Fizyka cząstek: detektory

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład IX

• Detektory przy kolajderach

Ideałem jest pełna rekonstrukcja przypadku:

D* (excited D-meson, carrying the "charm" quantum number): production and decay during a wide band exposure in experiment WA21, in the BEBC liquid hydrogen bubble chamber.

Ale we współczesnych eksperymentach przy kolajderach nie jest to możliwe.

Pojedyncze detektory pozwalają bardzo precyzyjnie zmierzyć:

- pozycję cząstki (detektory krzemowe, detektory śladowe)
- pozycję wierzchołka oddziaływania (detektor wierzchołka)
 - ⇒ identyfikacja ciężkich kwarków...
- tor cząstki (detektory śladowe)
 - ⇒ w polu magnetycznym: pęd cząstki
- prędkość cząstki (TOF, detektory Czerenkowa)
- energię cząstki (kalorymetry)
- typ cząstki (TRD, na podstawie dE/dx i oddziaływania w materii)

Na tej podstawie jesteśmy często w stanie zaklasyfikować cząstkę, ale naogół tylko w ograniczonym zakresie kinematycznym i/lub nie jest to pełna identyfikacja (np. wiemy, że naładnowany hadron, ale nie konkretnie czy π^+ , K^+ czy p)

Jak zaprojektować detektor? Co decyduje o ostatecznym wyborze konstrukcji? Jakie są ograniczenia?

Fizyka

Projektując detektor trzeba sobie przede wszystkim odpowiedzieć na pytania:

• Jakie procesy chcemy badać/poszukiwać?

np. $pp \rightarrow H$, $e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$

Przygotowywana jest lista "procesów referencyjnych"

- Z jakimi stanami końcowymi będziemy mieli do czynienia? np. $H \to \gamma\gamma$, $H \to ZZ$, $q^* \to q'W^{\pm}$
- Jak możemy mierzyć wybrane stany końcowe?
 Jakie parametry detektora są istotne?

fotony \Rightarrow kalorymetr EM \Rightarrow rozdzielczość energetyczna i przestrzenna (tło π°) $\mu^{\pm} \Rightarrow$ detektory śladowe i mionowe + pole magnetyczne ciężkie kwarki \Rightarrow detektor wierzchołka, det. śladowe bilans energii i pędu \Rightarrow kalorymetria, "hermetyczność" detektora

• Jaka precyzja pomiaru wymagana jest w pomiarze danego procesu?

Physics, Signatures and Triggers

Some physics and their experimental signatures:

- Higgs
 - γγ, bbar, WW, ZZ (peak)
- Supersymmetry
 - multi-leptons or same-sign lepton pairs
 - jets and Missing $E_{\rm T}$
- Z'
 - di-electron, di-muon (peak)
- W'
 - electron or muon and Missing $E_{\rm T}$
- Large Extra dimensions
 - jet + Missing E_T (mono-jet)
 - di-fermion, di-boson
- Compositeness
 - di-jet (hi mass tail)
 - lepton and jet (LeptoQuark)

Corresponding "primary" triggers:

- di-photon
- di-electron
- di-muon
- di-jet
 - with b-tagging
- Inclusive leptons, either:
 - higher threshold
 - Isolation cut
 - Pre-scale applied
- Missing E_{T_1}
 - Jet(s)
 - leptons
- "mixed" or "composite" triggers
 ...

