vis} < 0.1$

NŻK

Cuts

Cuts optimized by minimizing:

$$\frac{\Delta\sigma(\gamma\gamma \to h \to b\bar{b})}{\sigma(\gamma\gamma \to h \to b\bar{b})} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

For example:

Maximal value of $|\cos \theta_{jet}|$ over all jets in the event

All angular cuts

Detector mask Particles on Pythia level: $\cos \theta_{mask} \approx 0.99$

OE suppression Tracks & clusters: $\cos \theta_{TC} = 0.85$

 $\gamma \gamma
ightarrow Q ar{Q}(g)$ suppression Jets: $|\cos \theta_{jet}|^{\max} = 0.725$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

– p.10/20

SM, $M_h = 120 \text{ GeV}$

Final results

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.16/20

X

NŻK

Optymalizacja selekcji

Zaniedbując błędy systematyczne istnieje przepis na optymalną metodę selekcji (minimalizującą błąd statystyczny). Można go stosować przy niewielkiej liczbie parametrów opisujących przypadek:

- dzielimy zakresy zmienności wszystkich parametrów i na N_i binów

- dla każdego zestawu parametrów *j* (*j*=1, ..., ΠN_i) wyznaczamy stosunek sygnału do tła w tym (wielowymiarowym) przedziale $r_j = S_j / B_j$

- dla założonego cięcia r_{min} sumujemy sygnał i tło ze wszystkich przedziałów o $r_j > r_{min}$: $S^r = \sum_{r_j > r_{min}} S_j$ $B^r = \sum_{r_j > r_{min}} B_j$

wyznaczmy zależność

 $k(r_{min}) = S^r / sqrt(S^r+B^r)$

- znajdujemy maksimum k(r_{min}) w funkcji r_{min}

bb-tagging

bb-tagging

higgs-tagging at $M_h = 120$ GeV

higgs-tagging: a cut on the ratio of $\gamma \gamma \rightarrow h \rightarrow b \overline{b}$ to $\gamma \gamma \rightarrow b \overline{b}(g), c \overline{c}(g)$ events $\Rightarrow \varepsilon_{higgs} = 70 \%$ $\varepsilon_{bb} = 66\%, \varepsilon_{cc} = 4\%$

Earlier we used *b*-tagging: a cut on the ratio of $\gamma \gamma \rightarrow b \overline{b}(g)$ to $\gamma \gamma \rightarrow c \overline{c}(g)$ events $\Rightarrow \varepsilon_{higgs} = 85 \%$ $\varepsilon_{bb} = 82\%, \varepsilon_{cc} = 2\%$

Tighter cuts are needed due to OE contribution

Black stars – optimized selection Black+white stars – analysis without OE

NŻK

ECF

Durham, September 2004

– p.7/12

B-tagging

ZVTOP-B-Hadron-Tagger

\underline{S}	$\#(\gamma\gamma \rightarrow$	$b\overline{b})$
\overline{B}	$\#(\gamma\gamma \rightarrow$	$c\bar{c})$

NŻK

Uncertainty on Cross Section

• You will want to minimize the uncertainty:

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{obs}^2 + \delta N_{BG}^2}{(N_{obs} - N_{BG})^2} + \left(\frac{\delta\mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

- Thus you need:
 - N_{obs}-N_{BG} large (I.e. N_{signal} large)
 - Optimize selection for large acceptance and small background
 - Uncertainties on efficiency and background small
 - Hard work you have to do
 - Uncertainty on luminosity small
 - Usually not directly in your power

Systematic uncertainties

- This will likely be >90% of the work
- Systematic errors cover our lack of knowledge
 - need to be determined on every aspect of measurement by varying assumptions within sensible reasoning
 - Thus there is no "correct way":
 - But there are good ways and bad ways
 - You will need to develop a feeling and discuss with colleagues / conveners / theorists
 - There is a lot of room for creativity here!
- What's better? Overestimate or underestimate
 - Find New Physics:
 - it's fine to be generous with the systematics
 - You want to be really sure you found new physics and not that "Pythia doesn't work"
 - Precision measurement
 - Need to make best effort to neither overestimate nor underestimate!

