

I. Comparison of coupling constants

II. Feynman diagrams

III. Running coupling constants, asymptotic freedom

Interactions In macro- and micro scales:

- gravitation act between all massive particles, only attraction, responsible for Sun system, large astronomical objects, etc.
- electromagnetism (e-m, el-mag) electric charge of both signs, attraction and repulsion, atoms ...

In microworld in addition interactions:

 strong (nuclear) - bounding nucleons in nuclei (pions exchange) range 10⁻¹⁵ m
strong fundamental (color) - between quarks (gluons exchange), range 10⁻¹⁵ m

 weak (nuclear), eg. neutron decay, range smaller that for strong (pointlike interaction)
weak fundamental between quarks and leptons (exchange of gauge boson W/Z), range 10⁻¹⁸ m

Range of interactions

W/Z ~80-90 GeV

- Interaction in microworld = emission and absorption of bosons (photon, W/Z, gluons..) → exchange of particles
- Range (Heisenberg, Yukawa) is related to the mass of exchanged particle (carrier of interactions)

- gravitation and el-mag infinite range \rightarrow graviton mass? photon mass = 0

 $x \sim 1/M$

- color (strong) int. : range ~ proton radius 10⁻¹⁵ m (although mass of gluons zero, confinement!)
- weak int. range 10⁻¹⁸ m, related to the mass of bosons

Strength of interactions

- Long range forces gravitation and el-mag very different - gravitation very weak
 (gravitation between two protons 10³⁶ times weaker than el-mag interaction)
- Strength's hierarchy at low* energies: strong> electromagn.> weak > gravitation

 * low energies: 1 GeV up to 100 GeV in the Standard Model – no gravitation!
■ Parameter of strength of elementary action → coupling constant

Coupling constants

Strength of elementary act of interaction = coupling constant

e (el. charge) el-m: e- \rightarrow e- γ , e- $\gamma \rightarrow$ eweak fund.: **g** ('weak' charge) $e \rightarrow v_e W$, $v_e \rightarrow e - W^+$ $d \rightarrow u W^{-}, t \rightarrow b W^{+}$ $d \rightarrow d Z, Z \rightarrow v v$ strong fund., color. **g**_s ('strong' charge, color charge) $U_R \rightarrow U_G + G_{R,anty G}$ <u>Probability of elementary processes*,**</u> el-m $\alpha = \alpha_{el} = e^2/4 \pi \simeq 1/137$ weak fund. $\alpha_{\rm w} = {\rm g}^2/4 \ \pi \ \simeq \ 1/32$

strong fund, color $\alpha_s = g_s^2/4 \pi \simeq 1$ * called coupling constant as well, ** for energy ~1 GeV

Feynman diagrams Feynman diagrams – particles are represented by different lines, act of elementary interaction - by a vertex eg. emission of the photon by electron e Arrows on a continuous line (fermionic, e here for $e^- \rightarrow flow$ of electric charge (negative) and momentum, while arrow on the photonic line (here dashed) \rightarrow only momentum

Flow of charges

Feynman diagrams

Electromagnetism and gravity

- Why gravity, so weak compared to electromagnetism was known first?
- Gravity only added while el-magn interaction canceled out for big
- The force for electron (with mass m) and proton (mass M) in the hydrogen atom H

$F_{el} = \frac{e^2}{r^2} F_{gr} = \frac{GMm}{r^2}$ • Ratio $\frac{GMm}{e^2} = 10^{-40}$

Fundamental constants

Relation to physical phenomena

c – relativistic physics
velocity of light
ħ – quantum physics
Planck constant ħ= h/2π
G – gravitation
gravitational constant (Newton)

Subtle coupling constant Electric charge e

 $\alpha = e^2/4 \pi \hbar c \sim 1/137 - a$ subtle coupling constant, introduced to describe interaction of electrons with photons by Sommerfeld in 1916 (*in subtle emission spectrum of hydrogen and silver*)

→ important in relativistic (c), quantum (ħ) theory of electric charge (e)

quantum electrodynamics (funded in 20-30 XX), where α (or $\alpha_{em'} \alpha_{el}$) – measures "strength" of el-mag interaction of electrons and photons (\rightarrow coupling constant)

Note: formally we often take ħc =1 , eg.. on page 5 in definition of various
coupling constantsM. Krawczyk, AFZ Particles and UniverseLecture 712

Gravitation – PLANCK scales

We neclect gravitation for individual particles at current energies When gravitation important in microworld? From G, h and c we can construct quantity (ħc/G)^{1/2} - Planck mass Planck's scales : Planck's mass (energy) = 10^{19} GeV Planck's lenght = 10^{-35} m For these scales \rightarrow relativistic quantum gravity. We are still looking for such theory...