	Process and	Energy	Observables	Target	Detector	Notes
	Final states	(TeV)		Accuracy	Challenge	
Higgs	$ee \to Z^0 h^0 \to \ell^+ \ell^- X$	0.35	$M_{\text{recoil}}, \sigma_{Zh}, BR_{bb}$	$\delta\sigma_{Zh} = 2.5\%, \delta \mathrm{BR}_{bb} = 1\%$	Т	$\{1\}$
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b \bar{b} / c \bar{c} / \tau \tau$	0.35	Jet flavour , jet (E,\vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5\%$	V	$\{2\}$
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	M_Z, M_W, σ_{qqWW*}	$\delta(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	С	$\{3\}$
	$ee \to Z^0 h^0 / h^0 \nu \bar{\nu}, h^0 \to \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	С	$\{4\}$
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, h^0 \rightarrow \mu^+ \mu^-$	1.0	$M_{\mu\mu}$	5σ Evidence for $M_h = 120$ GeV	Т	$\{5\}$
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} =2.5%	С	$\{6\}$
	$ee ightarrow h^0 u ar{ u}$	0.5	$\sigma_{bb\nu\nu}, M_{bb}$	$\delta(\sigma_{\nu\nu h} \times \mathrm{BR}_{bb}) = 1\%$	С	$\{7\}$
	$ee ightarrow t ar{t} h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$	С	$\{8\}$
	$ee ightarrow Z^0 h^0 h^0, h^0 h^0 u ar{ u}$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	С	{9}
SSB	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V	$\{10\}$
	$ee \to W^+ W^- \nu \bar{\nu} / Z^0 Z^0 \nu \bar{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	С	{11}
SUSY	$ee \to \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta M_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	Т	{12}
	$ee \to \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- (\text{Point } 1)$	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}) = 200 \text{ MeV}$	Т	$\{13\}$
	$ee \to \tilde{t}_1 \tilde{t}_1 $ (Point 1)	1.0		$\delta M_{\tilde{t}_1} = 2 \text{ GeV}$		{14}
-CDM	$ee \to \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ (Point 3)}$	0.5		$\delta M_{\tilde{\tau}_1} = 1 \text{ GeV}, \ \delta M_{\tilde{\chi}_1^0} = 500 \text{ MeV},$	F	$\{15\}$
	$ee \to \tilde{\chi}_2^0 \tilde{\chi}_3^0, \; \tilde{\chi_1^+} \tilde{\chi_1^-} \; (\text{Point } 2)$	0.5	M_{jj} in $jj\not\!\!\!E$, $M_{\ell\ell}$ in $jj\ell\ell\not\!\!\!E$	$\delta \sigma_{\tilde{\chi}_2 \tilde{\chi}_3} = 4\%, \ \delta (M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0}) = 500 \text{ MeV}$	С	$\{16\}$
	$ee \to \tilde{\chi_1^+} \tilde{\chi_1^-} / \tilde{\chi_i^0} \tilde{\chi_j^0}$ (Point 5)	0.5/1.0	ZZ₽, WW₽	$\delta \sigma_{\tilde{\chi}\tilde{\chi}} = 10\%, \ \delta (M_{\tilde{\chi}^0_3} - M_{\tilde{\chi}^0_1}) = 2 \text{ GeV}$	С	$\{17\}$
	$ee \to H^0 A^0 \to b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	С	$\{18\}$
-alternative	$ee \to \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta M_{\tilde{ au}_1}$	Т	{19}
SUSY	$ \tilde{\chi}_1^0 \to \gamma + \not\!$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С	$\{20\}$
breaking	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi_{soft}^{\pm} $ (Point 8)	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m} = 0.2$ -2 GeV	F	$\{21\}$
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V	{22}
	$ee \rightarrow f\bar{f} \ (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M_{Z_{LR}} = 7$ TeV	V	{23}
New Physics	$ee \to \gamma G \ (ADD)$	1.0	$\sigma(\gamma + \not\!$	5σ Sensitivity	С	$\{24\}$
	$ee \to KK \to f\bar{f} \ (RS)$	1.0			Т	$\{25\}$
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		$\delta M_{top} = 50 \text{ MeV}$	Т	$\{26\}$
Meas.	$ee \rightarrow Z^0 \gamma$	0.5/1.0			Т	$\{27\}$

TABLE II: Benchmark reactions for the evaluation of ILC detectors

Table 3 Gold–plated processes at photon colliders.

Reaction	Remarks			
$\gamma\gamma ightarrow h^0 ightarrow bar{b}$	\mathcal{SM} or \mathcal{MSSM} Higgs, $M_{h^0} < 160 \text{ GeV}$			
$\gamma\gamma \to h^0 \to WW(WW^*)$	\mathcal{SM} Higgs, 140 GeV $< M_{h^0} < 190$ GeV			
$\gamma\gamma \to h^0 \to ZZ(ZZ^*)$	\mathcal{SM} Higgs, $180 \mathrm{GeV} < M_{h^0} < 350 \mathrm{GeV}$			
$\gamma\gamma \to H, A \to b\bar{b}$	\mathcal{MSSM} heavy Higgs, for intermediate $\tan \beta$			
$\gamma\gamma \rightarrow \tilde{f}\tilde{f}, \ \tilde{\chi}_i^+\tilde{\chi}_i^-, \ H^+H^-$	large cross sections, possible observations of FCNC			
$\gamma\gamma ightarrow S[ilde{t} ilde{t}]$	$ ilde{t}ar{ ilde{t}}$ stoponium			
$\gamma e ightarrow ilde{e}^- ilde{\chi}_1^0$	$M_{ ilde{e}^-} < 0.9 imes 2E_0 - M_{ ilde{\chi}_1^0}$			
$\gamma\gamma \to W^+W^-$	anomalous W interactions, extra dimensions			
$\gamma e^- \rightarrow W^- \nu_e$	anomalous W couplings			
$\gamma\gamma \rightarrow WWWW, WWZZ$	strong WW scatt., quartic anomalous W, Z couplings			
$\gamma\gamma ightarrow tar{t}$	anomalous top quark interactions			
$\gamma e^- \to \bar{t} b \nu_e$	anomalous Wtb coupling			
$\gamma\gamma \rightarrow \text{hadrons}$	total $\gamma\gamma$ cross section			
$\gamma e^- \rightarrow e^- X$ and $\nu_e X$	$\mathcal{N}C$ and $\mathcal{C}C$ structure functions (polarized and unpolarized)			
$\gamma g \to q \bar{q}, \ c \bar{c}$	gluon distribution in the photon			
$\gamma\gamma ightarrow J/\psiJ/\psi$	QCD Pomeron			