QCD Modeling of Process

- Kinematics affected by p_T of Z boson
 - Determined by soft and hard QCD radiation
 - tune MC to describe data
- Limitations of Leading Order Monte Carlo
 - Compare to NNLO calculation

Acceptance	NNLO Calc.	PYTHIA	Difference (%)
$A_{W \to \mu\nu}$	0.1970	0.1967	+0.15
$A_{W \rightarrow e\nu}$	0.2397	0.2395	+0.08
$A_{Z \rightarrow \mu\mu}$	0.1392	0.1387	+0.36
$A_{Z \rightarrow ee}$	0.3182	0.3185	-0.09
$A_{Z \to \mu\mu} / A_{W \to \mu\nu}$	0.7066	0.7054	+0.17
$A_{Z \to ee} / A_{W \to e\nu}$	1.3272	1.3299	-0.20

MC Modeling of top

- Use different MC generators
 - Pythia
 - Herwig
 - Alpgen
 - MC @ NLO
 - **.**..

Different tunes

- Underlying event
- Initial/final state QCD radiation
- •
- Make many plots
 - Check if data are modelled well

Examples for Systematic Errors

- Mostly driven by comparison of data and MC
 - Systematic uncertainty determined by (dis)agreement and statistical uncertainties on data

Systematic Uncertainties: Z and top

source	variation	$\Delta \mathbf{A}_Z$	$\Delta \mathbf{A}_Z / \mathbf{A}_Z$
$E_T^{\rm e}$ scale	1% variation	0.03%	0.3%
$E_T^{\rm e}$ resolution	2% extra smearing	0.02%	0.2%
$p_T^{\rm e}$ scale	1% variation	0.01%	0.1%
p_T modelling		0.01%	0.1%
Material	5.5 % X ₀	0.54%	4.7%
PDFs	reweighting of y	0.34%	2.9%
overall		0.64%	5.5%

Z cross section (not all systematics)

top cross section

Systematic	Inclusive (Tight)	Double (Loose)
Lepton ID	1.8	3
ISR	0.5	0.2
FSR	0.6	0.6
PDFs	0.9)
Pythia vs. Herwig	2.2	1.1
Luminosity	6.5	2
JES	6.1	4.1
b-Tagging	5.8	12.1
c-Tagging	1.1	2.1
l-Tagging	0.3	0.7
Non-W	1.7	1.3
W+HF Fractions	3.3	2.0
Mistag Matrix	1.0	0.3
Total	11.5	14.8

 Relative importance and evaluation methods of systematic uncertainties are very, very analysis dependent

Final Result: Z cross section

 Now we have everything to calculate the final cross section
 TABLE XXXVII: Summary of the input parameters to the of 1/2 and 0/4 gross section calculations for the electron

TABLE XXXVII: Summary of the input parameters to the $\gamma^*/Z \rightarrow \ell \ell$ cross section calculations for the electron and muon candidate samples.

97 	$\gamma^*/Z \rightarrow ee$	$\gamma^*/Z \rightarrow \mu \mu$
N_Z^{obs}	4242	1785
N_Z^{bck}	62 ± 18	13 ± 13
Az	$0.3182 \begin{array}{c} +0.0039 \\ -0.0041 \end{array}$	$0.1392 \begin{array}{c} +0.0027 \\ -0.0033 \end{array}$
€Z	0.713 ± 0.012	0.713 ± 0.015
$\int \mathcal{L}dt$ (pb	$^{-1}$) 72.0 ± 4.3	72.0 ± 4.3

$$\sigma_{\gamma^*/Z} \cdot Br(\gamma^*/Z \to ee) = 255.8 \pm 3.9(stat.)$$
$$\pm \frac{5.5}{5.4}(syst.)$$
$$\pm 15.3(lum.) \text{ pb}$$

