

I. Spin Fermions and bosons

#### II. Weak interaction and generation of particles

#### III. Z and W+,W- bosons

#### yet another quantum number Spin - "intrinsic" angular momentum (spin, kręt) like spinning tennis ball (pure quantum effect; description as for *orbital angular*) momentum L, but only formally) These "rotations" are quantized. Each elementary particle has defined value of spin, quantum number s Unit $\hbar$ (h/2 $\pi$ , h – Planck constant) - spin of elementary particles - multiplication of $\frac{1}{2}\hbar$ (s = 0, $\frac{1}{2}$ , 1,3/2).

Spin - vector quantity, only some projections on arbitrary axis are allowed -> number of different spin states (polarization states) for a massive particle is equal to 2s+1

### Spin - THE quantum number

Examples:electron, proton - spin  $\frac{1}{2}$  (2 spin states)neutrino- spin  $\frac{1}{2}$  (1 spin states)photon- spin 1Z, W+/-- spin 1(3 spin states)+ spin 0- spin 0- spin 1

The highest spins (2015): 15/2, 6.



### **SPIN- discovery**

Bohr's atom Emission/absorption spectral lines Doubling of lines

### **States in atoms**

In description of states of atom – quantum numbers (integer numbers)

main (energy)= norbital= I $(0 \le I \le n-1; n-states)$ magnetic (projection of L)= m (|m| \le I)

(-I,-I+1...,I-1,I; 2I+1 states)

State of atom – occupation of electrons of various shells <u>emission</u> of photons if electron is loosing energy <u>absorption</u> of photons if electron is gaing energy

# Hydrogen atom and hydrogenlike atoms (Bohr, 1912) Hydrogen and hydrogen-like atoms (one e) Potential energy – Coulumb interaction between nucleus +Ze and electron -e

 $E_n = -\frac{\mu Z^2 e^4}{2\hbar^2 n^2}$ 

 States are degenerated with respect to I,m; energy depends only on n (circular orbit):
 degeneracy with respect to m – since central
 degeneracy with respect to I -- since 1/r

 $V(r) = -\frac{Ze^2}{r}$ 

 $\mu = \frac{m_1 m_2}{m_1 + m_2}$ 

### Spectrum – hydrogen atom (Bohr)



For hydrogen atom Z=1 (in atomic units)

$$\Delta E_{n_1 n_2} = \frac{\mu}{2} \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\Delta E_{n_1 n_2} = h\nu = h\frac{c}{\lambda}$$

Balmer 1885 (95)

# Relativistic corrections -> splitting of emission lines

### Sommerfeld 1916

#### $\rightarrow$ energy of states E(n, I)



### The normal Zeeman effect

- External field (magn. or electric) may break spherical symmetry removing degeneracy with respect to m. This leads to a separation (splitting) of lines (subtle structure of lines).
- 1892 P. Zeeman observed widening of lines for sodium (hydrogen-like), when sodium flame was between magnetic poles
- This widening in fact a splitting of lines (observed for many other atoms as well)

If spectrum in agreement with quantum numbers I and m in the magnetic field - the *normal Zeeman effect (the Stark effect – similar effect in electric field)* 

### Stern-Gerlach experiment (1921)

Stern and Gerlach (1921) for silver: doubling of lines in magnetic field.



Movement on the electron on orbit  $\rightarrow$ 

magnetic moment for atom in magnetic field. Here only the last electron is important (hydrogen-like structure).

*Teoria kwantów, Białynicki-Birula, M. Cieplak, J. Kamiński* M. Krawczyk, AFZ Particles and Universe Lecture 6

### The anomalous Zeeman effect

The anomalous Zeeman effect – this was a problem: doubling of lines!

