Fizyka cząstek: detektory

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład IV

- Liczniki scyntylacyjne
- Kalorymetry elektromagnetyczne

Scyntylatory

W szeregu materiałów atomy wzbudzone na skutek jonizacji emitują fotony światła.

Jeśli materiał jest przeźroczysty dla emitowanej długości światła \Rightarrow scyntylator

⇒ mamy możliwość detekcji produkowanych fotonów

Aby fotony miały długą drogę swobodną w materiale, muszą być emitowane z poziomu do którego przejście ze stanu podstawowego jest wzbronione.

Inaczej byłyby bardzo szybko reabsorbowane.

Dwie podstawowe grupy materiałów:

- scyntylatory organiczne
- kryształy nieorganiczne

Scyntylatory organiczne

Tworzywa organiczne (plastiki) lub (dużo żadziej) ciecze.

Generują fotony w zakresie niebieskim i zielonym, średnio 1 γ / 100 eV strat energii

 \Rightarrow w 1cm materiału cząstka minimalnej jonizacji daje $pprox 2 imes 10^4$ fotonów

Absorpcja i reemisja fotonów przez domieszki powoduje przesunięcie długości fali do obszaru gdzie materiał jest przeźroczysty.

Domieszki przyspieszają też emisję fotonów.

Nieliniowość odpowiedzi przy wysokiej jonizacji:

 $\frac{d\mathcal{L}}{dx} = \mathcal{L}_0 \frac{dE/dx}{1 + k_B \, dE/dx}$

 k_B - współczynnik Birks'a

Scyntylatory nieorganiczne

Kryształy nieorganiczne dużo gęstrze (4-8g/cm³) niż scyntylatory organiczne (\sim 1g/cm³)

Straty energii cząstki naładowanej powodują powstawanie par elektrondziura.

Naturalne defekty lub dedykowane domieszki stanowią "centra luminescencji".

Wzbudzony elektron nie wraca bezpośrednio do pasma walencyjnego, ale przechodzi prze stan metastabilny, z którego wyświecany jest foton

⇒ przesunięcie długości fali

Przesunięcie długości fali

WLS - Wave Length Shifter

Materiał, który absorbuje jedną długość fali (np. ultrafiolet) i emituje w innej.

Używany, aby dopasować widmo scyntylatora do zakresu czułości detektora.

Pozwala na efektywniejsze zbieranie światła ze scyntylatora.

Minos:

Detekcja fotonów

Detekcja fotonów optycznych polega na ich absorpcji w sposób prowadzący do powstania swobodnego elektronu (efekt fotoelektryczny) lub pary elektron-dziura.

Sygnał ten musi być następnie wzmocniony do mierzalnego poziomu.

Najczęściej stosowanym detektorem są fotopowielacze

Zapewniają szeroki zakres pomiarowy (115-1100 nm), wysokie wzmocnienie (10³-10⁷) i szybką odpowiedź (0.7-10 ns)

Detekcja fotonów

Fotopowielacze są dobrze ugruntowana technologią o szerokim zakresie zastosowań. Łączą dużą czułość z wysoką liniowością i bardzo małymi szumami.

Fotopowielacze wielokanałowe wykorzystywane w eksperymencie MINOS

Rozwój technologii, zwłaszcza technologii półprzewodnikowych doprowadził do powstania wielu nowych detektorów fotonów.

Fotodioda (Photodiode: PD)

Każdy foton powoduje powstanie tylko jednej pary elektron-dziura.

Bardzo dobra do mierzenia dużych syngałów, ale brak czułości na pojedyncze fotony.

Fotodioda lawinowa (avalanche photodiode: APD) - sygnał pojedynczego fotonu jest powielany w bardzo silnie spolaryzowanym złączu (krzemowy licznik Geigera-Mülera)

Podstawowa wada:

brak możliwości zliczania fotonów.

Pixlowy detektor fotonów ostatnio coraz powszechniej stosowany

Pixelized Photon Detector (PPD; kiedyś nazywany Silicon Photomultiplier SiPM)

Duża ($\sim 10^3$) liczba APD na małej powierzchni ($\sim 1mm^2$) - możliwość zliczania fotonów

Pixlowy detektor fotonów

Parametry porównywalne z PMT: wzmocnienie $10^5 - 10^6$, czas odpowiedzi ~ 1 ns.

Ograniczony zakres czułości optycznej (400-550 nm), ale brak problemów z zasilaniem (U=30-60V) i dużo mniejsze rozmiary!

Perspektywy

Światłowody scyntylujące oraz rozwój detektorów krzemowych doprowadziły do "renesansu" Dziś (eksperyment D0): detektorów scyntylacyjnych

Kiedyś:

Detektory śladowe umieszczone w polu magnetycznym umożliwiają dokładny pomiar pędu cząstek naładowanych.