Measurement gets quickly systematically limited

Comparison to Theory

- Experimental uncertainty: ~2%
- Luminosity uncertainty: ~6%
- Theoretical uncertainty: ~2%

3.6 EW Z(x10) Tevatron 3.4 (Run 2) 3.2 3.0 (qu) 2.8 NNLO 2.6 2.4 m CDF D0(e) D0(µ) ь. 2.2 CDF D0(e) D0(µ) 2.0 LO 1.8 1.6 24 W Z(x10) LHC 23 22 21 NLO (qu) 20 NNLO. 19 ₫ 18 ь. 17 LO 16 15 14

partons: MRST2002 NNLO evolution: Moch, Vermaseren, Vogt NNLO W,Z corrections: van Neerven et al. with Harlander, Kilgore corrections σ_{Th,NNLO}=251.3±5.0pb (Martin, Roberts, Stirling, Thorne)

Can use these processes to normalize luminosity absolutely

However, theory uncertainty larger at LHC and theorists don't agree (yet)⁴⁷

Differential Cross Section

- Measure jet spectra differentially in E_T and η
- Cross section in bin i: $\sigma(i) = \frac{N_{obs}(i) N_{BG}(i)}{\int Ldt \epsilon(i)}$

Differential Cross Section: Unfolding

- "Unfolding" critical for jet cross sections
- Measure:
 - Cross section for calorimeter jets
- Want:
 - Cross section for hadron-jets
- Unfolding factor (bin by bin):

$$C_i = \frac{N_{JET \ i}^{HAD}}{N_{JET \ i}^{CAL}}$$

• Then:

 $N_{JET~i}^{DATA~UNFOLDED} = C_i \cdot N_{JET~i}^{DATA~NOT~UNFOLDED}$

But, unfolding factors depend on MC
 E_T spectrum - depend on the measured cross section !!!

Differential Cross Section: Unfolding

- Problem:
 - Steeply falling spectrum causes migrations to go from low to high p_T
 - Measured spectrum "flatter" than true spectrum
 - Size of migration depends on input spectrum
- **Requires iterative procedure** (bin-by-bin unfolding):
 - 1. Measure using spectrum from MC
 - 2. Fit measurement
 - 3. Reweight MC to reflect data measurement => go back to 1.

Example for Bin-by-Bin Unfolding

- Correction to unfolding factors <10%
 - One iteration sufficient in this example
 - Starting spectrum was already quite close to data

Systematic Uncertainties: Jet Cross Section

- For Jet Cross Section the Jet Energy Scale (JES) uncertainty is dominant systematic error
 - 3% uncertainty on JES results in up to 60% uncertainty on cross section
 - 8% uncertainty on JE resolution causes <10% uncertainty on cross section</p>

Jet Cross Section Result

- Cross section falls by 8 orders of magnitude in measured E_T range
- Data in good agreement with QCD prediction
 - Experimental and theoretical errors comparable

Main process studied at H1 and ZEUS

NC DIS

Kinematic variables:

$$Q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2P \cdot (k - k')}$$

ZR View

 \Rightarrow spatial resolution $\lambda \sim 1/Q$

sensitivity to mass scales $\Lambda \sim Q$

CC DIS

- p.5/17

Rekonstrukcja przypadków

Pomiar w detektorze

W przypadkach NC DIS w detektorze mierzymy:

• elektron o energii E'_e rozproszony pod kątem θ

 \Rightarrow możemy wyznaczyć efektywny kąt rozproszenia γ i energię E_q jetu \Rightarrow partonu

Chcemy wyznaczyć **dwie** zmienne, np. $x i Q^2$ (trzecią zmienną mamy z relacji: $Q^2 = xys$) Mamy **cztery** wielkości mierzone: E'_e , θ , $E_q i \gamma \Rightarrow$ mamy dużą swobodę wyboru metody Teoretycznie (nieskończenie dokładny pomiar) wszystkie metody są równoważne. Efekty doświadczalne (błędy pomiarowe) powodują jednak znaczne różnice w dokładności wyznaczenia x, y i Q^2 różnymi metodami \Rightarrow wybór zależy od eksperymentu...

