Fizyka cząstek: detektory

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład VI

• Detektory identyfikacji cząstek

Omówione dotychczas typy detektorów pozwalają jedynie na pośrednią identyfikację Detektory śladowe

Jednoczesny pomiar dE/dx i pędu \Rightarrow możliwość rozróznienia cząstek o różnej masie \Rightarrow różnym współczynniku γ Niestety tylko w ograniczonym zakresie !...

Kalorymetry

Pomiar rozmiarów kaskady

⇒ odróżnienie elektronów/fotonów od hadronów

Kalorymetry + d. śladowe

⇒ odróżnienie cząstek naładowanych i obojętnych np. elektron vs foton

Kalorymetry + detektory mionowe

⇒ identyfikacja mionów

Kolejność detektorów jest tu niezwykle istotna.

Jak możemy rozbudować ten układ, żeby poprawić identyfikację?

Liczniki czasu przelotu

Time-of-Flight (TOF)

Pomiar czasu przelotu cząstki o znanym pędzie pozwala wyznaczyć jej masę:

$$p = \beta \gamma m$$
$$l = \beta ct \Rightarrow m^2 = \frac{p^2}{l^2} \left(c^2 t^2 - l^2 \right)$$

Przykład: l = 12m, $\sigma_t = 150ps$, $\frac{\sigma_p}{p} = 1\%$

Dobra identyfikacja cząstek niskoenergetycznych ($p \sim m$)

NA49

A.F.Żarnecki

<u>ALICE</u>

Detektor TOF umieszczony jest za detektorami śladowymi, przed kalorymetrami

<u>ALICE</u>

Zbudowany z Multi-gap RPC 2 grupy po 5 elementów aktywnych ⇒ maksymalizacja efektywności

Rozdzielczość czasowa i efektywność rejestracji cząstek

<u>ALICE</u>

Rekonstruowana masa (TPC+TOF)

Wyniki symulacji MC:

Pęd cząstki vs zmierzona prędkość

Pierwsze dane z LHC:

ALICE

Informacja z liczników TOF może być połączona z pomiarem $\frac{dE}{dx}$ i p_T w TPC:

Promieniowanie Czerenkowa

Jeśli cząstka porusza się w ośrodku z prędkością większą niż prędkość światła ($\beta > \frac{1}{n}$) wzbudzone atomy mogą wypromieniować niewielka część traconej energii w postaci spójnej fali.

Kąt emisji promieniowania:

Widmo promieniowania jest ciągłe.

Liczba emitowanych fotonów na jednostkę energii:

$$\frac{d^2 N_{\gamma}}{dE_{\gamma} dx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c$$
$$\approx 370 \frac{1}{eV \cdot cm} \cdot \sin^2 \theta_c$$

Pomiar kąta rozwarcia stożka pozwala na bezpośredni pomiar prędkości cząstki!

Progowe detektory Czerenkowa

Promieniowanie Czerenkowa emitowane jest tylko gdy $\beta > \frac{1}{n}$.

Liczba emitowanych fotonów

$$N_{ph} \sim \sin^2 \theta = 1 - \frac{1}{n^2 \beta^2}$$

rośnie szybko powyżej progu.

⇒ "tagowanie" cząstek powyżej progu

⇒ efektywna rozróżnianie cząstek o różnych masach

Najczęściej stosuje się układy kilku liczników o różnych $n \Rightarrow$ możliwość identyfikacji w szerszym zakresie pędów

Detektory RICH Ring Imaging CHerenkov detector Jeśli światło emitowane przez cząstkę skierujemy na zwierciadło wklęsłe to Przykład: n =otrzymamy obraz w kształcie okręgu w $\frac{\sigma_p}{p^2} = 5 \cdot 10^{-5}$ płaszczyźnie ogniskowej.

Rozmiar okręgu pozwala wyznaczyć kąt emisji promieniowania ⇒ prędkość Przykład: n = 1.333, $\sigma_{\theta} = 15mrad$, $\frac{\sigma_p}{p^2} = 5 \cdot 10^{-5}$

Detektory RICH

@ DELPHI

Przykład rekonstrukcji rozpadu $B^- \to K^{\star \circ} \pi^- \to K^- \pi^+ \pi^-$ w oparciu o RICH

A.F.Żarnecki

Wykład VI

Detektory RICH @ LHCb

Detektory RICH @ LHCb

<u>LHCb</u>

Przypadki z detektora RICH z radiatorem C_4F_{10} na wiązce testowej

Pojedyncza cząstka: tylko kilkanaście punktów, ale wystarcza.

Pierwsze wyniki z danych LHC ($\sqrt{s} = 900 GeV$)

Porównanie z oczekiwanym kątem emisji \Rightarrow dyskryminacjia π vs K

LHCb

Pierwsze wyniki z danych LHC ($\sqrt{s} = 900 GeV$)

Rozkład masy niezmienniczej K^+K^- (tylko cięcia kinematyczne)

Po dodaniu warunku identyfikacji w RICH

LHCb

Pierwsze wyniki z danych LHC

Rozkład masy niezmienniczej K^+K^- (tylko cięcia kinematyczne)

Po dodaniu warunku identyfikacji w RICH

<u>LHCb</u>

Detektory RICH umożliwia identyfikację K^{\pm} i p w szerokim zakresie energii.

