Statistical analysis of experimental data

Parameter Inference

Aleksander Filip Zarnecki

FACULTY OF
-SPHYSICS

UNIVERSITY
OF WARSAW

Lecture 05
November 10, 2022

Statictical analysis 05

November 10, 2022 1/55

A.F.Zarnecki



N
W

Statistical analysis of experimental data Z

Parameter Inference

© Maximum Likelihood Method

@ Confidence intervals

© Real life example

A.F.Zarnecki Statictical analysis 05 November 10, 2022 2/55




Monte Carlo integration
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Applications
Described procedure can be used not only to calculate integrals of
one-dimensional functions, it is much more general...

How to calculate volume of a given shape?

Standard procedure: Monte Carlo integration:

scan all dimensions using dense point Generate random points in the
grid and sum cells with centers inside considered parameter space and
the volume count points inside the volume
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General case

Examples presented considered the special case: input random variables
had uniform distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a
function h(x) of random variable vector x described by f(x) pdf:

un = Ef[h(x)] = /dx h(x) f(x)

Monte Carlo determination of up assumes we can generate random
variables according to f(x). We can then calculate:

) 1
umc = linoo N : h(xl)
1
where x;, i =1,..., N are random (input) variables generated from f(x)
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Importance sampling
When h(x) varies strongly in the considered variable range, statistical
precision on the mean can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused”
on the areas where h(x) is large. Optimal choice turns out to be

g(x) ~ h(x)f(x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be
now calculated as:

1 f(X,’)
s = ) h(xi)-
N Z (1) g(xi)
where the second term corrects for the modified pdf.
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Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be
replaced by sum of weights:

N — NW:ZW;
i

Variance of the sum of weights:

V(NW) = Z Wi2

Statistical power of the weighted Monte Carlo sample is equivalent to:

N (wy
T VN, S, w2

For Poisson distributed random number V(N) = N
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Parameter estimation

Weighted mean

What about averaging measurements which are not independent?

In the most general case, variance of the weighted mean is given by

02 = a'Cxa — 2\ (a’l—1)
Minimizing mean variance we compare partial derivatives to zero and get
Cxa = X1
where A can be constrained from the boundary condition aTl = 1.
This is a linear set of equations, which can be solved:

ClI
a=——
ITCt I
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Maximum Likelihood Method

L o= J[f9:x)

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the
maximum likelihood approach:

as the best estimate of the parameter set A we choose the parameter
values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL = Zlnf(x(f);A)
j=1

we can look for maximum value of £ or minimum of —2/¢ = —2InL
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Maximum Likelihood Method

Mean estimate modified from lecture 04

Let us consider N independent measurements of variable X with given

(uniform) uncertainty. Assuming measurement fluctuations are described
by Gaussian pdf, the likelihood function is:

& 7oL (xi — p)?
L = G(xi;pu,0) = —exp | ————

Log-likelihood:
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Variance estimate

The same method can be also used to estimate the variance of the
Gaussian distribution. We just need to consider partial derivative with
respect to o2. Log-likelihood (we can not neglect normalization now):

_ 1 o2 N 2
(= @Z(x, n? == In(2ro?)
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Variance estimate

The same method can be also used to estimate the variance of the
Gaussian distribution. We just need to consider partial derivative with
respect to o2. Log-likelihood (we can not neglect normalization now):

_ 1 . 2 N 2

(= —@Z(x, n? == In(2ro?)
o 1 , N
07 = 208 201~ 5
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Variance estimate

The same method can be also used to estimate the variance of the
Gaussian distribution. We just need to consider partial derivative with
respect to o2. Log-likelihood (we can not neglect normalization now):

— 1 § . 2 N 2
ot 1 , N
do2  20% Z(X' - 202 0

1
2 _ 2
= 00 =4 E (xi — )
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Variance estimate

The same method can be also used to estimate the variance of the
Gaussian distribution. We just need to consider partial derivative with
respect to o2. Log-likelihood (we can not neglect normalization now):

— 1 § . 2 N 2
ot 1 , N
do2  20% Z(X' - 202 0

1
2 Z 2
If we extract both y and o? from the same set of measurements:

> _ 1 Y
o = NZ(X,—X)

ML variance estimator is biased! Bessel's correction missing - lecture 03.
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Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple
parameters:

N N
A=(A1...2p) L:Hf(x(j);)\) gzzm F(x9; A)
Jj=1 j=1
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Maximum Likelihood Method > -

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple
parameters:

N N
A=(A1...2p) L:Hf(x(f);)\) gzzm F(x9; A)
Jj=1 j=1

Best estimate of A\, for given set of experimental results x| corresponds
to maximum of the likelihood function, which can be found by solving a
system of equations: a0

O\

=0

ili=1..p
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Maximum Likelihood Method > -

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple
parameters:

N N
A=(A1...2p) L:Hf(x(f);)\) gzzm F(x9; A)
Jj=1 j=1

Best estimate of A\, for given set of experimental results x| corresponds
to maximum of the likelihood function, which can be found by solving a
system of equations: a0

O\ =0

ili=1..p
The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f(x; A) containing an unknown parameters of interest X and
observations xU), all information relevant for the estimation of the
parameters A is contained in the likelihood function L(X;x) = [T f(xY); \).
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Multivariate Normal Distribution

Consider experiment resulting in a measurement x = (x1,..., Xp).
If we assume each variable follows Gaussian p.d.f, the most general form of
the joint probability distribution is:
1
f(x;A) = Aexp _E(X —A)TB(x—A)

where X is parameter vector and B is an n X n matrix.