Dokładność pomiaru maleje jednak z pędem cząstek ($\sigma(p_T) \sim p_T^2 \oplus \ldots$) \Rightarrow rozmiary detektorów śladowych rosną liniowo z energią

Detektory śladowe są również "ślepe" na cząstki neutralne (fotony, neutrony, kaony...)

Aby móc dokładnie zrekonstruować energie wszystkich obserwowanych cząstek potrzebujemy alternatywnej metody pomiaru \Rightarrow kalorymetry

Kalorymetry: użądzenia w których wpadające cząstki lub strugi cząstek są całkowicie absorbowane, a część deponowanej energii zamieniana jest na mierzalny sgnał

W wyniku oddziaływania cząstki tworzą się kaskady cząstek wtórnych

- kalorymetry elektromagnetyczne mierzą energie elektronów i fotonów
- kalorymetry hadronowe innych cząstek stabilnych (oprócz mionów i neutrin)

W eksperymentach kalorymetry naogół umieszczane są za detektorami śladowymi. Jedynymi cząstkami, które przelatują przez kalorymetry bez inicjowania kaskady są miony (i neutrina).

Fotony

Przekrój czynny na oddziaływanie z ośrodkiem w funkcji energii

W obszarze małych energii dominuje efekt fotoelektryczny ($\sigma_{p.e.}$)

Dla energii rzędu 1 MeV istotny wkład od efektu Comptona ($\sigma_{Compton}$) Dla energii powyżej ~ 10 MeV dominuje kreacja par e^+e^- w polu jąder (κ_{nuc})

Efekt Comptona

W obszarze małych energii straty energii fotonu są znikome - rozpraszanie elastyczne.

Straty energii dominują dla E > 2MeV

Kreacja par

Prawdopodobieństwo, że w wyniku oddziaływania fotonu powstanie para e^+e^-

Powyżej $\sim 1 \; GeV$:

praktycznie wyłącznie kreacja par.

Dla niższych energii wkład produkcji par rośnie ze wzrostem Z

Fotony

Spadek intensywności wiązki

 $I(x) = I_0 \cdot \exp\left(-\frac{x}{\lambda}\right)$

 λ - średnia droga swobodna:

W obszarze dużych energii (dominuje kreacja par):

$$\lambda = \frac{9}{7}X_0$$

Kaskada E-M

Kaskada elektromagnetyczna

Wysokoenergetyczny foton wpadając w materię konwertuje na parę e^+e^-

Elektron w polu jąder emituje kolejne fotony, które znów konwertują...

Powstaje lawina cząstek, która powiela się tak długo jak $E_e > E_c$

Gdy energie elektronów spadną poniżej $E_c \Rightarrow$ starty jonizacyjne kaskada wygasa

Profil podłużny - rozkład Gamma:

$$\frac{dE}{dt} = E_0 \ b \ \frac{(bt)^{a-1} \ e^{-bt}}{\Gamma(a)}$$

pozycja maksimum $[X_0]$

$$t_{max} = \frac{a-1}{b} \approx \ln \frac{E}{E_c} + C_j$$
$$C_{\gamma} = +0.5, C_e = -0.5$$

Kaskada elektromagnetyczna

Wysokoenergetyczny foton wpadając w materię konwertuje na parę e^+e^-

Elektron w polu jąder emituje kolejne fotony, które znów konwertują...

Powstaje lawina cząstek, która powiela się tak długo jak $E_e > E_c$

Gdy energie elektronów spadną poniżej $E_c \Rightarrow$ starty jonizacyjne kaskada wygasa po ok. $20 - 30X_0$

$$R_M = \frac{21 \ MeV}{E_c} X_0 \qquad \sim \frac{A}{Z} \text{dla} Z \gg 1$$

75% strat energii kaskady w promieniu $1R_M$ od osi, 95% w $2R_M$, 99% w $3.5R_M$

Kaskada elektromagnetyczna w komorze pęcherzykowej BEBC

Wyniki symulacji kaskady elektromagnetycznej pochodzącej od 20 GeV fotonu

Kalorymetry elektromagnetyczne

Jeśli rozmiary bloku materii są odpowiednio duże cała energia cząstki początkowej zostaje zdeponowana w wyniku jonizacji ośrodka przez cząstki kaskady.

Istotą działania kalorymetru jest zamiana (części) depozytu w mierzalny sygnał. Mierzyć można:

- jonizację ośrodka (całkowity depozyt energii!)
- scyntylację ośrodka
- promieniowanie Czerenkowa

Możliwe dwa rozwiązania:

• kalorymetr jednorodny

jeden blok materiału (ew. podzielony na segmenty), w którym rozwija się i mierzona jest kaskada

• kalorymetr próbkujący

absorber, w którym (głównie) rozwija się kaskada, przekładany jest elementami aktywnymi mierzącymi sygnał

Ciekłe gazy szlachetne

Szczególny przypadek:

prawie połowa strat energii prowadzi do scyntylacji, druga połowa - jonizacja.

