

Mixing of quarks and not only...

Mixing is natural in quantum mechanics –

it is due to wave nature of particles

- We have discussed interference of various channels for processes
- Mixing here one state mixes with another state

Mixing for weak interaction

Pair of (p,n) and of (electron neutrino, electron) - doublets in the neutron decay

Fundamental beta decay

elementary acts of interaction : $d \rightarrow u W^{-}$ and $W^{-} \rightarrow e^{-} \overline{v_{e}}$

g (g -"weak charge") $\alpha_w = g^2/4 \pi = 1/32$

Two light families – transition in doublets

-1/3 d s

Quarks

Quarks el. charge 2/3 u С

Leptons

0 ν_e ν_μ -1 e μ Formaly, transition between quarks IN a given doublet $u \leftrightarrow d. c \leftrightarrow s$ due to exchange of gauge boson W-, eg.

 $d \rightarrow u W^{-}, c \rightarrow s W^{+}$ $e \mu$ Transition in the leptonic doublet, eg. $e \rightarrow v_e W$, $v_e \rightarrow e$ - W⁺

Probability for transition

EW theory:

<u>Absolute value of weak coupling</u> = g the same for all vertices (eg. u \rightarrow d W+, W⁻ \rightarrow e- v_e), but the coupling itself can have positive and negative sign (as in the el-m interaction - two signs of el. charge)

Let L- an absolute value of the transition amplitude L = | transition amplitude | for quarks or leptons in the considered doublet

Since L is proportional to g, a probability for transition process L² ~ g²

Transition for quarks and for leptons - via exchange of W+/-

 Theory SU(2) → transition probability(P) = L²
 Experiment (1963)→ difference between guarks and leptons...

$$\mathcal{P}[u \rightarrow d W^+] + \mathcal{P}[u \rightarrow s W^+] = \mathcal{P}[v_e \rightarrow e W^+]$$

Mixing of s quark to the emission of W⁺ by u quark !

Cabibbo angle – mixing between the 1st & 2nd family of quarks

Cabibbo angle needed to describe data – Theory ? – no prediction

In fact a mixing is among 3 families.. 3 x 3 matrix (unitary)
 → Cabibbo–Kobayashi–Maskawa matrix (CKM)
 4 parameters:
 3 angles (including Cabibbo angle) and a phase

Kobayashi and Maskawa postulate such matrix in 1973 r before discovery of the 3d family.

Data needed a phase.. (it signals CP violation)

Matrices for mixing of quarks

2x2 matrix (rotation of vektor L)

$$\begin{pmatrix} d \\ s \end{pmatrix} \rightarrow \begin{pmatrix} \cos\phi_{c} & \sin\phi_{c} \\ -\sin\phi_{c} & \cos\phi_{c} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

■ 3×3 matrix (CKM matrix) $\begin{pmatrix} d \\ s \\ b \end{pmatrix} \rightarrow \begin{pmatrix} . & . \\ . & . \\ . & . \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Similar mixing for up quarks: u, c, t M.Krawczyk, AF.Zarnecki Particles and Universe 9

Kobayashi & Maskawa

Nobel' 2008

Why Cabibbo did not get Nobel prize ?!

The prize was not for a mixing but for an observation that starting with 3 family of quarks there appears a phase in the mixing matrix needed for violation of CP in kaon decays...

No mixing for transition via Z boson Transition without changing of el. charge $d \rightarrow d Z$ Mixing? $d \rightarrow s Z$? NO!

Flavour changing neutral current - FCNC

Why? No answer

Mixing of leptons? NO if neutrinos massless

A comment – mixing of gauge bosons?

Yes,

Z boson and photon are combinations of the initial gauge bosons of two groups: SU(2) and U(1) \rightarrow Weinberg angle to describe this mixing

"Mixture called Z" couples to neutrins, while "mixture called photon" does not (destruction of the corresponding prob. amplitude !)

Cabibbo angle: $u \rightarrow d W + versus v_e \rightarrow e W + Weinberg angle: <math>u \rightarrow d W + versus u \rightarrow u Z$

Quark mixing and high energy behaviour

Calculation of probability using Feynman rules

- To each line and vertices in Feynman diagram a factor is assigned. Below we track only the energy E. Note, that probability can not grow ~ E: excess over 1 possible!?
- Incoming or outgoing photon (and each spin 1 particle) – a factor E Virtual photon (spin1 particle) – a factor 1/E²
- Incoming or outgoing spin ½ particle a factor \sqrt{E} , virtual spin ½ particle a factor 1/E
- Incoming or outgoing spin 0 particle a factor 1, virtual spin 0 particle – a factor 1/E²
- Additional factors from couplings,
 Product of factors→probability amplitude A
 (probability = |A|²)

Scattering of boson W on quarkbehaviour at large energies

El. charge conservation: particle X with el. charge - 4/3 does not exist ! So, bad behaviour (amplitude): $E^2 (\sqrt{E})^2 1/E = E^2$

Diagram with Z boson – no help here!

This process does not exist – "absence of FCNC"!

New diagram with c quark (possible only if mixing of s and d quarks)

Couplings:

cs W cd W

d due to minus sign a cancelation of bad high energy behaviour for a process

 $W + s \rightarrow u \rightarrow W + d$

Comment on discovery of c quark

• So to the process $W+s \rightarrow u \rightarrow W+d$ we add process with c - quark

$$W^+ s \rightarrow c \rightarrow W^+ d$$

(these are various channels of the process $W+s \rightarrow W+d$)

 In fact in 1964 this was only a hypothesis about existence of c quark with fixed properties, (including Cabibbo angle) – so that terms ~E² cancel.

 c quark discovered in 1974 has these properties success of theory !!!

Quark mixing

- Exists
- Important
- Described but not understand
- →Flavour problem !

Questions to lecture 11

- Does Cabibbo angle describe mixing between d and s quarks or between u and d quarks ?
- Value of Cabibbo angle is equal to ?
- Write a coupling of the c quark to d quark assuming mixing only between two lighter families. What is its sign?
- What discribes the Cabibbo-Kobayashi-Maskawa matrix?
- Do we observe a mixing between b and d quarks?
- How many parameters has the Cabibbo-Kobayashi-Maskawa matrix?
- Did N. Cabibbo got Noble prize in 2008r?
- Is a transition of the u quark to c quark: $u \rightarrow c Z$ possible?
- How one can determine the Cabibbo angle?
- Does the Weinberg angle describe quark mixing?
- Do we have FCNC?
- Is the probability of transition $\,c \to$ s W+ equal to probability of the transition $\,\nu_e^{} -\!\!> e^-\,W^+\,?$
- Does photon couple to neutrinos?