Formaly it was possible to describe spectra by introducing a new quantum number  $j = 1 \pm \frac{1}{2}$ 

Pauli: "two valuedness not describable classically"- 1925; a need of 4 (not 3) quantum numbers and exclusion principle

Podstawy fizyki współczesnej, V. Acosta, C. L. Cowan, B. J. Graham, rozdz. 20-22 M. Krawczyk, AFZ Particles and Universe Lecture 6

### **Doubling of lines**



Doubling of lines in the magnetic field: besides magnetic moment related to the magnetic quantum number m – projection of orbital angular momentum I (here m\_I) there is "intrinsic" magnetic moment (magn. quantum number, here m\_s) related to the "intrinsic" angular momentum s - with only two values.

### **Discovery of electron's spin 1925** – story by S. Goudsmit 1971

http://www.ilorentz.org/history/spin/goudsmit.html
Z Phys. Rev. Letters (PRL) http://prl.aps.org/edannounce/PhysRevLett.101.010002,
(PRL was founded by Goudsmit in 1958):

'Goudsmit - while still a graduate student, he and his fellow student George E. Uhlenbeck



subtelna struktura linii widmowych

- hypothesized that the electron possessed angular momentum
- that is, spin in addition to mass and charge.
- Their motivation was to explain the mystery of doublet and
- higher order spectral line splitting.

Their insight furnished a missing link leading to the final

triumph of the then-struggling birth of quantum mechanics.'

### Hypotheses of spin

- A. H. Compton: postulated 'quantized electron rotation' (1918-21) (Bohr i Pauli – against)
- R. Kronig (PhD student) proposed 'spin' few monts before Goudsmit and Uhlenbeck, but Pauli was against his publication (*'it is indeed very clever but of course has nothing to do with reality'*)
- In 1925 Goudsmit and Uhlenbeck hypothesis of spin (Pauli against; their superviser Ehrenfest sent their work for publication; his comment wasthat they are so young that can have unreasonable paper)
- W 1926 correct relativistic calculation by L.H.Thomasa (factor 1/2) and Pauli accepted spin (and introduced Pauli matrices 2x2 to describe spin 1/2).

#### Today spinotronics ( → quantum computer)

### **Spin discovery**

http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html



Leiden 1924. From left to right: Dieke, Goudsmit, Tinbergen, Ehrenfest, Kronig, Fermi. Note: Tinbergen later changed from physics to economy and became the first Nobel laureate in economy (1969).

#### Fermions and bosons In Nature – only two types of elementary particles:

- Dortiolog with holf integer coin formione
  - Particles with half-integer spin = fermions
    - Fermi-Dirac statistics
    - Pauli exclusion (1925):

two fermions can not be in the same quantum state

This explains structure of atoms – if states at some energy shell are all occupated – next electron has to go to the higher shell ... (shell = n)

Particles with integer spin = bosons

- Bose-Einstein statistics
- more bosons better (lasers, condensats)

#### Spin of fundamental particles in unit ħ

- Quarks i leptons (fermions) spin ½
- Carriers of interactions (bosons) : photon, gluons, bosons W i Z – spin 1

Higgs particle (boson)

- spin 0

### Spin 1-vector (intermediate) bosons

| Name     | symbol | el.char | ge mass  |  |
|----------|--------|---------|----------|--|
| Boson    | VV+    | + 1     | 80.4 GeV |  |
| Boson    | VV-    | - 1     | 80.4 GeV |  |
| Boson    | Z      | 0       | 91.2 GeV |  |
| Photon   | γ      | 0       | 0        |  |
| Gluons(8 | 8) g   | 0       | 0        |  |

 W<sup>+</sup> antiparticle to Wγ, Z – (self antiparticles)
 gluon<sub>a</sub> <sub>b</sub> antiparticle to gluon <u>a</u> b (a, b – colors)
 Hipotetical graviton – spin 2, el. charge 0, mass 0 (antiparticle)
 M. Krawczyk, AFZ Particles and Universe Lecture 6

