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Definition of Probability

Frequentist definition
When repeating the same experiment a large number of times, N � 1,
the probability of A

P(A) = lim
N→∞

N(A)
N

where N(A) is the number of occurrences of the event A
Probability does depends on the definition of the considered sample space!

Kolmogorov Axioms
Kolmogorov (1933) formulated the three conditions
which have to be fulfilled by probability P(A) of an event A ⊂ Ω:

1 probability is a non-negative number: P(A) ≥ 0
2 probability of all possible outcomes (sample space): P(Ω) = 1
3 if A and B are mutually exclusive events: P(A ∪ B) = P(A) + P(B)

We can derive all properties of the probability from these three axioms...
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Properties of Probability

Statistical Independence
Two events A and B are said to be statistically independent if and only if

P(A ∩ B) = P(A) · P(B)

Two important properties follow:
mutually exclusive (nonempty) events cannot be independent
if A is subset of B, A ⊂ B, they cannot be independent, unless B = Ω

Conditional Probability
When two events are not independent, we can consider probability of event
A given that another event B is observed:

P(A|B) = P(A ∩ B)
P(B) or 0 if P(B) = 0

For independent events: P(A|B) = P(A)
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Bayes’ Theorem

Total Probability Theorem
Given partition Ai of the sampling space, for any event B we can write

P(B) =
n∑

i=1
P(B ∩ Ai ) =

n∑
i=1

P(B|Ai ) · P(Ai )

Total probability of B can be calculated as a sum over probabilities
calculated in separate sub-spaces. Very useful in many cases...

Bayes’ Theorem
For events A and B the two conditional probabilities are related:

P(A|B) = P(B|A) P(A)
P(B)

This can be also written in a more general form:

P(Ai |B) = P(B|Ai ) P(Ai )∑n
i=1 P(Ai )

where Ai is the partition of the sampling space.
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Bayes’ Theorem

Bayesian approach
Bayes theorem can be used to generalize the concept of probability.
In particular, one can consider “probability” of given hypothesis H
(theoretical model or model parameter, eg. Hubble constant)
when taking into known outcome D (data) of the experiment

P(H|D) = P(D|H)
P(D) · P(H)

There are two problems with this approach:
H can not be considered an event, sampling space can not be defined
(no experiment to repeat)
we need to make a subjective assumption about the “prior” P(H)
describing our initial belief in hypothesis H

For these reasons I rather use term “degree of belief” for the result of the
Bayesian procedure applied to non random events
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Random variables

Experiments
So far, we have considered probability as a very general concept.
We only assumed that an experiment delivers data which are a subject to
fluctuations. But we did not look at the details of the obtained data.

The outcome of the experiment can be of different nature:
observation (or non-observation) of given event (true/false)
observation of an event from given category (classification)
number of the occurrences of given event (counting)
value of given observable (measurement)

We usually present the outcome of the experiment (measurement) in a
numerical form. Two general types of variables can be considered:

discrete (logical, classification and counting)
continuous (measurement)
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Random variables

Experiments
When repeating the experiment many times, numerical results fluctuate,
reflecting fluctuations of the measurement (see previous lecture).

The numerical result of a repeated experiment (measurement) can not be
predicted, it is only known when the experiment is made

⇒ that is why we call it a random variable

The true value of the considered physical parameter is usually unknown or
known with limited precision only.

By repeating the measurement many times we typically want to increases
our knowledge of this parameter.

We can also try to understand better the measurement process itself and
find the proper description of the observed fluctuations
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 1st try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 3rd try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 4th try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 5th try

Significant fluctuations observed between results
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 1000 rolls
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 10000 rolls
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Random variables

Distributions
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Random variables

Distributions
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Random variables

Distributions
It is very practical to present results of a repeated experiment in a form of
a distribution of the considered random variable.

We can plot also plot the result as the relative fraction.
Example of dice roll experiment: 1000000 rolls
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Random variables

Probability distribution function
In the limit of the infinite number of experiments, the relative fraction is
given by a probability distribution function (PDF).

For discrete variables, probability distribution function is the probability
that a given value of the random variable occurs in a single experiment.

Probability distribution function: f (n) = P(n) = 1
6 = const
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Random variables

Histograms
Graphical presentation becomes more difficult for continuous variable.
With high readout precision, probability of obtaining the same numerical
result twice is negligible.

