Fizyka cząstek: detektory

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład VIII

Eksperymenty nieakceleratorowe

- Pierre Auger
- Fermi
- Poszukiewanie ciemnej materii

Promieniowanie kosmiczne

Promieniowanie pierwotne - obserwowane poza atmosferą ziemską Energie dochodzące do 10¹² GeV.

Skład (pomijając neutrina):

- protony (jądra H) \sim 86%
- cząstki α (jądra He) \sim 13%
- cięższe jądra $\sim 1\%$
- neutrony, elektrony, fotony $\ll 1\%$

Wciąż nie rozumiemy skąd to promieniowanie pochodzi:

- supernowe
- aktywne jądra galaktyk
- ???

Nie rozumiemy dlaczego dociera do Ziemi !... (powyżej 5 · 10¹⁹ eV powinno być pochłaniane w oddziaływaniu z mikrofalowym promieniowaniem tła)

Promieniowanie kosmiczne

Wtórne promieniowanie kosmiczne

Promieniowanie pierwotne oddziałuje w atmosferze Ziemi. Produkowane są liczne cząstki wtórne, głównie piony i kaony:

 $p + N \rightarrow X + n \pi + m K + \dots$

$$\begin{array}{rccc} \pi^- & \rightarrow & \mu^- + \bar{\nu}_\mu \\ \mu^- & \rightarrow & e^- + \nu_\mu + \bar{\nu}_e \end{array}$$

Docierają do powierzchni Ziemi

- miony μ^{\pm} ~70%
- elektrony e^{\pm} ~25%
- protony, piony π^{\pm} ${\sim}3\%$

Łącznie około 180 na
$$m^2\cdot s$$

Promieniowanie kosmiczne

Wykorzystanie

Do lat 50 XX w. badanie oddziaływań promieniowania kosmicznego z materią było jednym z głównych kierunków badań.

Wciąż pozostaje ważnym źródłem danych.

Budowane są coraz większe detektory do pomiaru promieniowania kosmicznego najwyższych energii.

Ważne narzędzie kalibracji detektorów.

Projekt "Pierre Auger Observatory":

obserwacja promieniowania czerenkowa i fluorescencji kaskady w atmosferze.

1600 detektorów rozmieszczonych na obszarze 3000 km²

Obserwatorium Pierre Auger

Badanie promieni kosmicznych w zakresie najwyższych obserwowanych energii, E > 10 EeV (>10¹⁹ eV):

skład lekkie czy ciężkie jądra, fotony, neutrina, ?? widmo energii kształt widma w zakresie efektu GZK rozkład kierunkowy anizotropia, źródła punktowe

 \rightarrow wyjaśnienie ich pochodzenia ???

- obserwacja całego nieba detektory w Argentynie i w USA
- 2 * 3000 km² \rightarrow duża statystyka danych
- hybrydowa detekcja wielkich pęków: dwa układy detektorów

Wielki pęk atmosferyczny

Pierre Auger Cosmic Ray Observatory

Use earth's atmosphere as a calorimeter. 1600 water Cherenkov detectors with 1.5km distance.

Placed in the Pampa Amarilla in western Argentina.

Detektor naziemny

Obserwatorium Pierre Auger

Detektor Fluorescencyjny

Detektory fluorescencyjne

Przykład rzeczywistego pęku

Goals of the Observatory

Detection with high statistics of cosmic rays with energies >10¹⁹eV.

- Spectrum
 - Requiers a good energy determination ≈ 20 30 %
- Arrival directions
 - ➡ Angular resolution ≈1°
- Somposition
 - Fast electronics to measure details of the shower front (SD)
 - Field of view to observe shower development (FD)

Science results

Detector Calibration

Fluorescence Telescopes

Obserwable

(analiza śladu pęku widzianego przez detektor powierzchniowy)

(P. Billoir, O. Blanch Bigas, Nucl. Phys. Proc. Suppl. 168 (2007) 225-231)

- > długość L i szerokość W: główna i boczna oś elipsoidy inercji ważonej przez sygnał stacji.
- prędkość efektywna </>
 dla każdej pary stacji

 (odległość zrzutowana na główną oś elipsoidy/ różnica pomiędzy czasem triggera)
- > odchylenie standartowe prędkości efektywnej o

Kryteria selekcji neutrinowych pęków

(dla pęków lecących z dołu , dla obserwatorium Auger)

powyższe kryterium + dane z obs. Auger 01/2004-08/2007 => 0 kandydatów The Pieer Auger Collaboration, Phys. Rev. Lett. 100, 211101 (2008)

aktualizacja: powyższe kryterium+dane 01/2004-02/2009 => znów 0 kandydatów The Pierre Auger Collaboration, Phys. Rev. D 79, 102001 (2009) 22

