Fizyka cząstek: detektory

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład V

- Próbkujące kalorymetry elektromagnetyczne
- Kalorymetry hadronowe

Dokładność pomiaru

Względna dokładność pomiaru energii w kalorymetrze zależy od róznych czynników:

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Poszczególne człony odpowiadają:

- a: fluktuacje statystyczne w rozwoju kaskady ($N \sim E \Rightarrow \sigma_N = \sqrt{N} \Rightarrow \sigma_E \sim \sqrt{E}$) oraz związane z mechanizmem odczytu
- b: szumy detektora i elektroniki odczytu
- c: niejednorodność odpowiedzi, interkalibracja kanałów, nieliniowość elektroniki, wypływy kaskady, itp.

Dla kalorymetru detektora NA48: energia E [GeV]

a = 3.5% b = 4% c = 0.42%

dla dużych energii dominuje człon stały (c)

Kalorymetry jednorodne

Zalety:

- najlepsza zdolność rozdzielcza cała deponowana energia zamieniana na sygnał
- wysokie poziomy sygnału łatwy odczyt, niskie szumy

Wady:

- duże
- drogie
- pomiar tylko kaskad elektro-magnetycznych

⇒ częściej wykorzystywanym w eksperymentach HEP rozwiązaniem są kalorymetry próbkujące

Kalorymetry próbkujące

Kaskada rozwija się w gęstym absorberze. Rozwój kaskady jest "próbkowany" w cienkich warstwach aktywnych.

Zalety:

- mniejsze, można użyć bardzo gęstego absorbera
- tańsze, absorber zwykle tańszy od elementów odczytowych
- większe możliwości optymalizacji, zwłaszcza dla kaskad hadronowych

Wady:

- niski sygnał tylko mały ułamek energii kaskady zamieniany na mierzalny sygnał
- niska zdolność rozdzielcza

Kalorymetr BPC detektora ZEUS przy HERA

Umiesczony po obu stronach rury wiązki: pomiar elektronów rozproszonych pod bardzo małymi kątami "Klasyczna" konstrukcja: wolfram + scyntylator

Odczyt przy pomocy światłowodów z przesunięciem długości fali (WLS) i fotopowielaczy

 \Rightarrow pomiar czasu z dokładnością < 1ns

Głębokość 24 X₀

Zdolność rozdzielcza $\frac{\sigma}{E} \approx \frac{17\%}{\sqrt{E}}$

Warstwy scyntylatora w postaci pasków o szerokości 8mm \Rightarrow dokładny pomiar pozycji kaskady (< 1mm)

Kalorymetr EM detektora ATLAS

Kalorymetr z ciekłym argonem (LAr)

Odczyt analogiczny jak w kalorymetrze jednorodnym - tylko płyty oddzielające kolejne cele grubsze.

Warstwy ołowiu: 1.1 - 2.2mm (zależnie od kierunku)

Warstwy LAr: 4mm

Zdolność rozdzielcza:

 $\frac{\sigma}{E} = \frac{10\%}{\sqrt{E}} \oplus \frac{25\%}{E} \oplus 0.3\%$

Rozdzielczość
$$\frac{\sigma}{E} \sim 1.1\%$$
 przy $E = 100 GeV$

Kalorymetr EM detektora ATLAS

Dokładność pomiaru

Dla kalorymetrów próbkujących wciąż obowiązuje parametryzacja

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Jednak w człon a whodzą teraz głównie fluktuacje związane z "próbkowaniem"

- Jedynie mała część energii jest deponowana w warstwach aktywnych. Ułamek ten fluktuuje od przypadku do przypadku $\Rightarrow \left(\frac{\sigma}{E}\right)_{sampl} \sim \sqrt{\frac{t_{abs}}{E}}$ gdzie t_{abs} - grubość warstw absorbera
- Cząstki przechodzą rzez warstwę aktywną pod różnymi kątami ⇒ fluktuacje długości toru

Kalorymetry próbkujące

Zdolności rozdzielcze typowych elektromagnetycznych kalorymetrów próbkujących w eksperymentach HEP

Scintillator/depleted U (ZEUS)	$20 - 30X_0$	$18\%/\sqrt{E}$	1988
$\hat{\text{Scintillator/Pb}}$ (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_{0}$	$5.7\%/\sqrt{E}\oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb $(H1)$	$20 - 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996

Przekrój czynny

Dla hadronów przekrój czynny na rozpraszanie elastyczne szybko maleje z energią.