18

### Left and right particles - spin 1/2

Left (left-handed) particle

reguła korkociągu

Left ? This is relative, since if I will be faster than this particle its momentum vector will change into opposite one – and it becomes a right particle!. So, if there is a left than there is a right particle:  $\rightarrow$  two states of massive particle with spin 1/2. For massless particle this argument does not hold.

momentum

- Massless neutrino only left,
- massless antineutrino only right

M. Krawczyk, AFZ Particles and Universe Lecture 6

(in the Standard Model!) 19

# Generations and weak interaction

### **Weak interactions**

Particles (p, n) and (neutrino el., electron) in some processes appear in pair (doublets) eg. in beta decay



Becquerel 1896 radioactivity β

> Vectors (lines) momentum of particles

Convention: arrows on lines along momenta for fermions while for antifermions opposite to the momenta

 E. Fermi 1934 → theory (*pointlike-, 4 fermion-, charge current- interaction*) – weak interaction
 M. Krawczyk, AFZ Particles and Universe Lecture 6
 21

### Weak Interaction

### - Fermi

#### lectures by F. Close w CERN

Fermi model (1934) for beta decay of neutron

orad hadronowy x prad leptonowy



Effective ,,strenght" of interaction "G\_F" = "Fermi constant"- value from data

#### Black box

#### with higher resolution we see exchange of W

el. change conservation.

р n emomentum antineutrino ve +2/3-1/3 emom. antyneutrind  $v_{e}$ 

### Fundamental weak int.

β decay

vertex d  $\rightarrow$  u W- i W-  $\overline{v} \rightarrow$  e-

coupling constant g (g -,,weak charge ")

 $\alpha_{\rm w} = {\rm g}^2/4 \ \pi = {\rm 1}/{\rm 32}$ 

larger than the corresponding coupling for electromagn. interaction (e- el. charge)

U

W-

 $\alpha_{em}$ = e<sup>2</sup>/4  $\pi$  = 1/137 ( subtle coupling constant ).

 Weak interaction weaker since exchange of massive particle W ,costs,..

### Electroweak int.: bosons W+,W-, Z

- 1864 Maxwell combined electric and magnetic int. into electromagnetic interaction – *first unification of forces*
- 1970 Glashow, Weinberg i Salam combination of weak and electro-magnetic int. (partial unification) → electro-weak (EW).
   Prediction: besides W+, W- a neutral boson Z (Z<sup>0</sup>) exists
   Nobel 1979
- 1983-4 Collision of protons with antiprotons (experiments UA1, UA2 at CERN) – in quark and antiquarks collision production of bosons W+, W- and Z.
   Rubbia (head of exp.) and van der Meer (antiprotons beams in accelerators)

Nobel(1984) - discovery of W/Z

### **Generations (Families)**

### Weak interaction groups quarks and leptons in dublets





CC "charged current"

### First generation = two light doublets of fermions - spin 1/2

|   | quarks  | el. charge 2/3 | u (3 colors)    |
|---|---------|----------------|-----------------|
| • |         | -1/3           | d (3 colors)    |
| • | leptons | 0              | v <sub>e</sub>  |
|   |         | -1             | e (electron e-) |

- antifamily
- eg. antilepton doublet:
- el. change
   +1 e (positron e+)
   0 v<sub>e</sub>

Note: In Standard Model neutrinos are massless. Experiments (2001-2) – *neutrinos have very small masses*  Second generation = two doublets of fermions - spin 1/2 Quarks el. charge. 2/3 c (3 colors) -1/3 s (3 colors) Leptons () $\nu_{\mu}$ -1 µ (mion -)

antileptons:

el. charge +1  $\overline{\mu}$  (mion+) 0  $\overline{\nu}_{\mu}$ 

Third generation = two heavy<br/>doublets of fermions - spin 1/2•quarks el.charge 2/3t (3 colors)-1/3b (3 colors)•leptons0-1 $\tau$  (taon -)

antileptons:

el. charge +1  $\tau$  (taon +) 0  $v_{\tau}$ 

### **3 generations (families)**

This is a table of fundamental particles
Families (doublets of spin ½ fermions) are ordered in masses:
I generation – the lighest, III – the heaviest (like periodic Mendelejew's table of elements, but

without regularalities)