Primary energy determination: SD

SD measures the lateral structure of the shower at ground

- Reconstruct geometry (arrival direction & impact point)
- + Fit particle lateral distribution (LDF)
- S(1000) [signal at 1000 m] is the Auger energy estimator
 ("ideal" distance depends on detectors spacing)

Primary energy determination: FD

FD records the longitudinal profile of the shower during its development in atmosphere

One event seen by FD

- Reconstruct geometry (shower detector plane, SDP, and shower axis in SDP)
 - Fit longitudinal shower profile
 - $\mathsf{E} \propto \mathsf{area}$ under the curve

Calorimetric measurement

Primary energy determination: SD+FD

Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the median zenith angle, S38) from the FD calorimetric energy

Primary energy determination: SD+FD

Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the mediam zenith angle, S38) from the FD calorimetric energy

Energy resolution: statistical ≈ 19%

FD Energy systematic uncertainty

Stereo events ⇒ reconstruction uncertainty

10%, consistent with MC

Source	Systematic uncertainty
Fluorescence yield	14%
P,T and humidity	7%
effects on yield	
Calibration	9.5%
Atmosphere	4%
Reconstruction	10%
Invisible energy	4%
TOTAL	

Total FD E uncertainty: 22%

20 May 2007 E ~ 10¹⁹ eV

Extending the energy range with hybrid events

- energy threshold $10^{18} \, \mathrm{eV}$ covering the ankle region
- good energy resolution $\sigma(E)/E < 10\%$
- calorimetric energy measurement

Energy spectrum from hybrid data

FERMI: A NEW VIEW OF THE HIGH ENERGY UNIVERSE

LARGE AREA TELESCOPE: INTRODUCTION AND SCIENCE HIGHLIGHTS

Peter F. Michelson Stanford University Principal Investigator, Large Area Telescope Collaboration

on behalf of the Fermi LAT Collaboration and the Fermi mission

Characteristics of γ rays

- Most violent processes in the Universe
 - Extreme conditions in Nature
- Non thermal emission
 - Acceleration on several distance and time scales
- Direct information from the source
 - Neutral particles
- Universe is transparent to gamma rays
 - Opacity is energy dependent

SSC: a (minimal) standard model

SSC explains most observations, not necessarily the most interesting...

Exploring the High-Energy Universe

- gamma rays provide a direct view into Nature's largest accelerators (neutron stars, black holes)
- gamma rays probe cosmological distances (e.g., $\gamma + \gamma_{EBL} \rightarrow e^+ + e^-$)
- huge leap in key capabilities, including a largely unexplored energy range; great potential for discovery: e.g. dark matter

Two instruments: Large Area Telescope (LAT), 20 MeV - >300 GeV Gamma-ray Burst Monitor (GBM), 10 keV - 25 MeV

Gamma Ray Space Telescopes

Cross section increases ~ 20 MeV **Pair production dominates** 0 20 MeV 0,10 0.6 section (L⁻¹_{rad}) 0.08 Pair G 0.4 0.06 cm²/i Compton 0.04 Cross 0.2 0.02 Photo-electric 10 100 1000 E (MeV)

Radiation cannot be focused

Short wavelength

0

LAT Silicon Tracker

Silicon strip detectors from Hamamatsu Photonics and Japan GLAST Collaboration are a key part of LAT's success

Large Area Telescope

Tracker γ direction and identification

Calorimeter γ energy image particle showers

Anti-coincidence detector Background rejection

segmentation reduces selfveto at high energies

LAT Integration and Tests at SLAC

Calorimeter

Tracker

LAT Integration & Test Team

Integration of anti-coincidence detector with 16 towers

LAT Gamma Candidate Events

The green crosses show the detected positions of the charged particles, the blue lines show the reconstructed track trajectories, and the yellow line shows the candidate gamma-ray estimated direction. The red crosses show the detected energy depositions in the calorimeter.

LAT as a Telescope

	Years	Ang. Res. (100 MeV)	Ang. Res. (10 GeV)	Eng. Rng. (GeV)	A _{eff} Ω (cm² sr)	#γ-rays
EGRET	1991–00	5.8°	0.5°	0.03–10	750	1.4 × 10 ⁶ /vr
AGILE	2007–	4.7°	0.2°	0.03–50	1,500	4 × 10 ⁶ /yr
<i>Fermi</i> LAT	2008–	3.5°	0.1°	0.02–300	25,000	1 × 10 ⁸ /yr

• LAT has already surpassed EGRET and AGILE celestial gamma-ray totals

 Unlike EGRET and AGILE, LAT is an effective All-Sky Monitor whole sky every ~3 hours

CGRO EGRET

AGILE (ASI)

Fermi / LAT

GBM Detectors

* Placement of detectors to view entire sky while maximizing sensitivity to events seen in common with the LAT.

