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Monte Carlo integration

Applications
Described procedure can be used not only to calculate integrals of
one-dimensional functions, it is much more general...

How to calculate volume of a given shape?

Standard procedure:
scan all dimensions using dense point
grid and sum cells with centers inside
the volume

Monte Carlo integration:
Generate random points in the
considered parameter space and
count points inside the volume

A.F.Żarnecki Statictical analysis 05 November 10, 2022 3 / 55



Monte Carlo integration

General case
Examples presented considered the special case: input random variables
had uniform distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a
function h(x) of random variable vector x described by f (x) pdf:

µh ≡ Ef [h(x)] =
∫

dx h(x) f (x)

Monte Carlo determination of µh assumes we can generate random
variables according to f (x). We can then calculate:

µMC = lim
N→∞

1
N

∑
i

h(xi )

where xi , i = 1, . . . ,N are random (input) variables generated from f (x)
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Monte Carlo integration

Importance sampling
When h(x) varies strongly in the considered variable range, statistical
precision on the mean can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused”
on the areas where h(x) is large. Optimal choice turns out to be

g(x) ∼ h(x) f (x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be
now calculated as:

µIS = 1
N

∑
i

h(xi ) ·
f (xi )
g(xi )

where the second term corrects for the modified pdf.
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Monte Carlo integration

Weighted Monte Carlo
When using weighted Monte Carlo “events”, number of events has to be
replaced by sum of weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to:

Neq = N2
w

V(Nw ) = (
∑

i wi )2∑
i w

2
i

For Poisson distributed random number V(N) = N
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Parameter estimation

Weighted mean I = (1, . . . , 1)ᵀ

What about averaging measurements which are not independent?

In the most general case, variance of the weighted mean is given by

σ2
x̄ = aᵀ Cx a − 2 λ (aᵀI− 1)

Minimizing mean variance we compare partial derivatives to zero and get

Cx a = λ · I

where λ can be constrained from the boundary condition aᵀI = 1.

This is a linear set of equations, which can be solved:

a = C−1
x I

IᵀC−1
x I
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Maximum Likelihood Method

Maximum Likelihood Method
The product:

L =
N∏
j=1

f (x(j); λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the
maximum likelihood approach:
as the best estimate of the parameter set λ we choose the parameter
values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

` = ln L =
N∑
j=1

ln f (x(j); λ)

we can look for maximum value of ` or minimum of −2 ` = −2 ln L
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Maximum Likelihood Method

Mean estimate modified from lecture 04

Let us consider N independent measurements of variable X with given
(uniform) uncertainty. Assuming measurement fluctuations are described
by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (xi ;µ, σ) =
N∏
i=1

1
σ
√

2π
exp

(
−(xi − µ)2

σ2

)
Log-likelihood:

` = − 1
2σ2

∑
(xi − µ)2 + const

∂`

∂µ
= 1

σ2

∑
(xi − µ) = 0

⇒ µ = 1
N

∑
xi
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Maximum Likelihood Method

Variance estimate
The same method can be also used to estimate the variance of the
Gaussian distribution. We just need to consider partial derivative with
respect to σ2. Log-likelihood (we can not neglect normalization now):

` = − 1
2σ2

∑
(xi − µ)2 − N

2 ln(2πσ2)

∂`

∂σ2 = 1
2σ4

∑
(xi − µ)2 − N

2σ2 = 0

⇒ σ2 = 1
N

∑
(xi − µ)2

If we extract both µ and σ2 from the same set of measurements:

σ2 = 1
N

∑
(xi − x̄)2

ML variance estimator is biased! Bessel’s correction missing - lecture 03.
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A.F.Żarnecki Statictical analysis 05 November 10, 2022 11 / 55



Maximum Likelihood Method

Multiple parameter estimate
Likelihood function (and log-likelihood) can depend on multiple
parameters:

λ = (λ1 . . . λp) L =
N∏
j=1

f (x(j); λ) ` =
N∑
j=1

ln f (x(j); λ)

Best estimate of λ, for given set of experimental results x(j), corresponds
to maximum of the likelihood function, which can be found by solving a
system of equations:

∂`

∂λi

∣∣∣∣
i=1...p

= 0

The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f (x; λ) containing an unknown parameters of interest λ and
observations x(j), all information relevant for the estimation of the
parameters λ is contained in the likelihood function L(λ; x) =

∏
f (x(j); λ).
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Maximum Likelihood Method

Multivariate Normal Distribution
Consider experiment resulting in a measurement x = (x1, . . . , xn).
If we assume each variable follows Gaussian p.d.f, the most general form of
the joint probability distribution is:

f (x; λ) = A exp
[
−1

2(x− λ)ᵀ B (x− λ)
]

where λ is parameter vector and B is an n × n matrix.