Dla E > 1 GeV dominuje r. nieelastyczne, σ_I praktycznie nie zależy od energii.

Droga na oddziaływanie

Prawdopodobieństwo nieelastycznego rozproszenia w funkcji drogi w materiale:

$$p(x) = \frac{1}{\lambda_I} \cdot \exp\left(-\frac{x}{\lambda_I}\right)$$

 λ_I - średnia droga na oddziaływanie w danym materiale.

$\lambda_I~pprox~$ 35 $g/cm^2~A^{1/3}$					
	λ_I	X_{0}	λ_I/X_0		
$_{13}Al$	39.4 cm	8.9 cm	4		
26Fe	16.8 cm	1.76 cm	10		
$_{29}Cu$	15.1 cm	1.43 cm	11		
82Pb	17.1 cm	0.56 cm	30		

/- Średnia droga na oddziaływanie maleje z Z, ale gi nie tak szybko jak X_0

Kaskada hadronowa

Wysokoenergetyczne hadrony (neutralne i naładowane) oddziałują silnie z nukleonami/jądrami ośrodka.

Produkowane są cząstki wtórne.

Krotność cząstek $N \sim \ln E$

Cząstki wtórne mogą powodować kolejne reakcje ⇒ kaskada

Cząstki tracą także energię na wzbudzenia jąder i jonizację.

Rozpady $\pi^{\circ} \Rightarrow$ składowa E-M kaskady

Deekscytacja jąder - opóźniona emisja cząstek

Hadrony

Kaskada hadronowa

Długość kaskady skaluje się w λ_I

Pozycja maksimum [λ_I]:

Grubość warstwy żelaza potrzebna do "zatrzymania" kaskady (95% lub 99% energii):

również rośnie logarytmicznie z energią

Kaskady hadronowe

Tak jak w przypadku kaskad elektromagnetycznych, energia cząstki pierwotnej tracona jest w wielu kolejnych (silnych) oddziaływaniach z absorberem.

Zachodzące procesy są jednak dużo bardziej złożone.

Oprócz produkcji wysokoenergetycznych cząstek wtórnych energia tracona jest na procesy jądrowe: wzbudzenia, rozszczepienia i energie odrzutu jąder. Produkowane są cząstki o energiach rzędu MeV.

Część energii jest "niewidoczna" (procesy jądrowe, neutrina z rozpadów). Fluktuacje ⇒ zdolność rozdzielcza dużo gorsza niż dla kaskad E-M

20 GeV π in copper (simulation)

Kaskady hadronowe

Rzędu połowy energii kaskady hadronowej deponowane jest w postaci składowej elektromagnetycznej, pojawiającej się w wyniku rozpadu π^0

Składowa ta podlega bardzo dużym fluktuacjom \Rightarrow duży wkład do rozdzielczości Średni udział składowej E-M rośnie z energia \Rightarrow nieliniowość

Kompensacja

Pomiar energii kaskad hadronowych można istotnie polepszyć jeśli zrównamy odpowiedź kalorymetru dla składowej hadronowej i elektromagnetycznej \Rightarrow kompensacja Kalorymetr ma wtedy taką sama odpowiedź dla elektronów i hadronów: e/h = 1

Kompensacje można uzyskać poprzez odpowiednią konstrukcję detektora (dobór materiału i grubości warstw)

Kompensacja

Aby uzyskać kompensację należy:

- tłumić odpowiedź detektora dla składowej E-M
- odzyskać przynajmniej część energii traconej w procesach jądrowych

Kompensujące kalorymetry próbkujące zbudowano z powodzeniem stosując uran lub ołów jako absorbery + scyntylatory organiczne jako materiał aktywny

Ciężki (duże Z) absorber i lekki (małe Z) materiał aktywny

⇒ składowa hadronowa jest efektywniej próbkowana niż składowa EM

$$U: \quad \lambda_{int} \approx 33X_0 \qquad Sci: \quad \lambda_{int} \approx 1.9X_0$$
$$\frac{(\Delta \lambda_{int})_{Sci}}{(\Delta \lambda_{int})_U} \approx 18 \frac{(\Delta X_0)_{Sci}}{(\Delta X_0)_U}$$

W scyntylatorze organicznym mozna "odzyskać" część energii licznie produkowanych w procesach jądrowych neutronów dzięki ich elastycznym rozproszeniom na protonach.