Fizyka

- Jaka jest częstość przypadków, których szukamy?
 A jaka jest częstość przypadków tła?
- Czy potrafimy wyodrębnić poszukiwane przypadki na poziomie "triggera" (układu wyzwalania)?
 → Które detektory muszą to zapewnić?

Są też pytania wspólne dla wszystkich rozważanych procesów (choć z nich wynikające):

- Jaka duży będzie strumień danych? Jak go przetworzyć i zapisać?
- Jak dokładnie musimy kalibrować nasz detektor?
- Jak dokładnie musimy pozycjonować nasz detektor?
- Jak dokładnie musimy znać efektywności detektorów i układu wyzwalania?

Idealny detektor

- Obejmuje pełen kąt bryłowy (4 π), bez dziur, obszarów martwych itp.
- Dokładny pomiar pędów i energii, oraz pozycji (duża segmentacja)
- Pełna identyfikacja cząstek
- Jednorodność, idealna kalibracja i 100% efektywność (brak czasu martwego)

Taki detektor można naszkicować na kartce papieru, a nawet wstawić do programu symulacji...

Ale taki detektor nie istnieje!

Ograniczenia

- Wiązka: rozmiary i tło
- Przewody: zasilanie i wyprowadzanie sygnałów, chłodzenie, kalibracja
- Konstrukcja mechaniczna
- Dostępne technologie detektorów, czas odczytu, segmentacja...
- Dostępne technologie dla elektroniki odczytu, transferu i przetwarzania danych Tu trzeba przewidzieć rozwój technologii na wiele lat naprzód!
- Wymagany nakład pracy i kwalifikacje personelu
- Ogólne rozmiary i waga detektora, sposób montowania, dostęp serwisowy.
- Potrzebna infrastruktura
- Planowany termin uruchomienia
- PIENIĄDZE liczą się na każdym kroku

Ryzyko

Projektując detektor, który ma być uruchomiony za 0(10) lat musimy przewidywać rozwój technologii produkcji komponentów, elektroniki, procesorów, itp.

Gdybyśmy opierali się wyłącznie na komercyjnie dostępnych rozwiązaniach -- eksperyment byłby przestarzały w chwili uruchomienia.

Szereg wyborów jest wiec obarczonych ryzykiem, zarówno jeśli chodzi o docelowe parametry detektora (czy uda się je uzyskać) jak i koszt.

Ale bez podejmowania tego ryzyka nie byłoby rozwoju technik detekcyjnych!

Trudne wyzwania pozwalają przyciągnąć najlepszych!

Nie istnieje jedno, najlepsze rozwiązanie!

Nie jest możliwa globalna optymalizacja - za dużo niewiadomych (poczynając od fizyki, np. co będzie najważniejszym pomiarem)

Każdy eksperyment znajduje swoje "minimum".

Jakie są ogólne zasady budowy detektorów?

Z jakich elementów powinien się składać detektor przy kolajderze? Jak powinny być rozmieszczone?

Struktura warstwowa

Ułożone jeden za drugim detektory umożliwiają optymalny pomiar wszystkich rodzajów cząstek i ich (zwykle częściową) identyfikację.