Detektor BaBar

DIRC @BaBar

A.F.Żarnecki

Bars glued end-to-end

DIRC @BaBar

- DIRC: Detection of Internally Reflected Cherenkov light
- Całkowite wewnętrzne odbicia w prostopadłościennym elemencie stały kąt propagacji! Informacja o kącie emisji promieniowania Czerenkowa może być "wyprowadzona" z centralnej części detektora - mniejsze rozmiary, mniej materiału przed kalorymetrami.

DIRC @BaBar

Widok płaszczycny fotopowielaczy i otwartego zbiornika wodnego

DIRC @BaBar

Precyzyjny pomiar czasu ($\sigma_t \sim 1.7 ns$) pozwala na istotną redukcję tła (cięcie $\pm 8 ns$)

DIRC @BaBar

Identyfikacja cząstki obywa się poprzez porównanie mierzonego rozkładu światła z oczekiwaniami opartymi na symulacjach Monte Carlo.

<u>HMPID @ALICE</u> High Momentum Particle Identification Fotony promieniowania Czerenkowa wybijają elektrony z fotokatody.

Elektrony są powielane w komorze wielodrutowej (MWPC).

Sygnał rejestrowany jest na katodzie podzielonej małe elementy - rekonstrukcja obrazu.

HMPID @ALICE High Momentum Particle Identification

Fotony promieniowania Czerenkowa wybijają elektrony z fotokatody.

Elektrony są powielane w komorze wielodrutowej (MWPC).

Sygnał rejestrowany jest na katodzie podzielonej małe elementy - rekonstrukcja obrazu.

HMPID @ALICE High Momentum Particle Identification

Testy prototypu przy akceleratorze RHIC

Pojedynczy przypadek i rekonstruowane stożki promieniowania

Rekonstruowany kąt emisji w funkcji pędu cząstki

HMPID @ALICE High Momentum Particle Identification Korelacja między pomiarami detektorów HMPID i TOF.

Momentum (GeV/c) 6 3 $\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\$.0 0.9 70F 0.8 B

HMPID @ALICE High

High Momentum Particle Identification

Detector performance at LHC

Promieniowanie przejścia

Transition radiation

Promieniowanie gamma emitowane przez ultra-relatywistyczne cząstki przy przechodzeniu przez granicę dwóch ośrodków o różnym stałej dielektryczej.

Średnia wypromieniowana energia:

 $W \approx \frac{\alpha}{3} \hbar \omega_p \gamma$ ω_p - częstość plazmowa ($\hbar\omega_p \sim 20 eV$) Energie fotonów $\hbar\omega \approx \frac{1}{4} \hbar\omega_p \gamma$ \Rightarrow prawdopodobnieństwo emisji $\sim \alpha = \frac{1}{137}$ Aby uzyskać mierzalny efekt potrzebny jest układ wielu naprzemian ułożonych warstw.

Kąt emisji promieniowania $\theta \sim \frac{1}{\gamma}$

 \Rightarrow fotony rejestrowane wzdłuż tóru cząstki, widoczne jako wzrost dE/dx

Najczęściej wykorzystywane do rozróżniania e^{\pm}/π^{\pm} przy wysokich pędach

<u>ATLAS</u>

Radiatorem jest cienka folia polipropylenowa $(15\mu m)$ umieszczana pomiędzy warstwami komór słomkowych.

Ksenon - efektywna abosrbcja X (10-30 keV)

A.F.Żarnecki

ATLAS TRT global parameters

96-128 cm Weight

Transition Radiation Tracker (barrel)

A.F.Żarnecki

Inner diameter

~1500 kg

ATLAS

Dla cząstki o $\gamma > 1000$ oprócz jonizacji obserwujemy duże depozyty poczhodzące od fotonów X.

Ułamek dużych depozytów wskazuje na typ cząstki. Pierwsze dane LHC:

<u>ATLAS</u>

Prawdopodobieństwo depozytu Dyskryminacja e vs π @ 20GeV: powyżej progu, dla pojedynczej warstwy detektora: Pion misidentification probability High threshold probability 0.2 0.1 0.1 Cluster-counting technique ATLAS preliminary Combined method -1 10 Electron candidates Generic tracks 10 -2 Electrons (MC) 0 Generic tracks (MC) -3 10 0.05 TRT endcap 0 10² γ -factor 10³ 10⁴ 10 10 0.6 0.7 0.8 0.9 10 10 Electron efficiency Electron momentum (GeV) Pion momentum (GeV)

Dyskryminacja e vs π @ 20GeV:

<u>ATLAS</u>

Prawdopodobieństwo depozytu powyżej progu, dla pojedynczej warstwy detektora:

<u>ALICE</u>

Promieniowanie przejścia mierzone w komorach dryfowych.

Schemat komory

Schemat detektora

<u>ALICE</u>

Promieniowanie przejścia głównie przy brzegu komory
⇒ różny profil czasowy pulsu dla elektronów i pionów

<u>ALICE</u>

Efektywność odrzucania pionów na podstawie sygnału TRD

W funkcji pędu

Dla różnych krotności cząstek