Kompensacja

Procesy leżące u podstaw rozwoju kaskady hadronowej wciąż nie są dostatecznie dobrze poznane.

W latach 80 symulacje komputerowe nie były jeszcze dobrze rozwinięte.

Parametry potrzebne do uzyskania kompensacji trzeba było dobrać doświadczalnie.

Kalorymetr detektora ZEUS

- Płyty uranowe 3.3 mm
- w kopertach ze stali nierdzewnej.
- Płyty scyntylatora 2.6 mm

 $\frac{e}{h} = 1.00 \pm 0.02$

Podział podłużny na sekcję elektromagnetyczną i dwie sekcje hadronowe

> $\frac{\sigma}{E} \approx \frac{18\%}{\sqrt{E}}$ dla elektronów $\frac{\sigma}{E} \approx \frac{35\%}{\sqrt{E}}$ dla hadronów

> > w warunkach testowych

Kompensacja algorytmiczna

Jeśli nie dobierzemy odpowiednio materiałów absorbera i detektora odpowiedź kalorymetru na część elektromagnetyczną i hadronową kaskady będą różne.

Odpowiedź kalorymetru na pojedynczy hadron:

 $E_{meas} = (f_{em} + (1 - f_{em})/\eta_{had}) \cdot E$

gdzie: f_{em} - ułamek energii w części EM, η_{had} - tłumienie składowej hadronowej (~ 1.4)

Jeśli jesteśmy w stanie zrekonstruować f_{em} możemy istotnie polepszyć dokładność pomiaru.

W kalorymetrze od dużej segmentacji część EM kaskady widoczna jest jako silnie zlokalizowane depozyty $(X_0 \ll \lambda_{int})$

 \Rightarrow można oszacować f_{em}

Kompensacja algorytmiczna

Po raz pierwszy zastosowana w eksperymencie WA1.

Składowa EM oceniana na podstawie maksymalnego depozytu w pojedynczej celi.

Znacząca poprawa rozdzielczości, zwłaszcza dla dużych energii.

Działa tylko dla pojedynczych cząstek.

Kalorymetr z ciekłym argonem.

Łącznie 53 m^3 , napięcie odczytu 1.5 kV przy 2.4 mm warstwach LAr.

Absorber: ołów w części EM, stal w części hadronowej.

45 000 segmentów odczytu ("cel")

Kalorymetr detektora H1

Algorytm kompensacji w pomiarze energii:

$$E_{rec} = \sum_{i \in cele} E^i \cdot \left[a + b \cdot \exp\left(\frac{-\alpha E^i}{V^i}\right) \right]$$

 E^i - energia zmierzona w danej celi, V^i - jej obiętość, a, b i α - współczynniki algorytmu

Rekonstrukcja energii pionu 80 GeV w różnych częściach kalorymetru (przed i po poprawkach)

Wykład V

Nowe koncepcje

Propozycja kalorymetru dla detektora przy ILC

Detektor wyposażony w "kalorymetr śladowy" umożliwia pełną identyfikację wszystkich produkowanych cząstek i optymalny pomiar energii.

PFA - Particle Flow Algorithm

rekonstrukcja przypadku "cząstka po cząstce" na podstawie informacji z kalorymetrów i detektorów śladowych

Nowe koncepcje Kalorymetr śladowy

Na podstawie "śladów" mierzonych w kalorymerze można depozyt energii podzielić na wkłady od kaskad E-M, naładowanych hadronów, neutronów i jonizację.

Powinno to pozwolić rekonstruować całkowitą energię kaskady hadronowych z dokładnością rzędu $\frac{\sigma_E}{E} \approx \frac{30\%}{\sqrt{E}}$ (przy E \sim 100 GeV)

Korelacja części EM i pozostałych składowych dla 20 GeV π^+

Prototyp

Nowe koncepcje

Projekt DREAM

Kalorymetr o podwójnym odczycie:

- "klasyczne" scyntylatory pomiar wszystkich składowych kaskady
- czyste włókna, w których cząstki emitują promieniowanie Czerenkowa pomiar głównie składowej EM

Copper

19 wież

36 000 włókien o średnicy 0.8 mm

.5 mm

Nowe koncepcje

- Wyniki testowe DREAM
- Rozdzielczość w funkcji energii padającego pionu.
- Każdy z odczytów działa poprawnie i pozwala na niezależny pomiar.
- Uzyskiwane rozdzielczości nie są jednak zadawalające.