Since p.d.f. is symmetric about the point x = λ:

E(x− λ) =
∫

dx (x− λ) f (x; λ) = 0

⇒ E(x) = λ
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Maximum Likelihood Method

Multivariate Normal Distribution
We should note that the derivative of the probability distribution:

∂f

∂λi
= [(x− λ)ᵀ B]i · f (x; λ)

We can now differentiate the formula for E(x− λ) with respect to λ:∫
dx [(x− λ) (x− λ)ᵀ B− I] · f (x; λ) = 0

and realizing that B and I are constant we get[∫
dx (x− λ) (x− λ)ᵀ · f (x; λ)

]
B = I

⇒ Cx B = I ⇒ Cx = B−1
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Maximum Likelihood Method

Multivariate Normal Distribution
We can now write the joint probability distribution as:

f (x; λ) = A exp
[
−1

2(x− λ)ᵀ C−1 (x− λ)
]

where C is the covariance matrix of variables x.

Log-likelihood:

`(λ; x) = −1
2(x− λ)ᵀ C−1 (x− λ) + const

∂`

∂λi
=

[
(x− λ)ᵀ C−1]

i
similar to p.d.f. derivative

∂2`

∂λi ∂λj
= −

[
C−1]

i j
⇒ C =

(
− ∂2`

∂λi ∂λj

)−1
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Maximum Likelihood Method

Parameter covariance matrix
For the considered case of multivariate normal distribution, best parameter
estimates λ̂ are given by the measured variable values x.

Unlike parameters λ, parameter estimates λ̂ are random variables
(functions of x) and so we can consider covariance matrix for λ̂:

Cx = Cλ̂ =
(
− ∂2`

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

σλ̂i
=

(
− ∂

2`

∂λ2
i

)−1/2
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Maximum Likelihood Method

Parameter covariance matrix
Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
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σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

`(λ̂+ σ; x) = ln f (x ; x + σ) = `(λ̂; x)− 1
2
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σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:
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Maximum Likelihood Method

Parameter covariance matrix
Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

`(λ̂+ 3σ; x) = ln f (x ; x + 3σ) = `(λ̂; x)− 9
2
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Maximum Likelihood Method

Parameter covariance matrix
Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the
decrease of the log-likelihood function by 0.5 for one, by 2 for two and by
4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Maximum Likelihood Method

Multiple parameter estimate
Example log-likelihood function contours for a sample of 10 events from
normal distribution, with extracted parameter values µ̂ = 1 and σ̂ = 2.

1 2 3 4 5

-1

0

1

2

3

-2 -4.5-0.50

Figure from: G. Bohm and G. Zech, Introduction to Statistics and Data Analysis
for Physicsts, Verlag Deutsches Elektronen-Synchrotron, 3rd edition
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Maximum Likelihood Method

Multiple parameter estimate
For the set x of N measurements we can write:∑

(xi − µ)2 =
∑

(x2
i − 2µxi + µ2)

= N
(
〈x2〉 − 2µ〈x〉+ µ2)

= N
(
σ̂2 + µ̂2 − 2µµ̂+ µ2) σ̂2 = 〈x2〉 − 〈x〉2

Log-likelihood function for the example is then:

`(µ, σ; µ̂, σ̂) = − N

2σ2
(
σ̂2 + (µ− µ̂)2)− N

2 ln(σ2) + const

This corresponds to the Gaussian shape for µ, but very asymmetric for σ...

Also, the two parameters are not independent!
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Maximum Likelihood Method

Multiple parameter estimate
Example log-likelihood function contours for a sample of 10 events from
normal distribution, with extracted parameter values µ̂ = 1 and σ̂ = 2.

Result from G. Bohm and G. Zech is nicely reproduced...
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Maximum Likelihood Method

Multiple parameter estimate
As mentioned before, µ̂ and σ̂ (extracted from measurements x) are
random variables! We can calculate their joint probability distribution:

f (µ̂, σ̂2;µ, σ) = A · exp
(
−N (µ̂− µ)2

2 σ2

)
·
(
Nσ̂2

σ2

)k−1
exp

(
−λNσ̂

2

σ2

)
where Nσ̂2

σ2 is distributed according to the Gamma distribution with
k = (N − 1)/2 and λ = 1/2 (particular case referred to as χ2 distribution;
we will discuss it at the next lectures).

