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Correlations between variables

Multiple variable case
Definition of covariance can be generalized to the set of N variables Xi :

cij = Cov(Xi ,Xj) = E((Xi − µi )(Xj − µj))

We can present it in a form of the covariance matrix:

C =


c11 c12 . . . c1N
c21 c22 . . . c2N

...
...

cN1 cN2 . . . cNN


where diagonal elements correspond to variances of the variables

cii = Cov(Xi ,Xi ) ≡ V(Xi )
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Error propagation

Functions of Random Variables
Change of Variables can be also considered in multi-dimensional case

y = y(x)

where components of vector y are given by functions yi (x), i = 1, . . . ,N

Probability density function for dependent variables y is given by

g(y) = f (x(y)) |J|

assuming that function y(x) is one-to-one and can be inverted, with

J =
(
∂xi
∂yj

)
being the Jacobian of the variable transformation (square matrix)
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Error propagation

General form
Covariance matrix for y = y(x) can be approximate as:

Cov(Yk ,Yl) =
∑
i , j

∂yk
∂xi

∂yl
∂xj

Cov(Xi ,Xj)

In matrix notation:

CY = A CX Aᵀ

where A is a matrix of partial derivatives:

Ai ,j = ∂yi
∂xj

∣∣∣∣
µ̂x
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Variable simulation

Direct Method
Let us assume we have a large number of uniformly distributed random
numbers corresponding to the uniform probability distribution:

How to generate numbers from arbitrary probability distribution f (x)?

We need to consider cumulative distribution function for X , F (x):

P(X ≤ x) = F (x)

If cumulative distribution function F (x) can be inverted, we can generate
random numbers from f (x) by using relation:

x = F−1(r)

where r is uniformly distributed random number (from u(r))
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Variable simulation

Direct Method example
Nice example is Cauchy distribution:

f (x) = 1
π
· 1

1 + x2 ⇒ F (x) = 1
π
· arctan(x) + 1

2

which can be easily inverted, resulting in:

x = tan
(
π

(
r − 1

2

))
where r is uniformly distributed random number
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Variable simulation

Direct Method example
Nice example is Cauchy distribution:

f (x) = 1
π
· 1

1 + x2 ⇒ F (x) = 1
π
· arctan(x) + 1

2

Example generation, N = 100000
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Variable simulation

von Neumann method
When cumulative distribution function can not be inverted we can define

fmax = max
x

f (x) = N

Assume f (x) is non-zero only for a ≤ x ≤ b.

We can then apply the following procedure:
generate value x uniformly distributed in [a, b]
generate test variable r from uniform distribution ([0, 1[)
accept generated value of x , if r · fmax < f (x)
otherwise repeat from the beginning

This procedure is called von Neumann Acceptance–Rejection Technique
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Variable simulation

von Neumann method example
Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 1000000

However, this procedure can not be directly applied if a or b → ±∞
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Variable simulation

General method
For arbitrary probability distribution f (x) (also with infinite domain).

We need to find “similar” distribution g(x), such that its cumulative
distribution exists and can be inverted, so we know how to generate
random numbers from g(x) distribution. We define

max
x

f (x)
g(x) = fmax

The following procedure can then be used:
generate value x distributed according to g(x)
generate test variable r from uniform distribution ([0, 1[)
accept generated value of x , if r · fmax < f (x)/g(x)
otherwise repeat from the beginning

The closer g(x) is to f (x), the more efficient is the procedure...
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Variable simulation

General method example
Photon scattering angles for diffractive scattering

f (x) = N · sin2 x

x2

Test generation, N = 1000000
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Monte Carlo integration

von Neumann method for random number generation

Let us considered test function: not normalized now

f (x) =


0 for x < −1

1−
√

1− (1− |x |)2 for − 1 ≤ x ≤ 1

0 for x > 1
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Monte Carlo integration

von Neumann method for random number generation

At each step, we generate pair of numbers (x , r · fmax) from uniform
distributions ⇒ random point inside 2× fmax rectangular

Test generation, N = 10 ⇒ 3 points accepted
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Monte Carlo integration

von Neumann method for random number generation

At each step, we generate pair of numbers (x , r · fmax) from uniform
distributions ⇒ random point inside 2× fmax rectangular

Test generation, N = 100 ⇒ 27 points accepted
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Monte Carlo integration

von Neumann method for random number generation

At each step, we generate pair of numbers (x , r · fmax) from uniform
distributions ⇒ random point inside 2× fmax rectangular