	Ar	Kr	Xe
Z	18	36	58
A	40	84	131
X_0 (cm)	14	4.7	2.8
R_M (cm)	7.2	4.7	4.2
Density (g/cm^3)	1.4	2.5	3.0
Ionization energy (eV/pair)	23.3	20.5	15.6
Critical energy ϵ (MeV)	41.7	21.5	14.5
Drift velocity at saturation $(mm/\mu s)$	10	5	3

- Kr: gęsty \Rightarrow niewielkie rozmiary detektora
- Ar: tani ⇒ duże układy detekcyjne także kalorymetry próbkujące

Naogół wykorzystuje się pomiar jonizacji

Pomiar zarówno jonizacji jak i światła ⇒ najdokładniejszy pomiar energii, ale trudny do uzyskania

Ciekłe gazy szlachetne

Kalorymetr detektora NA48: ciekły krypton, cele $2 \times 2cm^2$, długość 125 cm (27 X_0)

Zdolność rozdzielcza w pomiarze energii:

Dokładność pomiaru

Względna dokładność pomiaru energii w kalorymetrze zależy od róznych czynników:

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Poszczególne człony odpowiadają:

- a: fluktuacje statystyczne w rozwoju kaskady ($N \sim E \Rightarrow \sigma_N = \sqrt{N} \Rightarrow \sigma_E \sim \sqrt{E}$) oraz związane z mechanizmem odczytu
- b: szumy detektora i elektroniki odczytu
- c: niejednorodność odpowiedzi, interkalibracja kanałów, nieliniowość elektroniki, wypływy kaskady, itp.

Dla kalorymetru detektora NA48: energia E [GeV]

a = 3.5% b = 4% c = 0.42%

dla dużych energii dominuje człon stały (c)

Kryształy

Innym materiałem często używanym w kalorymetrach jednorodnych są (scyntylujące) kryształy nieorganiczne.

Najczęściej wykorzystywane kryształy:

	NaI(TI)	CsI(T1)	CsI	BGO	PbWO ₄
Density (g/cm ³)	3.67	4.53	4.53	7.13	8.28
X_0 (cm)	2.59	1.85	1.85	1.12	0.89
R_M (cm)	4.5	3.8	3.8	2.4	2.2
Decay time (ns)	250	1000	10	300	5
slow component			36		15
Emission peak (nm)	410	565	305	410	440
slow component			480		
Light yield γ /MeV	4×10^{4}	5×10^{4}	4×10^{4}	8×10^{3}	1.5×10^{2}
Photoelectron yield	1	0.4	0.1	0.15	0.01
(relative to NaI)					
Rad. hardness (Gy)	1	10	10^{3}	1	10^{5}

Kryształy

Światło powstające w kryształach odczytywane jest najczęściej przez fotopowielacze (lub detektory krzemowe) mocowane bezpośrednio do ich powierzchni.

Detektor Cristal Ball (SLAC) \Rightarrow Odkrycie mezonu J/Ψ (1974)

672 + 60 kryształów NaI(TI) pomiar energii fotonów 0.1-1 GeV

$$\frac{\sigma}{E} = 3.5 - 2.6\%$$

Kalorymetr EM detektora CMS

Kalorymetr EM detektora CMS

Łącznie 76 000 kryształów

Kryształ sekcji "do przodu"

Rozdzielczość kluczowa dla "wydobycia" sygnału $h \to \gamma \gamma$

```
Główny kanał dla m_h \sim 120 GeV
```


Kalorymetr EM detektora CMS

Rozdzielczość rzędu 0.5% osiągnięta dla E > 120 GeV

Kalorymetr EM detektora CMS

Pierwsze wyniki z LHC.

Dane 2009, $\sqrt{s_{pp}} = 900$ GeV.

Bardzo wyraźny sygnał $\pi^{\circ}
ightarrow \gamma$ γ

Po zastosowaniu poprawki na straty sygnału związane z progiem detekcji ($E_{min} = 100 \text{ MeV/kryształ}$): przesunięcie pozycji maksimum o ok. 20 MeV.

Kalorymetry jednorodne

Zdolności rozdzielcze typowych kalorymetrów jednorodnych w eksperymentach HEP

Technology (Exp.)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$ 3.5	$2/\%\sqrt{E}\oplus 0.42\%\oplus 0.09/E$	1998

Kalorymetry jednorodne

Zalety:

- najlepsza zdolność rozdzielcza cała deponowana energia zamieniana na sygnał
- wysokie poziomy sygnału łatwy odczyt, niskie szumy

Wady:

- duże
- drogie
- pomiar tylko kaskad elektro-magnetycznych

⇒ częściej wykorzystywanym w eksperymentach HEP rozwiązaniem są kalorymetry próbkujące