Since p.d.f. is symmetric about the point x = A:
E(x—A) = /dx(x—)\) f(x;A) =0

= Ex) = X
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Multivariate Normal Distribution
We should note that the derivative of the probability distribution:

of
ONi

= [(x=A)TB]; - f(x;A)
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Maximum Likelihood Method > -

Multivariate Normal Distribution
We should note that the derivative of the probability distribution:

of
ONi

= [(x=A)TB]; - f(x;A)
We can now differentiate the formula for E(x — A) with respect to A:

/dx [(x=A)(x=XAN)TB-1I]-f(x;A) = 0
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Maximum Likelihood Method > -

Multivariate Normal Distribution
We should note that the derivative of the probability distribution:

of
ONi

= [(x=A)TBJ;- f(x;A)

We can now differentiate the formula for E(x — A) with respect to A:
/dx [(x=A)(x=A)TB-1I]-f(x;A) = 0

and realizing that B and I are constant we get

[/dx(x—)\)(x—)\)T-f(x;)\) B =1
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Maximum Likelihood Method > -

Multivariate Normal Distribution
We should note that the derivative of the probability distribution:

of
ONi

= [(x=A)TB]; - f(x;A)
We can now differentiate the formula for E(x — A) with respect to A:
/dx [(x=A)(x=XAN)TB-1I]-f(x;A) = 0
and realizing that B and I are constant we get
[/dx(x—)\) (x=ANT-f(x;A)| B =1

= CyB =1 = Cy = B!
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Multivariate Normal Distribution

We can now write the joint probability distribution as:
1 -1
f(x;A) = Aexp —E(X—A)T(C (x—A)

where C is the covariance matrix of variables x.

November 10, 2022 15 /55
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Maximum Likelihood Method > -

Multivariate Normal Distribution

We can now write the joint probability distribution as:
1 -1
f(x;A) = Aexp —E(X—A)T(C (x—A)

where C is the covariance matrix of variables x. Log-likelihood:

AN x) = —%(x ~A)TC ! (x=A) + const
;f = [(x=A)T C_l]’. similar to p.d.f. derivative
020 . 020 \ 7
oy, — ©y = €= <‘m, aA,-)
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Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter
estimates A are given by the measured variable values x.

Unlike parameters A, parameter estimates A are random variables
(functions of x) and so we can consider covariance matrix for A:

020 \ 7!
“=% = (o)
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Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter
estimates A are given by the measured variable values x.

Unlike parameters A, parameter estimates A are random variables
(functions of x) and so we can consider covariance matrix for A:

020 \ 7!
“=% = (o)

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!
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Maximum Likelihood Method ;

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter
estimates A are given by the measured variable values x.

Unlike parameters A, parameter estimates A are random variables
(functions of x) and so we can consider covariance matrix for A:

020 \ 7!
“=% = (o)

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

82€ -1/2
e
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

o = Cji

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

o = Cji

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

E(S\—I—U;X) = Inf(x;x+0) = (A x)— =
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

oi = VG
However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

Q 2 4
l(A+20;x) = Inf(x;x+20) = E()\;X)—E
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

o = Cji

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

(A +30;x) = Inf(x;x+30) = ((X;x) -

N ©
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

o = Cj
However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the
decrease of the log-likelihood function by 0.5 for one, by 2 for two and by
4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Multiple parameter estimate

Example log-likelihood function contours for a sample of 10 events from
normal distribution, with extracted parameter values /i =1 and 6 = 2.

Figure from: G. Bohm and G. Zech, Introduction to Statistics and Data Analysis
for Physicsts, Verlag Deutsches Elektronen-Synchrotron, 3rd edition
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Multiple parameter estimate

For the set x of N measurements we can write;

Y i—p)® = Y (F 2w+ )

= N (0R) —20() + 1)
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Multiple parameter estimate

For the set x of N measurements we can write:
Yoi—m? = Y (F = 2ux + 47
= N ((®) = 2u(x) +4?)