The two variables, µ̂ and σ̂, are independent!

PDF for σ̂ is asymmetric, but much less than the likelihood function !!!
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Maximum Likelihood Method

Multiple parameter estimate
One needs to stress that likelihood function for p.d.f. parameters are not
equivalent to probability distribution of parameter estimators!

Contours of the joint probability distribution function f (µ̂, σ̂;µ, σ)

Contours corresponding to log f decrease by 0.5, 2 and 4.5 from maximum...
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Maximum Likelihood Method

Multiple parameter estimate
One needs to stress that likelihood function for p.d.f. parameters are not
equivalent to probability distribution of parameter estimators!

Results of Monte Carlo simulation (contours from 1 000 000 experiments)

In each experiment, mean and sigma are calculated from 10 generated numbers
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Statistical analysis of experimental data
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1 Maximum Likelihood Method
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Confidence intervals

Presenting measurement results
When doing the measurement, we usually quote the final result as
numerical value (with units) and estimated uncertainty:

x ± σx

We can often calculate the uncertainty from the data itself (eg. when
result is obtained by averaging a large number of independent
measurements) or from the variation of the log-likelihood function.

Attributing proper uncertainty to the result is crucial!

But what does it tell as after all?!
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Confidence intervals

Normal distribution
Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value
within ±N σ interval:

α
± 1 σ ⇒ 68.27 %
± 2 σ ⇒ 95.45 %
± 3 σ ⇒ 99.73 %
± 4 σ ⇒ 99.9937 %
± 5 σ ⇒ 99.999943 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

There is a non-zero chance for deviation grater than 5σ, but it is extremely small
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Confidence intervals

Normal distribution
Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value
by more than Nσ:

α
± 1 σ ⇒ 31.73 %
± 2 σ ⇒ 4.55 %
± 3 σ ⇒ 0.27 %
± 4 σ ⇒ 0.0063 %
± 5 σ ⇒ 0.000057 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Fluctuations up and down are observed with equal probability...
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Confidence intervals

Normal distribution
Results of the Monte Carlo test (µ = 0, σ = 1, 100 000 000 generations)

Down fluctuations:
< −1 σ p = 0.15864225
< −2 σ p = 0.0227686
< −3 σ p = 0.00134872
< −4 σ p = 3.204E-05
< −5 σ p = 3.2E-07

Fluctuations up:
> 1 σ p = 0.15861607
> 2 σ p = 0.02275479
> 3 σ p = 0.00135162
> 4 σ p = 3.263E-05
> 5 σ p = 2.8E-07 Good agreement with expectations
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Confidence intervals

Poisson distribution
Results of the Monte Carlo test (µ = 10, 100 000 000 generations)

Down fluctuations:
< −1 σ p = 0.1301325
< −2 σ p = 0.01033324
< −3 σ p = 4.55E-05
< −4 σ p = 0
< −5 σ p = 0

Fluctuations up:
> 1 σ p = 0.13553469
> 2 σ p = 0.02702754
> 3 σ p = 0.00344483
> 4 σ p = 0.00029364
> 5 σ p = 1.774e-05 Much longer tail of positive fluctuations!
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Confidence intervals

Gamma distribution
Results of the Monte Carlo test (µ = σ2 = 10, 10 000 000 generations)

Down fluctuations:
< −1 σ p = 0.1533757
< −2 σ p = 0.0046445
< −3 σ p = 0
< −4 σ p = 0
< −5 σ p = 0

Fluctuations up:
> 1 σ p = 0.1554444
> 2 σ p = 0.0368358
> 3 σ p = 0.0067406
> 4 σ p = 0.0010105
> 5 σ p = 0.0001305 Even longer, 5σ fluctuations not excluded

A.F.Żarnecki Statictical analysis 05 November 10, 2022 30 / 55



Confidence intervals

Normal distribution in N-D
It is also important to notice that the fractions presented previously
(eg. 68% within ±1σ) refer to one-dimensional normal distribution only!

If we consider 2-D distribution

Less than 40% is contained
inside 1σ contour...

Fractions within Nσ contours:

G. Bohm and G. Zech
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Confidence intervals

Interpreting results
As demonstrated above, quoting numerical result with uncertainties gives
only partial information on the measurement...

It is sufficient, if we can assume normal distribution of the variable.

Also, we need to assume that the width of the distribution does not
depend on the measured parameter. Only then the likelihood function will
be Gaussian as well...

In the general case, parameter uncertainty does not give us full
information on the tails of the distribution...