Nowe koncepcje

Dwa niezależne pomiary energii cząstki pierwotnej:

 $E_{Sci} = (f_{em} + (1 - f_{em})/\eta_{Sci}) \cdot E$ $E_{Cz} = (f_{em} + (1 - f_{em})/\eta_{Cz}) \cdot E$

Znając współczynniki tłumienia składowej hadronowej w obu odczytach

 $\eta_{Sci} \approx 1.4$ $\eta_{Cz} \approx 5.0$

możemy z dwóch pomiarów wyznaczyć f_{em} i E

⇒ znacznie lepsza zdolność rozdzielcza

Nowe koncepcje

Podwójny odczyt pozwala na uzyskanie

$$rac{\sigma_E}{E} ~pprox ~rac{35\%}{\sqrt{E}} \oplus 1.5\%$$

Jeśli wykorzystamy scyntylator organiczny o długim czasie wyświetlania ⇒ możemy zrekonstruować opóźnioną składową od neutronów

⇒ dodaktkowa informacja o stratach w procesach jądrowych

 \Rightarrow dalsze polepszenie pomiaru energii

Nowe koncepcje

Potrójny odczyt:

- scyntylacja
- p. Czerenkowa
- neutrony

pozwala uzyskać

 $rac{\sigma_E}{E} ~pprox~ rac{26\%}{\sqrt{E}} \oplus 1.5\%$

Symulacja dla detektora przy ILC

Wypływy energii

Grubość warstwy absorbera potrzebna do "zatrzymania" kaskady hadronowej rośnie logarytmicznie z energią.

Haskady hadronowe podlegają bardzo dużym fluktuacjom.

Stosunkowo łatwo zatrzymać 95% kaskad.

Żeby zawsze zatrzymać 99% kaska głębokość kalorymetru musi wzrosnąć o prawie 3 λ_{int}

Wszystkich kaskad (100%) praktycznie nie możemy zatrzymać

⇒ ma to istotny wpływ na dokładność pomiaru energii

Kluczowe w przypadku poszukiwania "nowej fizyki" (brakująca energia)

Wypływy energii

Wpływ wypływów energii na dokładność pomiaru (w przypadku braku poprawek)

Parametryzacja:

$$\frac{\sigma}{E} \approx \frac{\sigma}{E}\Big|_{f=0} \left(1 + 2f\sqrt{E}\right)$$

f - ułamek traconej energii

Aby zapewnić dokładny pomiar energii trzeba przynajmniej rozpoznawać takie przypadki.

Wypływy energii

Wypływ energii jetu obserwowany w kalorymetrze uzupełniającym detektora ZEUS

Wypływy energii

W detektorze ZEUS tzw. kalorymetr uzupełniający (BAC) wykorzystywał płyty stalowe jarzma elektromagnesu, pomiędzy które wstawiono aluminiowe komory proporcjonalne.

Zbudowany przez grupę IFD UW, we współpracy z IPJ i AGH Kraków.

Rozdzielczość BAC:

$$\frac{\sigma_E}{E} \approx \frac{120\%}{\sqrt{E}}$$

Korelacja mierzonych energii - dane testowe

Wypływy energii

Wpływ kalorymetru uzupełniającego na pomiar pędu poprzecznego jetu.

Próbka przypadków NC DIS z dużym przekazem czteropędu ($Q^2 > 200 GeV^2$)

Mimo dużo gorszej zdolności rozdzielczej może efektywnie "odcinać" wypływające kaskady, lub poprawiać ich energię.

W innych eksperymentach tego typu kalorymetr określany jest najczęściej mianem "tail catcher"

Wypływy energii

Wyraźna korelacja między odpowiedzią BAC i energią brakującą w kalorymetrze centralnym nawet jeśli pomiędzy nimi jest gruba warstwa niekatywna (wyniki testów)

Tail catcher istotnie poprawia pomiar energii nawet jeśli jest umieszczony za solenoidem o grubości $1.5\lambda_{int}$ (wyniki symulacji)