Struktura warstwowa

Ten schemat opisuje większość współczesnych eksperymentów przy kolajderach (LEP, HERA, Tevatron, LHC, ILC):

Kolejno od środka detektora:

• detektor wierzchołka

jak najbliżej osi wiązki, określa gdzie zaszło zderzenie, identyfikuje rozpady cząstek krótkożyciowych (tzw. wierzchołki wtórne) najczęściej detektor półprzewodnikowy

• detektory śladowe

pomiar torów cząstek naładowanych, wyznaczenie pędów cząstek z zakrzywienia w polu magnetycznym najczęściej detektory gazowe

(minimalizuje oddziaływania cząstek w detektorze)

Struktura warstwowa

- kalorymetr elektromagnetyczny pomiar energii elektronów i fotonów gęsty materiał absorbujący lawinę cząstek (międź, ołów, wolfram)
- kalorymetr hadronowy pomiar energii hadronów (protony, neutrony, piony, kaony)
 gęsty materiał absorbujący lawinę cząstek; lawina hadronowa jest wielokrotnie dłuższa od elektromagnetycznej.
- detektory mionowe

identyfikacja mionów - jedyne cząstki naładowane, które mogą przejść przez kalorymetry bez dużych strat energii

Struktura warstwowa

OPAL

Detektor OPAL, akcelerator LEP, zderzenia wiązek przeciwbieżnych e^+e^-

Silicon-tungsten forward detector

ZEUS (HERA) 🛞

Software (SDRC-IDEAS level VI i Performed by Casten Hatticana Status : October 1993

Compact Muon Solenoid

SiD Projekt detektora dla eksperymentu przy ILC

Koncepcja detektora opartego w całości o detektory półprzewodnikowe (krzemowe)

Collider detectors

- Central tracker
 - Locate primary interactions and secondary vertices
 - Measure momentum of charged particles
- Calorimeters
 - Fully absorb most particles and measure their energy
- Muon spectrometer
 - · Measure momentum of muons which pass through the calorimeter

Particle Identification Methods

Constituent	Si Vertex	Track	PID	Ecal	Hcal	Muon
electron	primary	Í	Ĵ	j	—	_
Photon γ	primary	_	_	Î	—	_
u, d, gluon	primary	Ĵ	_		1	—
Neutrin	-		—	—	—	—
S	primary	1	Ì		Í	—
c, b, τ	secondary		1	Í	Ĩ	—
μ	primary		_	MIP	MIP	1
PID = (TOF,		MIP = Ionizii	Minimu ng Partio	m cle		

Generic features required of ATLAS and CMS

- Detectors must survive for 10 years or so of operation
 - Radiation damage to materials and electronics components
 - Problem pervades whole experimental area (neutrons): NEW!
- <u>Detectors must provide precise timing and be as fast as</u> <u>feasible</u>
 - 25 ns is the time interval to consider: NEW!
- Detectors must have excellent spatial granularity
 - Need to minimise pile-up effects: NEW!
- <u>Detectors must identify extremely rare events, mostly in</u> real time
 - Lepton identification above huge QCD backgrounds (e.g. /jet ratio at the LHC is ~ 10⁻⁵, i.e. ~ 100 worse than at Tevatron)
 - Signal X-sections as low as 10⁻¹⁴ of total X-section: NEW!

Detektor wierzchołka

Role of trackers at the LHC

- Extrapolate back to the point of origin. Reconstruct:
- Primary vertices
 - → distinguish primary vertices and identify the vertex associated with the interesting "hard" interaction
- Secondary vertices
 - Identify tracks from tau-leptons, b and c-hadrons, which decay inside the beam pipe, by lifetime tagging
 - Reconstruct strange hadrons, which decay in the detector volume
 - Identify photon conversions and nuclear interactions
- Measure the trajectory of charged particles
 - Fit curve to several measured points ("hits") along the track.
 - → measure the momentum of charged particles from their curvature in a magnetic field.

Primary vertices

ATLAS EXPERIMENT

Run Number: 153565, Event Number: 4487360

Date: 2010-04-24 04:18:53 CEST

Event with 4 Pileup Vertices in 7 TeV Collisions

& curving tracks 10

9 May 2011

Pippa Wells, CERN

9. Vertex Reconstruction

The life time of B-mesons can be measured from the decay length I, if the momentum of the B-meson (γ -factor) is measured as well.

CDF's 1st Top Event... (run 1)

Lifetime tagging

ΡV

SV

8

TV

Tracks have significant impact parameter, d₀, and maybe form a reconstructed secondary vertex

9 May 2011

LHCb Preliminary

EVT: 49700980

RUN: 70684

12 -

10

8

6

4

2 -

scale in mm

Pippa Wells, CERN

Impact parameter resolution (simplified)

Vertex Resolution

for good resolution on angles (ϕ and θ) and intercepts (d, z_0)

- Precision track point measurements
- Maximize separation between planes for good resolution on intercepts
- Minimize extrapolation first point close to interaction

Detektor wierzchołka

Odległość od osi wiązki: kluczowa dla wyniku pomiaru precyzja pomiaru vs profil/tło wiązki

W oddziaływaniu pomiędzy wiązkami powstają pary e^+e^- o małych pędach poprzecznych, z których część zostawia ślady (ang. "hit") w detektorze wierzchołka utrudniając rekonstrukcję innych torów. W pięciowarstwowym detektorze oczekuje się około 60 000 dodatkowych "hitów".