How should we present results of the experiment, if we are more interested
in the probability of (large) result fluctuations?...

A.F.Żarnecki Statictical analysis 05 November 10, 2022 32 / 55



Confidence intervals

Interpreting results
There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given
probability distribution, f (x; λ), when the parameter values λ are known.

The actual situation is usually different: for given set of measurements x
we extract estimates of the parameter values λ̂.

Uncertainties estimated from log-likelihood variation indicate the expected
level of agreement (in Gaussian approximation) between our estimate λ̂
and the true parameter values λ.

Can we present measurement results in a way which gives us more precise
information about the possible fluctuations?

Yes, but we need to define the problem differently...
We should not ask about the probability of λ̂...
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Confidence intervals

Frequentist confidence intervals
Classical (frequentist) definition of the confidence interval refers directly to
the probability distribution, f (x; λ).

For given outcome of the experiment xm, 1− α confidence level (C.L.)
interval for parameter λ is [λ1, λ2], if for all values λ′ ∈ [λ1, λ2], our result
xm is inside the corresponding 1− α probability interval for f (x ;λ′).

This definition clearly depends on the way we define probability intervals
for f (x ;λ′) - it is rather a concept, more assumptions are needed.

We always refer to probability distribution for x!
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Confidence intervals

Frequentist confidence intervals
It is interesting to note that the modern concept of confidence intervals
was proposed by Polish statistician Jerzy Neyman only in 1937
Jerzy Neyman obtained his PhD (1924) and habilitation (1928) at UW

J.Neyman, Phil. Trans. Royal Soc. London, Series A, 236 333-80 (1937).
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Confidence intervals

Frequentist confidence intervals
As mentioned above, to define confidence interval for parameter, we need
to define how the probability interval for our measurement is defined.
There are three “natural” choices:

We constrain the measurement from above:∫ +∞

xul

dx f (x ;λ) = α

We constrain the measurement from below:∫ xll

−∞
dx f (x ;λ) = α

We use central probability interval: as presented for Gaussian pdf∫ x1

−∞
dx f (x ;λ) = α/2 and

∫ +∞

x2

dx f (x ;λ) = α/2
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Confidence intervals

Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

f (x ;λ, σ) = 1
σ
√

2π
exp

(
−1

2
(x − λ)2

σ2

)
assuming σ is known (and fixed).

What is the central 90% C.L. interval for λ, if we measure x = xm?

From the Gaussian pdf properties we can directly obtain:
x1 = λ− 1.64σ x2 = λ+ 1.64σ

Definition of the confidence interval for λ is based on the condition:
x1 < xm < x2

Which is fulfilled for all λ in range:
λ1 = xm − 1.64σ < λ < xm + 1.64σ = λ2

So the central 95% C.L. interval for λ is [xm − 1.64σ, xm + 1.64σ]...
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Confidence intervals

Frequentist confidence intervals
Graphical presentation of the procedure for σ = 1
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G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Confidence intervals

Frequentist confidence intervals
Graphical presentation of the general procedure

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

x

µ

G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x
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calculate limits of probability
intervals for x , x1(θ) and x2(θ),
for different values of θ

calculated intervals define the
“accepted region” in (θ, x)
confidence interval for θ is
defined by drawing line x = xm
in the accepted region

⇒ limit on θ for given xm, θ1(xm),
corresponds to limit on x for
given θ: xm = x1(θ1).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Statistical analysis of experimental data

Parameter Inference

1 Maximum Likelihood Method

2 Confidence intervals

3 Real life example
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Introduction

HERA
electron(positron)-proton collider at DESY
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Introduction

Deep Inelastic e±p Scattering Main process studied by H1 and ZEUS

NC DIS
Q
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Introduction

SM predictions from HERA
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NC and CC DIS cross sections
comparable for the highest Q2 values

Q2 ∼ M2
Z , M

2
W

Combined QCD+EW analysis shows
good agreement with SM predictions

Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628

High precision data could also be used to look for possible BSM effects...
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Quark radius limits

Quark form factor
“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is expected to
decrease at high momentum transfer:

e

q
R

q

Z / γ
dσ

dQ2 = dσSM

dQ2 ·

[
1−

R2
q

6 Q2

]2

·
[

1− R2
e

6 Q2
]2

where Rq is the root mean-square radius of the electroweak charge
distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for e+p and e−p !
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Quark radius limits

QCD+BSM fit
Approach used for HERAPDF2.0 determination extended to take into
account the possible BSM contribution