* 4 x 3 Nal Detectors with different orientations.

* 2 x 1 BGO Detector either side of spacecraft.

BGO detector. 200 keV -- 40 MeV Spectroscopy Bridges gap between NaI and LAT.

NaI detector. 8 keV -- 1000 keV. Triggering, localization, spectroscopy.

Fermi detects the Sun

July 1 – Sept 24, 2008

3C454.3

Supermassive black hole 8 billion light-years from us

GLAST-LAT detection of extraordinary gamma-ray activity in 3C 454.3

ATel #1628; <u>G. Tosti (Univ/INFN-Perugia)</u>, <u>J. Chiang (SLAC)</u>, <u>B. Lott (CENBG/Bordeaux)</u>, <u>E.</u> <u>do Couto e Silva (SLAC)</u>, <u>J. E. Grove (NRL/Washington)</u>, <u>J. G. Thayer (SLAC) on behalf of the</u> <u>GLAST Large Area Telescope Collaboration</u> on 24 Jul 2008; 14:25 UT

Password Certification: Gino Tosti (tosti@pg.infn.it)

Subjects: Gamma Ray, >GeV, AGN, Quasars

The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) (launched June 11, 2008), which is still in its post-launch commissioning and checkout phase has been monitoring extraordinarily high flux from the gamma-ray blazar 3C 454.3 since June 28, 2008. This confirms the bright state of the source reported by AGILE (see ATel #1592) and by the optical-to-radio observers of the GASP-WEBT Project (ATel #1625).

3C 454.3 has been detected on time scales of hours with high significance (> 5 sigma) by the LAT Automatic Science Processing (ASP) pipeline and the daily light curve (E>100 MeV) indicates that the source flux has increased from the initial measurements on June 28. Although in-flight calibration is still ongoing, preliminary analysis indicates that in the period July 10-21, 2008 the source has been in a very high state with a flux (E>100MeV) that is well above all previously published values reported by both EGRET (Hartman et al. 1999, ApJS, 123,79) and AGILE (see e.g. ATel #1592 and Vercellone et al. 2008, ApJ,676,L13).

Because GLAST will continue with calibration activities, regular monitoring of this source cannot be pursued. Monitoring by the LAT is expected to resume in early August. In consideration of the ongoing activity of this source we strongly encourage multiwavelength observations of 3C 454.3.

The GLAST LAT is a pair conversion telescope designed to cover the energy band from 20 MeV to greater than 300 GeV. It is the product of an international collaboration between NASA and DOE in the U.S. and many scientific institutions across France, Italy, Japan and Sweden.

* Similar features

Dermi

Gamma-ray Space Telescope

- * Apparent delay of high-energy emissions
- * Highest energy is very late (GRB080825C)
 - No detectable low energy emissions

Gamma-ray Universe Revealed by Fermi GST, H. Tajima, ICRR Seminar, December 16, 2008

Direct detection of WIMPs (Weakly Interacting Massive Particles):

3 V.Yu. Kozlov | EDELWEISS II | HEP'09 | 16 July 2009

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

Comprehensive Dark Matter Searches at SLAC

Direct Searches

UNDERGROUND superCDMS @ SNOLAB/DUSEL

Indirect Searches

SPACE Fermi Telescope

E. do Couto e Silva SLAC/KIPAC

Collider Searches

COLLIDER ATLAS @ LHC

FERMI-GLAST

How to detect WIMPs?

WIMP annihilation in the cosmos

Szukamy bardzo rzadkiego procesu: konieczna koincydencja dwoch sygnatur.

Direct Detection of WIMPs

Spherical Isothermal Halo Max. Boltz. v distribution, <v>~230km/s

Build a good mousetrap!