The method of plotting the count number for each result does not work!
Example of decay time measurement: τ = 2.2µs, 100 decays
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Random variables

Histograms
Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value
range and count events when variable value is in given bin.

Then we can plot the count number for each bin
Example of decay time measurement: τ = 2.2µs, 100 decays
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Random variables

Probability distribution function
We can calculate the relative fraction of events in each bin.

In the limit of the infinite number of experiments (and very narrow bins),
the relative fraction is given by a probability distribution function (PDF) of
the variable multiplied by the bin width.

Example of decay time measurement: τ = 2.2µs, 10000 decays
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Probability distributions

Probability distribution function (PDF)
also called “Probability density function” in some books

For given random variable X , probability distribution function, f (x),
describes the probability to obtain given numerical result x (in single
experiment). For infinitesimal interval dx :

P(x < X < x + dx) = f (x) dx

For arbitrary interval [x1,x2]:

P(x1 < X < x2) =
∫ x2

x1

dx f (x)

This can be considered an alternative definition of f (x)
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Probability distributions

Cumulative distribution function
We can also define cumulative distribution function F (x), which is the
probability that an experiment will result in a value not grater than x :

F (x) = P(X < x)

Probability distribution function can be then written as the derivative:

f (x) = dF (x)
dx

Probability that the X value observed is in the range from x1 to x2:

P(x1 < X < x2) = F (x2)− F (x1) =
∫ x2

x1

dx f (x)
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Probability distributions

General properties of distribution functions
From the properties of probability

f (x) ≥ 0
∫ +∞

−∞
dx f (x) = 1

For cumulative distribution:

F (x) =
∫ x

−∞
dx ′ f (x ′)

⇒ lim
x→−∞

F (x) = 0 lim
x→+∞

F (x) = 1
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A.F.Żarnecki Statictical analysis 02 October 20, 2022 19 / 40



Probability distributions

Moments of distribution functions
Expectation value of an arbitrary function g(x) of the random variable X
can be defined as

E(g(x)) = 〈 g(x) 〉 =
∫ +∞

−∞
dx g(x) f (x)

=
∑

i

g(xi ) f (xi )

where f(x) is the probability distribution function for X.

The expectation value of a random variable itself or the mean:

µ = E(X ) = 〈 x 〉 = x̄ =
∫ +∞

−∞
dx x f (x)

=
∑

i

xi f (xi )

For discrete random variables mean is given by the is the sum of all
possible values xi of X multiplied by their corresponding probabilities.
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Probability distributions

Moment of order n (nth moment) is defined as

µn = E(X n) = 〈 xn 〉 =
∫ +∞

−∞
dx xn f (x) =

∑
i

xn
i f (xi )

Mean value is, by definition, the first (n = 1) moment of the probability distribution, µ ≡ µ1.

Central moment of order n is defined as

mn = E ((X − µ)n) = 〈 (x − µ)n 〉 =
∫ +∞

−∞
dx (x − µ)n f (x)

=
∑

i

(xi − µ)n f (xi )

By calculating moments of the (unknown) probability distribution we can
get information about its shape.
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Probability distributions

Moments of distribution functions
For the lowest order moments we have:

µ0 ≡ 1 m0 ≡ 1 normalization of f (x)
µ1 ≡ µ m1 ≡ 0 definition of mean value of f (x)

The first moment which gives us information about the shape of f (x) is
Variance, which is the second central moment:

σ2 =

V(X ) = m2 = 〈 (x − µ)2 〉 =
∫ +∞

−∞
dx (x − µ)2 f (x)

=
∑

i

(xi − µ)2 f (xi )

The square root of the variance is referred to as the standard deviation σ.
Describes the average difference between measurements xi and the mean µ
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Statistical analysis of experimental data

Probability distributions and their properties

1 Random variables

2 Probability distributions

3 Basic probability distributions
Binomial distribution
Uniform distribution
Exponential distribution
Poisson distribution
Gamma distribution
Gaussian distribution
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Binomial distribution

Consider an experiments with only two possible outcomes
(binary experiment): Ω = {’success’, ’failure’} (or Ω = {’true’, ’false’} )

This is also the case, when we look for particular event A in wider sampling space.

Assume that the success probability p is known.
What is the probability of having n successes in N tries?
We are not interested in the order in which the successes take place.