- Origin of masses: Brout-Englert-Higgs mechanism
- Other generations ?
- Experiment: not, if neutrinos light.
- Theory?

sb

 $egin{array}{c|c} egin{array}{c} \mu & au \ V_e & V_\mu & V_\tau \end{array} \\ \hline Leptons \end{array}$ 

Forces Z Υ W 9





LEP (CERN, 1989 - 2002r) . collision e- e+ In 1989-1995 energy of collision  $\rightarrow$ resonant production of Z : E+ + E- = M<sub>7</sub> = 91 GeV

#### Boson Z decays in a democratic way

pairs:quark-antiquark, lepton-antilepton (np. e+e-, neutrino el - antineutrino el.)



#### 1/life-time

~ numbers of holes = number of different decay channels LEP: 4 experiments→ collected 20 mln of Z

#### Lifetime of boson Z

<u>Uncertainty principle</u> (Heisenberg)  $\Delta E \Delta t = 6 \times 10^{-25} \text{ GeV sec.}$ 

If  $\Delta t$  = life time of decaying particle then rest energy (mass) spread  $\Delta E = 6 \times 10^{-25} \text{ GeV sec}/\Delta t$ 

#### M. Krawczyk, AFZ Particles and Universe Lecture 6

#### Z Lifetime

Heisenberg Uncertainty Principle AE At = 6 x 10-25 GeV sec example At = lifetime of unstable particle ⇒ AE = AM c<sup>2</sup> = 6×10-25 GeV At (sec) ete-> Z (production probability) E = 91 Gev  $\Gamma = \Delta E = 2.5 \text{ GeV}$ => Lifetime = 10 sec

For Z (decay width – half width)  $\Gamma = \Delta E = 2.5 \text{ GeV}$  $\Delta t \sim 2 \times 10^{-25} \text{s}$ 

#### LEP: number of events in the e+e- collision



### Number of light neutrinos

Probability of Z bosons decaying into hadrons for

2, 3, 4 pairs of v  $\overline{v}$ 

(light neutrinos - with masses below 45 GeV)

Agreement for  $N_v = 3!$ 



### Weakness of weak interaction



#### Feynman rules:

If energy E flows through the transmitted "virtual" particle (photon; Z) it costs 1/(E^2+M^2)

#### If E >> M the cost is 1/E^2....like the case of the photon

## Comparison of boson Z and photon exchange in collision e+ e-



<u>Feynman rules</u> (probability of process)

Energy E curried by a virtual particle

 $\rightarrow$  factor 1/(E<sup>2</sup>+M<sup>2</sup>)

M- mass of virtual particle



#### For E >> M , so approximately factor 1/E<sup>2</sup>...as for photon





So for exchange of Z formula without energy. This is like a pointlike interaction - Fermi model !

Here exchange of Z boson, but model was formulated for CC ie. with exchange of W+/-.

42

42



"weak int" is weak - why?

coupling  $\alpha_w = g^2/4 \pi = 1/32$ (dla małych energii) larger than for el-mag int. ~1/137 so it is weak since W mass large

Weak interaction is the weakest! Mass W+/- = 80 GeV, Z = 91 GeV the only massive agent of interaction

Couplings constants are running (due to quantum corrections) electroweak (unification of el-mag. and weak) – *more later...* 

M. Krawczyk, AFZ Particles and Universe Lecture 6

43 <sub>43</sub>

## UNIFICATION



### W+, W- BOSONS



M. Krawczyk, AFZ Particles and Universe Lecture 6

#### F.Close(CERN)





#### The weak force is feeble in the Sun ...

..because 10,000,000K ~ 1 keV << 80 GeV

...this is why the sun has stayed active long enough for us to have evolved and be having this conversation.

-We exist because m(W) is not zero