Test generation, N = 1000 ⇒ 236 points accepted
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Monte Carlo integration

von Neumann method for random number generation

At each step, we generate pair of numbers (x , r · fmax) from uniform
distributions ⇒ random point inside 2× fmax rectangular

Test generation, N = 10000 ⇒ 2146 points accepted
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Monte Carlo integration

von Neumann method for random number generation

At each step, we generate pair of numbers (x , r · fmax) from uniform
distributions ⇒ random point inside 2× fmax rectangular

Test generation, N = 100000 ⇒ 21388 points accepted

Fraction of accepted events is proportional to the to the integral of f (x)
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Monte Carlo integration

General approach
Assuming number of events accepted in N tries is Nf :

lim
N→∞

Nf

N
=

∫
dx f (x)

fmax ·
∫
dx g(x)

=
∫
dx f (x)
I0

where I0 is the total surface covered by generated (x , r · fmax) pairs.

We can thus estimate:

If =
∫

dx f (x) = Nf

N
· fmax ·

∫
dx g(x) = p · I0

with uncertainty, which can be estimated from binomial distribution

σI =
√

p(1− p)
N

· I0
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Monte Carlo integration

Example
Our test problem: uniform distribution was used for g(x)

f (x) = 1−
√

1− (1− |x |)2 and g(x) = 0.5 for − 1 ≤ x ≤ 1

We find that:

fmax = 2

I0 = fmax ·
∫

dx g(x) = fmax = 2

From the last (largest) generation we have:

N = 100000 Nf = 21388 ⇒p = 0.21388
If = 0.42776
σI = 0.00259

where expected values is 〈If 〉 >= 2− π
2 = 0.429203673...
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Monte Carlo integration

Applications
Described procedure can be used not only to calculate integrals of
one-dimensional functions, it is much more general...
It can be easily extended to multiple dimensions...

How to calculate volume of a given shape?

Standard procedure:
scan all dimensions using dense point
grid and sum cells with centers inside
the volume

Monte Carlo integration:
Generate random points in the
considered parameter space and
count points inside the volume
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Monte Carlo integration

2-D example
Consider surface calculation for the partially eclipsed sun.

Assume RS = RM = 1 and distance between centers ∆ = 1

What is the surface of this shape?
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Monte Carlo integration

2-D example
Consider surface calculation for the partially eclipsed sun.

Generation results for N = 100

Exact calculation: S = π
3 +

√
3

2 ≈ 1.91322296
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Monte Carlo integration

2-D example
Consider surface calculation for the partially eclipsed sun.

Generation results for N = 1000

Exact calculation: S = π
3 +

√
3

2 ≈ 1.91322296
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Monte Carlo integration

2-D example
Consider surface calculation for the partially eclipsed sun.

Generation results for N = 10’000

Exact calculation: S = π
3 +

√
3

2 ≈ 1.91322296
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Monte Carlo integration

2-D example
Consider surface calculation for the partially eclipsed sun.

Generation results for N = 1’000’000’000 shown only 100 points

Exact calculation: S = π
3 +

√
3

2 ≈ 1.91322296
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Monte Carlo integration

Example (3)
Simplest possible case: calculate volume of a sphere in N dimensions
Unit sphere volume can be defined as:

VN = {x ∈ RN : |x| ≤ 1}
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Monte Carlo integration

Example (3)
Compare two approaches: standard variable scan and MC integration

Precision of the integration result Vnum−Vtrue
Vtrue

for N = 3,
as a function of the total number of steps (volume definition checks)

Both methods give comparable precision...
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Monte Carlo integration

Example (3)
Compare two approaches: standard variable scan and MC integration

Precision of the integration result Vnum−Vtrue
Vtrue

for N = 5,
as a function of the total number of steps (volume definition checks)

MC method converges much faster...
(note different step number scale)
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Monte Carlo integration

Example (4)
In one of the exercises at the Physics Laboratory (P8) total flux of the
secondary cosmic rays is measured. To extract the flux, the effective solid
angle corresponding to the detector acceptance needs to be calculated.

Assume the flux is measured by a
coincidence of two parallel scintillating
detector planes, separated by distance H.

Square detector (A× A) are placed directly
one above the other and have negligible
thickness.