 E_h, \bar{p}_h

Nominal

Using MEPS

Syed Umer Noor (York University)

NC DIS in e^-p

Wyznaczanie funkcji struktury

Przekrój czynny

Funkcję struktury $F_2(x, Q^2)$ wyznaczamy bezpośrednio z pomiaru różniczkowego przekroju czynnego na NC DIS:

$$\frac{d^2\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} (1 - y + \frac{y^2}{2}) \ F_2(x, Q^2) \ (1 + \delta_L + \delta_Z + \delta_{rad})$$

Wyznaczane teoretycznie poprawki pochodzą od:

- δ_L tzw. podłużnej funkcji struktury F_L (wkład gluonów powoduje, że $F_L \equiv F_2 - 2xF_1 \neq 0$)
- δ_Z wymiany bozonu Z° (istotne tylko dla bardzo dużych Q^2)
- δ_{rad} procesów radiacyjnych (poprawki radiacyjne; emisja γ przez elektron przed lub po zderzeniu)

Wyznaczanie funkcji struktury

Przekrój czynny

Różniczkowy przekrój czynny wyznaczamy mierząc liczbę przypadków zrekonstruowanych w przedziałach x i Q^2 :

$$\Delta N^{\left(x \pm \frac{\Delta x}{2}, Q^2 \pm \frac{\Delta Q^2}{2}\right)} = \frac{d^2 \sigma}{dx \ dQ^2} \cdot \Delta x \cdot \Delta Q^2 \cdot \mathcal{L}_{int} \cdot \mathcal{E} \cdot \mathcal{A}$$

gdzie:

- \mathcal{L}_{int} scałkowana świetlność
- *E* efektywność selekcji przypadków
- *A* poprawka związana z niedokładnością pomiaru ("przesypywanie" przypadków pomiędzy przedziałami)

5.1.3 Acceptances, purities, efficiencies

Samples of Monte Carlo events processed through the entire detector simulation chain were used to calculate the acceptances, the purities and efficiencies of the fragmentation variables. In the presented analysis the definitions were used as follows:

• the acceptance for bin i is defined as

 $A_i = \frac{\text{No. of events reconstructed in bin } i}{\text{No. of events generated in bin } i}$

• the purity for bin i is defined as

 $P_i = \frac{\text{No. of events generated and reconstructed in bin } i}{\text{No. of events reconstructed in bin } i}$

• the efficiency for bin i is defined as

 $\epsilon_i = \frac{\text{No. of events generated and reconstructed in bin } i}{\text{No. of events generated in bin } i}$

Optymalizacja selekcji

W przypadku różniczkowych przekrojów czynnych istotny jest nie tylko wybór cięć, ale też dobór przedziałów w których wyznaczamy d σ

Do wyznaczenia wartości ds wchodzi tylko poprawka na akceptację A_i

Ale efektywność ε_i i czystość P_i mają znaczenie dla systematyki.

Dla rzetelnego pomiaru oczekujemy, żeby czystość przypadków w każdym binie

$P_i > \sim 50\%$

inaczej uzyskiwany po poprawkach kształt bardziej odzwierciedla wyniki symulacji Monte Carlo niż dane! Rozmiary binów nie mogą być mniejsze niż dokładność pomiaru! Zwiększając rozmiary binów zwiekszamy ε_i i P_i

$d\sigma/dQ^2$: Bias and Resolution

000000

Systematics

Efficiency and Purity for $d\sigma/dQ^2$

Efficiency = Generated & Accepted Generated Purity = Generated & Accepted Accepted Efficiency Purity Acceptance =