Gravity contra electromagnetism

ep in Hatom Gravity P.E. ~ 10-40 Electromag c.f. size of proton = 10 m. size of univ. < 10'yr. * 10 m yr-1 \$ 1026 10 2 Radius of proton Radius of Universe

GRAVITY

Lecture by F. Close

Velocity of object with mass m in the movement due to the gravitational attraction by mass M

Velocity decreases for larger radius R

For planetes

Velocity of particles in galaxies?

Dark Matter

Rotation curve

Dark matter?

We do not know what it is, but it must be neutral and:

 cold dark matter – heavy dark matter (small kinetic energy)

Oľ

 hot dark matter – light dark matter (large kinetic energy)

more – next lectures

Electromagnetic interaction contra strong (color) interaction

Electrostatics

Two types of electric charges positive (+) and negative (-)

CHROMOSTATICS

■ Three types of color charges (colors), each "positive" (+) and "negative" (-) → means color and anticolor

The simplest system: meson= quark+antiquark

Quantum Electrodynamics: QED

Feynman's diagram for elecromagnetic interaction

25

Feynman's diagram for color interaction

Elektromagnetic interaction

Color interaction

Running coupling constant April 2012

Determination of the QCD coupling α_{s}

 α_{s} = Single free parameter in QCD (in the $m_a \rightarrow 0$ limit). Determined at a given ref. scale (e.g. m₇). Decreases as $\sim \ln(Q^2/\Lambda^2)$, with A~0.25 GeV

- Least precisely known of all couplings: $\delta \alpha \sim 3.10^{-10}, \ \delta G_{F} \sim 5.10^{-8}, \ \delta G \sim 10^{-5}, \ \delta \alpha_{e} \sim 5.10^{-3}$
- Impacts all LHC cross-sections.
- Key for SM precision fits (e.g. uncertainties b,c Yukawa).
- BSM physics (e.g. couplings at GUT).

Color interaction

Example gluon-> quark + antiquark

color lines - flow of color (color conservation)

black arrows – momenta of particles (momenta conservation)

Color interaction Example gluon-> gluon+ gluon

Extraction of α

Measurement of α in e⁻e⁻ \rightarrow e⁻e⁻

Electron loop $\rightarrow \alpha$ depends on momentum p (,runs'); is rising with energy (momentum)

Extraction of α_s

Scattering qq -> qq

Pętla kwarkowa - efekt podobny jak dla oddziaływań el-mag (powoduje wzrost stałej α_s). Tu dodatkowo pętla gluonowa, która ma przeciwny znak \rightarrow i w efekcie α_s maleje ze wzrostem pędu !!

Running coupling constants - unification?

- Couplings are running with energy (momentum) this is an effect of quantum corrections
- Structure of interaction decides about rising or decreasing of coupling constants
 - key point are carries of interactions "charged" or not (means do they interact with themselves), eg. photon neutral, while gluons "charged"
- if some couplings are rising and other decreasing at some energy they can have similar values

\rightarrow unified description?

(,Running couplings constants')! For larger energy: strong interaction weaker weak interaction - weaker el-mag interaction stronger

D. Gross, Photon 2005

Gravity ???

Crossing for fixed external particles

Here 2 e (e- e- lub e+ e+, lub e-e+) And 2 quarks q (qq,qanty-q, anty-q anty-q)

Crossing processes positron in <-> electron out

anti-q out <-> q in

Feynman diagram

- Other processes (crossing processes) we got exchage replacing initial particles with the final particles simultanous replacing particles with antiparticles
- Yellow particle -> to be transferred to the future (as antiparticle) and pink particle - to be transferred to the past (as an antipariticle):
- \blacksquare e-e- \rightarrow e-e- \rightarrow e- e+ \rightarrow e- e+, and next

Question to lecture 7

- Is the range of weak forces larger or smaller then the range of strong interactions?
- Which particles interact using nuclear forces, which particles using the color forces .
- Is gravitation important in the microworld for low energies?
- What is the value of the Planck length? What is value of the Planck mass?
- Write 3 elementary acts of interactions between partcicles from the first family
- What is the value of subtle coupling constant for momentum $p \rightarrow 0$?, for momentum p= 100 GeV ?
- Do two electrons interact stronger or weaker for larger energies (momenta)?
- What is value of strong coupling constant for momentum (energy) about 1 GeV? For which momentum α_s is equal to 1/10?
- When quarks are more free: for small or large energies?
- Write 2 processes obtained by crossing of the scattering process $u d \rightarrow u d$
- To what quarks does the green-antired gluon decay ?
- What is the reason of a running of coupling constants? Why the subtle coupling constat is growing while the strong coupling constant decreases with a grow of energy?