- Choose target material to "see" recoils
- Discriminate NRs from ERs
- Reduce background

"See" Nuclear Recoils <Er>~30 keV, < ~levent/kg/l00days

CDMS-2 in a nutshell

Ge & Si target masses

Allow <1 background event to maximize discovery potential

Event by event **discrimination** of nuclear and electron recoils using **ionization** and **phonon** signals

Control Backgrounds by going underground, using clean materials and shielding

ZIP: Z-sensitive Ionization & Phonon Detectors

Basic Discrimination principles

Background Control in CDMS-2

Passive shielding

RF shielded class 10,000 clean room

Plastic scintillator muon veto

CDMS-2 @ Soudan

	T1	T2	ТЗ	T4	T5			
Z1	G6	S14	S17	S12	G7			
Z2	G11	S28	G25	G37	G36			
Z3	G8	G13	S30	S10	S29			
Z4	S3	S25	G33	G35	G26			
Z5	G9	G31	G32	G34	G39			
Z6	S1	S26	G29	G38	G24			
Side View								

- 30 detectors installed and operating in Soudan since June 2006.
 - 4.75 kg of Ge, 1.1 kg of Si
- Seven Total Data Runs:
 - R123 R124:
 - taken: (10/06 3/07) (4/07 7/07)
 - exposure: ~400 kg-d (Ge "raw")
 - PRL 102, 011301 (2009)
 - R125 R128
 - taken: (7/07 1/08) (1/08 4/08)
 - (5/08 8/08) (8/08 9/08)
 - exposure: ~ 750 kg-d (Ge "raw")
 - Under Analysis
 - R129:
 - taken: (11/08 3/09)

CDMS-2 : First Five Tower Result

Blind Analysis:

PRL 102, 011301 (2009)

Event selection and efficiencies were calculated without looking at the signal region of the WIMP-search data.

Event Selection:

- Energy threshold (10-100 keV)
- Veto-anticoincident
- Single-scatter
- Inside fiducial volume
- 2-sigma Nuclear Recoil
- Phonon timing

CDMS-2 : First Five Tower Result

PRL 102, 011301 (2009)

Surface Background

Estimated number of background events to pass surface cut in Ge

$$0.6^{+0.5}_{-0.3}(stat.)^{+0.3}_{-0.2}(syst.)$$

Neutron Backround

Poly Cu (α,n): <0.03 Pb (fission): <0.1 Cosmogenic: <0.1 (MC 0.03-0.05) 398 raw kg-d 121 kg-d WIMP equiv. @ 60 GeV/c² (10 - 100 keV analysis energy range)

CDMS-2 : First Five Tower Result

PRL 102, 011301 (2009)

 10^{1}

LOW THRESHOLD ANALYSIS

- NR band (+1.25,-0.5) σ
- Maximizes sensitivity to nuclear recoils while minimizing expected backgrounds

•Limits set using optimum interval method: S. Yellin, PRD, 66, 032005 (2002); arXiv:0709.2701v1 (2007)

Sunday, March 11, 2012

+

RESULTS FOR NR SINGLES

- No annual modulation in the energy interval between 5 keV_{nr} and 11.9 keV_{nr}
- Annual Modulation signal of CoGeNT and CDMS II are incompatible at >95% CL
 NR Singles 5-119 keVnr
- Would require modulation fraction in CDMS of nearly 100% (same for full energy range)

Operate Underground to Reduce Backgrounds

Soudan

- < 1 unvetoed neutron for ~ 7000 kg-days
- 2090 mwe ~ 0.7 km

SNOLAB

- 1 neutron / year / ton
- 6060 mwe ~ 2 km

DUSEL 7100 mwe

Dark Matter Direct Detection

Double phase TPC

- •Primary scintillation signal (S1)
- •Electrons drift over 30 cm max distance
- •Electrons are extracted and accelerated generating secondary scintillation signal
- •The time difference between the two signals gives information on event position in *z*

Why Liquid Xenon?

- √large mass (ton scale)
- ✓ easy cryogenics
- \checkmark low energy threshold (a few keV)
- ✓A~131 (good for SI)
- √~50% odd isotopes (SD)
- \checkmark background suppression
 - good self shielding features (~3 g/cm³)
 - low intrinsic radioactivity
 - gamma background discrimination
 - position sensitive (TPC mode)

Xenon100: PMT light calibration

Xenon100: Position reconstruction

3 different methods for xy position reconstruction: neural network support vector machine Least squares minimization

18000

What is inside has to be carefully selected

100 kg LXe Active veto (side, top and bottom)

Install the detector underground...

XENON10

Achieved (2007) σ_{s1}=8.8 x10⁻⁴⁴ cm² Phys. Rev. Lett. **100**, 021303 (2008) Phys. Rev. Lett. **101**, 091301 (2008) **XENON100** Projected (2010) σ_{SI}~2x10⁻⁴⁵ cm² **XENON1T** *Goal*: σ_{SI} <10⁻⁴⁶ cm²

ΧΕΝΟ

Dark Matter Project

Summary