Outline Motivation Sample preparation Results Conclusions

Correction factor for limited fragmentation

corr. factor = $\frac{\eta(true\ level)}{\eta(detector\ level)}$ first rejections for correction factor bigger than 1.5

horizontal red line – corr. factor equal 1.5 vertical red line – the value of η , where the slope starts

・ロン ・回 と ・ ヨン ・ ヨン

η^{Breit}

Wykład IV

Statistical Error in Bins used for $d^2\sigma/dxdQ^2$

Syed Umer Noor (York University)

NC DIS in e^-p

ZEUS Collab. 8 March 2007 49 / 52

Backup

atics Cross Se

s Comparisons

Backup

Efficiency and Purity in $d^2\sigma/dxdQ^2$

Efficiency = Generated & Accepted Generated

Unfolding Cross Sections

Cross sections extracted using:

- With Born-level unpolarised MC and theory values
- See backup for bin selection (based on HERA I binning)
 - Finer in $d\sigma/dQ^2$
 - Higher/lower bins in $d\sigma/dx$, $d\sigma/dy$
 - Keep same for reduced cross sections

Alignment and e- Energy

ksplash NC

matics Cross Sections

ons Comparis

sons Summa

 $d\sigma/dQ^2$

Wyznaczanie funkcji struktury

Liczba mierzonych przypadków decyduje o błędzie statystycznym wyznaczonych wartości $F_2(x, Q^2)$:

$$\frac{\sigma_{F_2}^{stat}}{F_2} = \frac{1}{\sqrt{\Delta N}}$$

Błędy statystyczne dominują przy dużych Q^2 , przy małych Q^2 są zaniedbywalne.

Błąd systematyczny pomiaru wynika z niepewności:

- poprawek teoretycznych δ_L , δ_Z i δ_{rad}
- pomiaru świetności *L_{int}*
- wyznaczenia poprawek *E* i *A* (niepewności związane z symulacją Monte Carlo badanego procesu i działania detektora)

Błędy systematyczne dominują przy małych Q^2 .

Na ogół są na poziomie kilku % (obecne pomiary w HERA)

Błędy systematyczne

Ocena błędów systematycznych jest często bardzo trudna. Nie ma jednoznacznego, uniwersalnego przepisu. Powszechnie stosowane podejścia:

- zmiana parametrów detektora w symulacji (skala energii, rezolucja)
- zmiana cięć (w symulacji i w danych) jeśli MC jest poprawne wynik nie powinien się zmienić
- zmiana parametrów/modelu symulacji (np. rozwoju kaskad czy kaskady partonowej czy fragmentacji; tylko symulacja)
- poszukiwanie rozbieżności między danymi i symulacją (ich wielkość można przyjąć jako oszacowanie błędu systematycznego symulacji)

Błędy systematyczne w danym binie dodajemy "w kwadratach". Zwiększając liczbę przyczynków możemy je dowolnie zwiększyć, trzeba zachować umiar !

Pomiędzy binami są skorelowane (czasami silnie).

Control Plots

Updates 000	Control Plots ○●○	Xsecs 000000	Systematics	Backup 0000000

Control Plots

Updates ooo	Control Plots ○○●	Xsecs 000000	Systematics	Summary	Backup 0000000
Contro	ol Plots				

Yongdok Ri Syed Umer Noor (NC e-p)

NC Review Meeting

10-1

x_e

10⁴Q2_e

CAL alignment with respect to CTD

Stat error only.

	RHES left	RHES right
δφ	$+1.6\pm0.1$ mrad	$+0.9\pm0.1$ mrad
δz	$+2.0\pm0.2$ mm	-0.9 ± 0.2 mm
δx	+1.9±0.1mm	<u>-1.7±0.1mm</u>
δy	+1.4±0.1mm	<u>-1.0±0.1mm</u>

RCAL is aligned within 2.0mm in x and y direction.