Example
What is the probability to get three ’six’ when rolling the die five times?

p = 1
6 n = 3 N = 5

It is important to notice that we ask for a probability for an event from a
different, extended sampling space, Ω′ = ΩN !
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Binomial distribution

Binomial distribution
Describes probability of having n successes in N tries, assuming success
probability p in single trial and failure probability q = 1− p

P(n) =
(
N

n

)
pn qN−n = N!

n!(N − n)! pn qN−n

The Newton symbol
(N

n

)
gives the number of possible sequences of N

tries giving n successes (regardless of order) and pn qN−n describes the
probability for single such sequence (elementary event in Ω′).

Mean (expected value) of the binomial distribution

〈n〉 = n̄ = p N

Variance of the distribution important for efficiency uncertainty

σ2 = p (1− p) N

For given N, distribution is widest for p = 0.5
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Binomial distribution

Example (1)
What is the probability to get three ’six’ when rolling the die five times?

p = 1
6 n = 3 N = 5

By putting the numbers directly in the formula we get

P(n) = N!
n!(N − n)! pn qN−n = 5!

3! 2!
1
63

52

62 = 120 · 1 · 25
6 · 2 · 216 · 36 ≈ 0.032
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Binomial distribution

Example (2)
Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?

Simple answer: n̄ = pN = 0.9 · 22 = 19.8 < 20 ⇒ should be OK...

Probability that students will NOT fit in the room:

Povfl = P(22) + P(21) = 0.922 + 22 · 0.921 · 0.1 ≈ 0.098 + 0.241 = 0.339

There is 66% chance that the room will be large enough for all students.

But this probability applies to single lecture only!
Probability that they will fit in the room for 14 lectures is

POK = (1− Povfl )14 ≈ 0.003

⇒ we can hardly count on luck in this case, we need larger room !
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Uniform distribution

Uniform probability distribution
Is often used as a model for a “complete randomness” of measurement
result in given range. If variable x is restricted to interval [a, b]:

f (x) =


0 for x < a

1
b−a for a ≤ x ≤ b

0 for x > b

Mean (expected value) of the uniform distribution

x̄ = 〈 x 〉 = a + b

2
Variance of the uniform distribution

V(x) = σ2 = (b − a)2

12
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Exponential distribution

Exponential probability distribution
Describes the probability of waiting time t, when we wait for event A and
the probability of A in a small time interval dt is constant: dp = dt/τ .
This is the case for particle and nuclear decays, but also for other phenomena
τ is the only parameter in the problem.

This problem is easily solved when we consider cumulative distribution:

F (t + dt) = F (t) + (1− F (t)) · dt
τ

d

dt
F (t) = 1

τ
· (1− F (t))

d

dt
(1− F (t)) = −1

τ
· (1− F (t))

(1− F (t)) = C · e−t/τ

F (t) = 1− e−t/τ C = 1 from boundary conditions
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Exponential distribution

Exponential probability distribution
Resulting formula for the probability distribution is:

f (t) =
{ 1

τ · e
−t/τ for t ≥ 0

0 for t < 0

indicated by the red dashed line:

Mean (expected value) of the exponential distribution

〈 t 〉 =
∫ +∞

0
dt t f (t) = τ integrating by parts

For nuclear/particle decays, parameter τ is the mean lifetime...

Variance of the exponential distribution

V(t) = σ2 =
∫ +∞

0
dt (t − τ)2 f (t) = τ2
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A.F.Żarnecki Statictical analysis 02 October 20, 2022 30 / 40



Exponential distribution

Example
What is the probability that the particle does not decay within 10 lifetimes?

We can just look at the cumulative distribution:
F (t) = 1− e−t/τ

1− F (t) = e−t/τ

1− F (10τ) = e−10 ≈ 0.0000454
Probability is very small, but not negligible...

Half-life
Frequently used in nuclear physics, nuclear medicine etc.
Defined as a time needed for half of the nuclei to decay.

F (t1/2) = 0.5
⇒ t1/2 = ln 2 · τ
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Poisson distribution

Expected number of decays
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment counting radioactive decays
in 10 s time window?