What is the average solid angle “observed”
be a small element of the lower counter?
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Monte Carlo integration

Example (4)
Solid angle “visible” from the particular point (x , y) on the lower detector
surface can be defined by the integral:

dΩ(x , y) =
∫ 1

0
d(cosΘ)

∫ 2π

0
dφ · F (x ′, y ′)

where Θ and φ are polar coordinates defining the particle direction and
(x ′, y ′) are coordinates of the particle in the upper detector plane:

x ′ = x + H · tan(θ) · cos(φ)
y ′ = y + H · tan(θ) · sin(φ)

Function F (x ′, y ′) defines the condition that the particle crosses the
upper counter:

F (x ′, y ′) = 1 for 0 < x ′ < A and 0 < y ′ < A

= 0 otherwise
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Monte Carlo integration

Example (4)
To obtain the effective solid angle we need to average dΩ(x , y) over the
surface of the lower counter:

Ω = 1
A2

∫ A

0
dx

∫ A

0
dy · dΩ(x , y)

= 1
A2

∫ A

0
dx

∫ A

0
dy

∫ 1

0
d(cosΘ)

∫ 2π

0
dφ · F (x ′, y ′)

Even in this relatively simple problem, we get a multidimensional integral
which is very difficult to calculate analytically

On the other hand, it can be very easily integrated with MC approach
Uniform distribution on the sphere corresponds to uniform distribution in cos Θ and φ.
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Monte Carlo integration

Example (4)
Integration procedure:

generate random point (x , y) on the lower detector surface
uniform distributions for x ∈ [0,A[ and y ∈ [0,A[

generate random direction in space
uniform distribution for cos Θ ∈ [0, 1[ and φ ∈ [0, 2π[
extrapolate particle track to the upper detector plane
calculate coordinates (x ′, y ′) in the upper plane
count particles which pass the active detector surface (Np)

The result of the integration will be given by the fraction of the events
passing the second detector, multiplied by the solid angle corresponding to
the whole hemisphere (2π)

Ω = 2π · Np

N
where N is the total number of generated events
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Monte Carlo integration

Example (4)
Example integration results 1994 (!)

for A = 15 cm and H = 26 cm

We can easily get precision much higher than precision of input parameters
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Monte Carlo integration

General case
Examples presented considered the special case: input random variables
had uniform distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a
function h(x) of random variable vector x described by f (x) pdf:

µh ≡ Ef [h(x)] =
∫

dx h(x) f (x)

Monte Carlo determination of µh assumes we can generate random
variables according to f (x). We can then calculate:

µMC = lim
N→∞

1
N

∑
i

h(xi )

where xi , i = 1, . . . ,N are random (input) variables generated from f (x)
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Monte Carlo integration

Importance sampling
When h(x) varies strongly in the considered variable range, statistical
precision on the mean can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused”
on the areas where h(x) is large. Optimal choice turns out to be

g(x) ∼ h(x) f (x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be
now calculated as:

µIS = 1
N

∑
i

h(xi ) ·
f (xi )
g(xi )

where the second term corrects for the modified pdf.
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Monte Carlo integration

Weighted Monte Carlo
General method for generating random points in multi-dimensional space
using acceptance–rejection technique can have very low efficiency, if
probability distribution function f (x) varies a lot, eg. has sharp peaks.

Assume we know how to generate random numbers from g(x).
We can then apply the following procedure:

generate xi distributed according to g(x)
accept all generated value xi ,
but consider them with additional weight: wi = f (x)/g(x)

For example, when calculating the expectation value of h(x):

µMC → µwMC =
∑

i wi h(xi )∑
i wi

“unweighted” samples considered previously correspond to wi ≡ 1
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Monte Carlo integration

Weighted Monte Carlo
When using weighted Monte Carlo “events”, number of events has to be
replaced by sum of weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to:

Neq = N2
w

V(Nw ) = (
∑

i wi )2∑
i w

2
i

For Poisson distributed random number V(N) = N
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A.F.Żarnecki Statictical analysis 04 November 3, 2022 30 / 48



Monte Carlo integration

Weighted Monte Carlo
When using weighted Monte Carlo “events”, number of events has to be
replaced by sum of weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to:

Neq = N2
w

V(Nw ) = (
∑

i wi )2∑
i w

2
i

For Poisson distributed random number V(N) = N
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Monte Carlo integration

General remarks
Monte Carlo techniques are widely used not only for integration but for
modeling of multi-dimensional random variable distributions in general.

Simulation of particle collision events or particle interactions with matter
are just special cases, widely used in particle physics.
It allows to predict the experimental result with very high precision.

While Monte Carlo methods allow us to perform very complicated
computations in an efficient way, we still need to know all details.

It is not a “magic box” - if we do not know any of the input distributions
or parameters, we can not perform the integration or simulation needed.