χ2 (p, s, η) =
∑
i

[
mi +

∑
j γ

i
jm

i sj − µi0
]2(

δ2
i ,stat + δ2

i ,uncor

)
(µi0)2

+
∑
j

s2
j

p and s are vectors of PDF parameters pk and systematic shifts sj ,
η is the parameter describing BSM contribution (eg. η = R2

q)

⇒ we fit them simultaneously to the combined HERA data

R2 Data
q = −0.2 · 10−33 cm2

µi
0 and mi (p, η) are measured and predicted (SM+BSM) cross sections,
γ ij , δi,stat and δi,uncor are the relative correlated systematic, relative statistical and
relative uncorrelated systematic uncertainties of the input data point i
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Quark radius limits

Limit setting
Limits derived using the technique of MC replicas (frequentist approach).

Replicas are generated sets of cross-section values that are calculated for
given R2 True

q and varied randomly according to the statistical and
systematic uncertainties (including correlations) of the input data.

Each replica is then used as an
input to QCD+BSM fit

⇒ R2 Fit
q

Number of replicas for each
considered R2 True

q value
⇒ distribution of R2 Fit

q

R2 Data
q R2 True

q

R2 True
q is tested by comparing R2 Fit

q distribution with the value of R2 Data
q
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Quark radius limits

Limit setting

The probability of obtaining a R2 Fit
q

value smaller than that obtained for
the actual data

Prob(R2 Fit
q < R2 Data

q )

is studied as a function of R2 True
q

R2 True
q values corresponding to the
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limits obtained for fixed PDF parameters are too strong by about 10%
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Quark radius limits

Results
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Contact Interactions

Framework
For many scenarios of “new physics” at much larger energy scale,
BSM interactions can be approximated as eeqq Contact Interactions (CI)

Z’

e e

qq

e

qq

LQ, q
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e
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e e

qq

e e
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e

q

1 2 3
G G G  ... Z γ

R
q

e e

qq

η

eeqq contact interactions (CI)

⇒

Different CI scenarios assume
different helicity structure of new
interactions.
We consider different benchmark
models with η as BSM parameter.
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Analysis method

Limit setting
Limits derived using the technique of MC replicas (frequentist approach).

Replicas are generated sets of cross-section values that are calculated for
given ηTrue and varied randomly according to the statistical and systematic
uncertainties (including correlations) of the input data.

Each replica is then used as an
input to QCD+BSM fit

⇒ ηFit

Number of replicas for each
considered ηTrue value
⇒ distribution of ηFit

ηData ηTrue

ηTrue is tested by comparing ηFit distribution with the value of ηData
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Analysis method

Limit setting
Use replicas to calculate:

Prob(ηFit < ηData)
for η > ηData

Prob(ηFit > ηData)
for η < ηData

for different ηTrue
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Excluded on 95% C.L. are ηTrue resulting in probability below 5%.

The limit-calculation procedure was repeated for systematic variations considered.
The weakest of the obtained coupling limits was taken as the result of the
analysis and used to calculate the final mass-scale limits.
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Results

Contact Interaction limits
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ZEUS
HERA e±p 1994-2007 95% C.L. limits (TeV)

Observed
Model (exp+mod) Expected pSM

Λ− Λ+ Λ− Λ+ (%)
LL 12.8 4.5 5.9 6.3 7.0
RR 14.7 4.4 5.7 6.1 5.9
LR 4.7 5.5 5.7 6.3 34
RL 5.0 5.3 5.6 6.5 42
VV 13.9 9.0 11.2 11.4 25
AA 15.7 4.2 7.9 7.8 0.6
VA 3.6 3.5 4.2 4.2 5.8
X1 3.2 5.4 5.5 0.4
X2 10.4 6.4 7.8 8.3 24
X3 17.9 6.2 8.3 8.7 7.3
X4 7.2 7.5 8.0 8.6 39
X5 9.5 6.4 7.7 7.7 27
X6 3.1 5.3 5.5 0.3
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Results

Heavy Leptoquark limits
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0 0.28 0.56 9.0
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S̃R
0 1.71 1.8

SL
1/2 0.83 0.76 43

SR
1/2 1.04 0.92 39
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0 1.47 0.99 1.8
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1/2 0.67 0.57 39
Ṽ L

1/2 0.59 0.49 43
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1 0.41 0.25 32
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Analysis method

QCD+CI fit results
Improved description of the data for four models (3CI+1LQ): ∆χ2 < −4.
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X6: change dominated by CI contribution
∆χ2 = −6.01
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