Example of decay count measurement: 100 measurements (100× 10 s)
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Expected number of decays
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment counting radioactive decays
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Poisson distribution

Poisson probability distribution
Formula for the Poisson probability distribution:

P(n) = µn e−µ

n! for n = 0, 1, 2, . . .

where µ, the expected number of events (mean), is the only parameter (!)
P(n) indicated by the red circles:

Mean (expected) number of events
n̄ = 〈 n 〉 ≡ µ

Variance of the Poisson distribution
V(n) = 〈 (n − µ)2 〉 =

∑
n

(n − µ)2 P(n) = µ

Often defines statistical uncertainty of the measurement...
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Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 1 decay, 1000 measurements
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Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
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Example of sequence measurements: 2 decays, 1000 measurements
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Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 3 decays, 1000 measurements

A.F.Żarnecki Statictical analysis 02 October 20, 2022 34 / 40

Expected exponential distributionDescribed by Gamma distribution



Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 5 decays, 1000 measurements
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Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 7 decays, 1000 measurements
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Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 10 decays, 1000 measurements
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Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for
N decays to be observed?

Example of sequence measurements: 5 decays, 100000 measurements
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Gamma distribution

Gamma distribution
Decay sequence time distribution is described by Gamma distribution:

f (x) =


xk−1 λk e−λx

Γ(k) for x ≥ 0

0 for x < 0

where k ≥ 0 and λ ≥ 0 are real parameters of the Gamma distribution.
For decay sequence of n decays: k = n and β = 1/τ

Mean (expected value) of the Gamma distribution

x̄ = 〈 x 〉 = k

λ

Variance of the Gamma distribution

V(x) = σ2 = k

λ2
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 = k − 1
λ

= x̄

(
1− σ2

x̄2

)

5 decays, 100000 measurements
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 = k − 1
λ

= x̄

(
1− σ2

x̄2

)

7 decays, 100000 measurements
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 = k − 1
λ

= x̄

(
1− σ2

x̄2

)

10 decays, 100000 measurements

A.F.Żarnecki Statictical analysis 02 October 20, 2022 36 / 40



Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 = k − 1
λ

= x̄

(
1− σ2

x̄2

)

Gamma distribution can also be written in equivalent form:

f (x) = A · exp
[
−
(
x0
σ0

)2(x − x0
x0

− ln x

x0

)]
where A is normalization factor and σ0 describes the width of the

distribution around maximum:

σ2
0 = k − 1

λ2

= σ2
(

1− σ2

x̄2

)
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Gamma distribution

Gamma distribution
Gamma distribution is a “natural” choice for describing many physical
processes and measurements.
Its properties are very similar to those of the Gaussian distribution with
one additional advantage: negative results are excluded by definition.
One can think of the Gamma distribution as an analogue of the Gaussian
distribution restricted to the non-negative results (R+)

Sampling calorimeter response distribution
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Gaussian distribution

Gaussian (Normal) distribution
Is most frequently used to describe fluctuations of the measurements and
resulting measurement uncertainties

f (x) = 1
σ
√

2π
exp

(
−1

2
(x − µ)2

σ2

)
where µ and σ are two real parameters of the distribution describing

Mean (expected value) of the Gaussian distribution

E(x) = 〈 x 〉 = µ

and Variance of the Gaussian distribution

V(x) = 〈 (x − µ)2 〉 = σ2
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Gaussian distribution

Combined distributions
Consider two independent random variables X and Y :

f (x , y) = fx (x) · fy (y)

The sum of these variables, z = x + y , is also a random variable and

z̄ = E(Z ) = E(X ) + E(Y ) = x̄ + ȳ

σ2
z = V(Z ) = V(X ) + V(Y ) = σ2

x + σ2
y

If X and Y are described by Gaussian distribution function,
then Z is also described by Gaussian probability distribution !

This is widely used when eg. describing measurement uncertainties.

However, this is also the case for the Gamma distribution !!!
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A.F.Żarnecki Statictical analysis 02 October 20, 2022 39 / 40



Gaussian distribution

Combined distributions
Consider two independent random variables X and Y :

f (x , y) = fx (x) · fy (y)

The sum of these variables, z = x + y , is also a random variable and

z̄ = E(Z ) = E(X ) + E(Y ) = x̄ + ȳ
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Instead of homework

Instead of homework
In the following lectures I will try to show different statistical and
numerical methods from more practical side as well.

I will use the environment prepared last year for Modern Particle Physics
Experiments course, based on Jupyter-lab and Python.

It is implemented as a docker container.

Instructions on how to install and run docker container on private
computer were put in GitHub.

Please try!

Example Python scripts from this lecture will be put on the lecture page.
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