Gęstość śladów w pierwszej warstwie [1/mm²/BX]

Pary e⁺e⁻ symulowane za pomocą Guinea Pig. Gęstości liczone dla różnych wartości promienia pierwszej warstwy.

Detektory dla akceleratora liniowego ILC (International Linear Collider)

Jet flavour tagging performance

Spatial resolution 4 μ m, layer thickness 0.1% X_0 . R₁ = 26 mm - only 4 layers.

Detektor wierzchołka

Odległość od osi wiązki: precyzja pomiaru (ekstrapolacja) vs tło wiązki

Segmentacja (rozmiar piksela): precyzja pomiaru vs objętość danych, straty mocy

Technologia: odporność radiacyjna vs koszt, szybkość odczytu

Grubość detektora:

rozpraszanie vs stabilność mechaniczna

Maintain 2 alternative long-barrel approaches :

Two read-out modes considered :

☆ continuous read-out

read-out delayed after bunch-train → 3 double layers expected to help
 \Rightarrow mini-vectors

Vertex Detector

Centralny detektor śladowy

6.ALICE TPC

View inside the ALICE TPC

Simulated heavy ion collision in the ALICE TPC.

ALICE heavy ion event display

14. CMS Silicon Tracker

Micro Strip:

- 214 m² of silicon strip sensors
- 11.4 million strips
- Diameter: 2.4 m

Pixel:

- Inner 3 layers: silicon pixels (~ 1 m²)
- 66 million pixels (100x150 μm²)
- Precisio: $\sigma(r\phi) \sim \sigma(z) \sim 15 \ \mu m$

14.ATLAS - Sensors traversed by charged track

Centralny detektor śladowy

Różne możliwe technologie:

- komora projekcji czasowej
- detektory półprzewodnikowe
- detektory gazowe

Każda ma swoje zalety i wady. Wszystko należy uwzględnić:

- + precyzja pomiaru położenia (Si, gas)
 - => precyzja pomiaru pędu (geometria, rozmiar, pole magnetyczne)
- + precyzja pomiaru dE/dx (TPC, Si)
- + liczba punktów pomiarowych (TPC, Si)
- + czas odczytu (Si, TPC)
- + wpływ tła, nakładających się przypadków
- + tło kombinatoryczne
- + ew. inne funcje (np. TRD)
- + wielokrotne rozpraszanie/bilans materiału przed kalorymetrem

Summary - Precision of trackers

- Intrinsic space point resolution
 - Sensor design (pixels, strips, gas detectors...)
- Magnetic field
 - Strength, and precise knowledge of value
- Alignment
 - Assembly precision, survey, stability
 - Measure the positions of detector elements with the tracks themselves
 - Control systematic effects
- Multiple scattering and other interactions
 - Minimise the material
 - Measure the amount of material in order to simulate the detector and reconstruct tracks correctly
 - Also affects energy measurement in calorimeter

ATLAS/CMS: from design to reality Amount of material in ATLAS and CMS inner tracker

 Active sensors and mechanics account each only for ~ 10% of material budget

 Need to bring 70 kW power into tracker and to remove similar amount of heat

• Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs

Can lessons be learned from Tevatron?

Material: X-raying the detector

- Conversions can indicate location of material in detector
 Normalized to inner cylinder of tracking chamber
 - Overall normalization difficult
 - Acceptance and efficiency depend on r
- Useful to find missing (or misplaced!) pieces

Photon Conversion Image of Material

FNAL-CERN Summer School 2009 Calorimetry Lecture 2

ATLAS simulation

20 20 30 35 40 Conversion radius (cm) for |z|< 26cm

Photon conversions

- Conversions, $\gamma \rightarrow e^+e^-$, example from CMS
 - Two oppositely charged tracks
 - Consistent with coming from the same point
 - Consistent with fit to a common vertex, imposing zero mass

The material budget in front: electron Bremsstrahlung

Nuclear interactions

- ATLAS example
 - Tracks with d₀>2mm w.r.t PV
 - Form secondary vertices
 - Mass veto for $\gamma,\,{\rm K^0}_{\rm s},\,\Lambda$

- x-y view for |z|< 300mm
- Sensitive to interaction lengths instead of radiation lengths

ATLAS-CONF-2010-058

Radius [mm]

9 May 2011

Pippa Wells, CERN

- Full φ range shows displaced beam pipe(i.e. r varies with φ)
- Some features more spread out in data than MC.

Radius [mm]