BCAL is aligned within 1.0mm. (Only z shift is checked.)

FCAL position correction : Shift the e position with -4mm in y for data.(Hadronic system is neglected.)

FCAL is aligned within 2.0mm.

1

For more details, see talk at F_L review meeting on 09/Feb/2007.

BCAL electron energy

E_e is corrected by dead-material map and non-uniformity.

 $\sigma(E_e^{DM/E_{DA}})$

0.1

0.1

8.

0

Scale uncertainty is 2%.

Smearing factor is 3.4%.

Backup

Dominates low Q² region

Backup

Updates 000	Control Plots	Xsecs 000000	Systematics ○○○○○○●○○○○	Backup
	_			

Largest Systematics in Dbl Diff bins - $E - P_Z$

Updates	Control Plots		Backup
			000000

Largest Systematics in Dbl Diff bins - *E_e* scale

00 000

Systematics Cross S

Sections Compari

nparisons Summ

Backup

Systematic Checks

- DCA > 10 cm; 8cm
- $\blacksquare E_{note-}^{cone} < 5 \text{ GeV}; \pm 2 \text{ GeV}$
- 38 GeV < *E* − *P_Z* < 65 GeV; interval ± 4 GeV
- $\blacksquare P_T/\sqrt{E_T} < 4\sqrt{GeV}; \pm 1\sqrt{GeV}$
- *P*^e_{trk} > 3 GeV; ± 1 GeV
- *R_{FCAL}* > 18 cm; ± 3 cm
- *y*_e < 0.95; 0.9
- *E_e* scale ± 2% (MC)
- E_e smeared \pm 1% (MC)

- $\theta_e \pm 1 \text{mrad} (\text{MC})$
- *E_h* scale ± 3% (MC)
- PHP MC normalization ± 100%
- Checks not used in error calculations:
 - ARIADNE \rightarrow MEPS
 - EM \rightarrow Sinistra
 - $\blacksquare \ CorAndCut \rightarrow ZUFOs$

0000000

Systematics

Systematics in $d^2\sigma/dxdQ^2$

Top Mass Measurement: tt→(blv)(bqq)

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

- Inputs:
 - Jet 4-vectors
 - Lepton 4-vector
 - Remaining transverse energy, p_{T,UE}:
 - $p_{T,v} = -(p_{T,l} + p_{T,UE} + \sum p_{T,jet})$
- Constraints:
 - M(Iv)=M_W
 - M(qq)=M_W
 - M(t)=M(t)
- Unknown:
 - Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_t^{reco}

Selecting correct combination 20-50% of the time

In-situ Measurement of JES

 Additionally, use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

Measurement of JES scales directly with data statistics

Top Mass Templates

- Fit to those templates for
 - Top mass
 - Jet Energy Scale

Template Analysis Results on m_{top}

- Using 344 lepton+jets and 144 dilepton candidate events in 1.9 fb⁻¹
- Using in-situ JES calibration results in factor four improvement on JES

 $m_{top} = 171.9 \pm 1.7 \text{ (stat.+JES)} \pm 1.0 = 171.6 \pm 2.0 \text{ GeV/c}^2$

26

"Matrix Element Method"

- Construct probability density function as function of m_{top} for each event
- Multiply those probabilities of all events

• maximum Likelihood fit:

$$L(x_1, ..., x_n; m_{ ext{top}}, JES, f_{ ext{top}}) = \prod_{i=1}^n P_{ ext{evt}}(x_i; m_{ ext{top}}, JES, f_{ ext{top}})$$

n

27

Check you get the right answer

- Run "Pseudo-Experiments" on Monte Carlo to see if you get out the mass that was put in
 - Pretend MC is data and run analysis on it N times
- Non-trivial cross check given the complexity of the method
 - If not: derive "calibration curve" from slope and offset

Matrix Element Top Mass Results

Combining M_{top} Results

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- Uncertainty: 1.2 GeV
 - Dominated by systematic uncertainties