Simplifying assumptions are made sometimes to cover our lack of
knowledge (eg. assuming uniform distribution for particle decays) but this
has to be clearly stated, as can result in systematic bias of results.
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Parameter estimation

Weighted mean
If we perform N experiments resulting in set of measurements xi ,
i = 1 . . .N, then the sample mean: see lecture 3

x̄ = 1
N

∑
i

xi

gives us an unbiased estimator of the true mean µ for random variable X .

However, is it the optimal estimate? (with smallest variance)

This is the case, if the same experiment is repeated many times,
so the probability distribution function for all input xi is the same.

If input measurements have different pdf’s (different variances),
“simple mean” is not the best choice, we can do better...
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Parameter estimation

Weighted mean example
Consider measurements of the mean lifetime of X particle performed by N
groups. Particle is difficult to produce so the measurement precision is
dominated by statistical fluctuations in the measured decay times.

How to combine results τi presented by different groups?

The best procedure would be to average individual decay times measured
by all groups. This is equivalent to:

τ̄ = 1
N

∑
i

Ni τi

where Ni is the number of decays measured by group i and N is the total
number of measured decays

N =
∑
i

Ni
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Parameter estimation

Weighted mean example
What can we do, if groups do not present event numbers,
only the mean lifetime uncertainty?

We can use properties of the exponential distribution
V(t) = τ2

σ2 = V( 〈t〉 ) = τ2/N

and estimating the number of decays measured, Ni = τ2/σ2
i , we get:

τ̄ = σ2
∑
i

τi
σ2
i

where σ2 is the expected variance of the weighted mean:
1
σ2 =

∑
i

1
σ2
i
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Parameter estimation

Weighted mean
We can also obtain this formula from minimum variance requirement.
General expression for mean:

x̄ =
∑
i

ai xi , where
∑
i

ai = 1 .

Variance of the linear combination (lecture 3)

V(x̄) =
∑
i

a2
i σ

2
i

− 2 λ (
∑
i

ai − 1)

For minimum variance, partial derivatives should be zero:

∂V
∂ai

= 2 ai σ
2
i − 2 λ = 0 ⇒ ai = λ

σ2
i

A.F.Żarnecki Statictical analysis 04 November 3, 2022 36 / 48



Parameter estimation

Weighted mean
We can also obtain this formula from minimum variance requirement.
General expression for mean:

x̄ =
∑
i

ai xi , where
∑
i

ai = 1 .

Variance of the linear combination (lecture 3)

V(x̄) =
∑
i

a2
i σ

2
i

− 2 λ (
∑
i

ai − 1)

For minimum variance, partial derivatives should be zero:

∂V
∂ai

= 2 ai σ
2
i − 2 λ = 0 ⇒ ai = λ

σ2
i
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Parameter estimation

Weighted mean
What about averaging measurements which are not independent?

In the most general case, variance of the weighted mean is given by

σ2
x̄ = aᵀ Cx a

− 2 λ (aᵀI− 1)

Minimizing mean variance we compare partial derivatives to zero and get

Cx a = λ · I

where λ can be constrained from the boundary condition aᵀI = 1.

This is a linear set of equations, which can be solved:
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Parameter estimation

Weighted mean example
Let four groups reported average number of Gamma Ray Bursts per year.
Number of bursts observed in four years were n1, n2, n3 and n4.

First group published results after one year. They quoted:

µ1 = n1 ±
√
n1

Second group published results after two years:

µ2 = 1
2(n1 + n2) ± 1

2
√
n1 + n2

Third and fourth group published results covering three and four years.

µ3 = 1
3(n1 + n2 + n3) µ4 = 1

4(n1 + n2 + n3 + n4)

How should we average these measurements ?!
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Parameter estimation

Weighted mean example
We assume that n1, n2, n3 and n4 are independent random numbers.
The covariance matrix for the set of measurements µi is:

Cx =


n1

n1
2

n1
3

n1
4

n1
2

n1+n2
4

n1+n2
6

n1+n2
8

n1
3

n1+n2
6

n1+n2+n3
9

n1+n2+n3
12

n1
4

n1+n2
8

n1+n2+n3
12

n1+n2+n3+n4
16



By solving the set of equations we get:

aᵀ = λ

(
1
n1
− 1

n2
,

2
n2
− 2

n3
,

3
n3
− 3

n4
,

4
n4

)
If GRB rate is constant in time (n1 ≈ n2 ≈ n3 ≈ n4) average is clearly

dominated by the fourth measurement (as expected!).
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Parameter estimation

Weighted mean example
If we assume that 〈n1〉 = 〈n2〉 = 〈n3〉 = 〈n4〉 = n (constant rate)
then the (true) covariance matrix for the set of measurements µi is:

Cx =


n n

2
n
3

n
4

n
2

n
2

n
3

n
4

n
3

n
3

n
3

n
4

n
4

n
4

n
4

n
4


and by solving the set of equations we get:

aᵀ = λ

(
0, 0, 0, 4

n

)

A.F.Żarnecki Statictical analysis 04 November 3, 2022 40 / 48



Parameter estimation

Weighted mean example
If we assume that 〈n1〉 = 〈n2〉 = 〈n3〉 = 〈n4〉 = n (constant rate)
then the (true) covariance matrix for the set of measurements µi is:

Cx =


n n

2
n
3

n
4

n
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n
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n
3

n
4

n
3

n
3

n
3

n
4

n
4

n
4

n
4

n
4


and by solving the set of equations we get:

aᵀ = (0, 0, 0, 1)

Only the last measurement, including all observations, is relevant.
All earlier results can be discarded...
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Statistical analysis of experimental data

Monte Carlo methods

1 Monte Carlo integration

2 Parameter estimation

3 Maximum Likelihood Method

4 Homework
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Maximum Likelihood Method

General problem
Presented above was a simple example of a more general problem:
how to estimate parameters of the probability distribution function
from the results of the experiment (measurements).

In many cases, parameter value can not be directly extracted from the
outcome of the measurement.

In the general case, shape of the probability density function for x:
x = (x1, . . . , xn)

depends on a set of pdf parameters:
λ = (λ1, . . . , λp)

so the probability density should be written as:
f (x; λ)
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Maximum Likelihood Method

Likelihood Function
Probability density functions describes probability for given outcome of the
experiment to be observed:

dP = f (x; λ) dx

If experiment is repeated N times, we have N independent measurements,
then the combined probability

dP =
N∏
j=1

f (x(j); λ) dx

We can use this probability to compare different parameter sets. If
N∏
j=1

f (x(j); λ1) >

N∏
j=1

f (x(j); λ2)

we can conclude that λ1 describes our experimental results better than λ2
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Maximum Likelihood Method

Maximum Likelihood Method
The product:

L =
N∏
j=1

f (x(j); λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the
maximum likelihood approach:
as the best estimate of the parameter set λ we choose the parameter
values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

` = ln L =
N∑
j=1

ln f (x(j); λ)

we can look for maximum value of ` or minimum of −2 ` = −2 ln L
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Maximum Likelihood Method

Example
Let us consider N measurements of source radioactivity (numbers of
decays in given time window). Each measurement is described by the
Poisson probability distribution. So the likelihood function is:

L =
N∏
i=1

P(ni ;µ) =
N∏
i=1

µni e−µ

n!

Log-likelihood:
` = lnµ

∑
ni − N µ −

∑
ln n!

∂`

∂µ
= 1

µ

∑
ni − N = 0

⇒ µ = 1
N

∑
ni

we reproduce previous result (mean of the individual measurement)
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Maximum Likelihood Method

Example (2)
Let us consider N independent measurements of variable X with
non-uniform uncertainties. Assuming measurement fluctuations are
described by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (xi ;µ, σi ) =
N∏
i=1

1
σi
√

2π
exp

(
−(xi − µ)2

σ2
i

)

Log-likelihood:
` = −1

2
∑ (xi − µ)2

σ2
i

+ const

∂`

∂µ
=

∑ xi − µ
σ2
i

= 0

⇒ µ = σ2
∑ xi

σ2
i

with 1
σ2 =

∑ 1
σ2
i
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Statistical analysis of experimental data

Monte Carlo methods

1 Monte Carlo integration

2 Parameter estimation

3 Maximum Likelihood Method

4 Homework
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Homework

Homework Solutions to be uploaded by November 17.

Calculate volume of a solid constructed as an intersection of three
cylinders, with unit diameter and unit height, and perpendicular axes.

Unit cube
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Homework

Homework Solutions to be uploaded by November 17.
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A.F.Żarnecki Statictical analysis 04 November 3, 2022 48 / 48



Homework

Homework Solutions to be uploaded by November 17.

Calculate volume of a solid constructed as an intersection of three
cylinders, with unit diameter and unit height, and perpendicular axes.

Intersection of three cylinders
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