= N (6% + 02— 2up+ p?) 82 = (x*) — (x)?
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Maximum Likelihood Method > -

Multiple parameter estimate

For the set x of N measurements we can write:
Y= = Y (F =2+ )
= N () - 2ulx) +422)
= N (6% + 02— 2up+ p?) 52 = (x*) - (x)°

Log-likelihood function for the example is then:

N
A A . ) 2 2
Up,o;f1,6) = —507 (6% + (n—p)°) — > In(0*) + const

This corresponds to the Gaussian shape for i, but very asymmetric for o...

Also, the two parameters are not independent!
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Multiple parameter estimate

Example log-likelihood function contours for a sample of 10 events from

normal distribution, with extracted parameter values /i =1 and 6 = 2.
Log-likelihood contours for example measurement

S 4r
¢ /—_ﬁ\\
J—
2 / T

e S ey

/

TN
N /
N e

é o

Result from G. Bohm and G. Zech is nicely reproduced...
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Multiple parameter estimate

As mentioned before, /i and & (extracted from measurements x) are
random variables! We can calculate their joint probability distribution:

k—1
N (f—p)?2\ [ N8 N5
F(p, 62 — A-exp(-— - IR
(11,64 p,0) exp ( 5 2 2 exp 2

where ’\L—U; is distributed according to the Gamma distribution with

k= (N —1)/2 and A = 1/2 (particular case referred to as x? distribution;
we will discuss it at the next lectures).
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Maximum Likelihood Method -

Multiple parameter estimate

As mentioned before, /i and & (extracted from measurements x) are
random variables! We can calculate their joint probability distribution:

k—1
N (f—p)?2\ [ N8 N5
F(p, 62 — A-exp(-— - IR
(11,64 p,0) exp ( 5 2 2 exp 2

where ’\L—U; is distributed according to the Gamma distribution with

k= (N —1)/2 and A = 1/2 (particular case referred to as x? distribution;
we will discuss it at the next lectures).

The two variables, [i and &, are independent!

PDF for & is asymmetric, but much less than the likelihood function !!
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Multiple parameter estimate

One needs to stress that likelihood function for p.d.f. parameters are not
equivalent to probability distribution of parameter estimators!

Contours of the joint probability distribution function (i, &; u, o)

Log-likelihood contours for example measurement

4 4F

s f o

2 //’—\
LA

\\\: /

715 N—

’2o: 05 1 15 2 25 3 35 4 45 5

4]

Contours corresponding to log f decrease by 0.5, 2 and 4.5 from maximum...
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Multiple parameter estimate

One needs to stress that likelihood function for p.d.f. parameters are not
equivalent to probability distribution of parameter estimators!

Results of Monte Carlo simulation (contours from 1 000 000 experiments)
Distribution of estimated mean vs sigma

4 4F

3 f i

2 //'—'\‘

</(’“T> ) >

of \\ =t e

b —

2§ 05 1 15 2 25 3 35 4 45 5

4]

In each experiment, mean and sigma are calculated from 10 generated numbers
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@ Confidence intervals
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Presenting measurement results

When doing the measurement, we usually quote the final result as
numerical value (with units) and estimated uncertainty:

X £ oy

We can often calculate the uncertainty from the data itself (eg. when
result is obtained by averaging a large number of independent
measurements) or from the variation of the log-likelihood function.

Attributing proper uncertainty to the result is crucial!

But what does it tell as after all?!
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Normal distribution

Meaning of ¢ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value

within = N o interval: fc; 11,0)
o

+10 = 68.27 %

+20 = 0545 % 1—a

+30 = 99.73 %

+40 = 99.9937 %

+50  — 99.099943 % o2 o/2

| 1 1 |

-3 -2 -1 0 1 2 3
(x-wW/c
There is a non-zero chance for deviation grater than 50, but it is extremely small
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Normal distribution
Meaning of ¢ is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value

by more than No: £ (x; 1,0)
«

+10 — 31.73 %

+20 = 455 % 1-a

+30 — 0.27 %

+40 = 0.0063 %

2 2
+50 — 0.000057 % of o
| 1 | |

(x-wW/c
Fluctuations up and down are observed with equal probability...
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Normal distribution

Results of the Monte Carlo test (1 = 0, o = 1, 100 000 000 generations)

Down fluctuations:
< —1lo p = 0.15864225 Prabability distribution from MC
< =20 p=0.0227686 ‘E 107" rm“"""‘t-.j1
< -30 p=000134872 8 | P Y
< 4o p=3204E05 Z F i h
< —50 p=32E07 § 3
o g
Fluctuations up: 10° E
>1lo p = 0.15861607 10 | [JJ ll'
>20 p = 0.02275479 107 | f 1
>30 p2000135162 10 -8 _sll‘_4‘”_2”|0|”2|"4‘”5 8 10
>4o p = 3.263E-05 variable

>50 p = 2.8E-07 Good agreement with expectations
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Poisson distribution

Results of the Monte Carlo test (;z = 10, 100 000 000 generations)

Down fluctuations:
< —1lo p= 0.1301325 Probability distribution from MC
< —20  p=001033324 G 10" aet e
< -30  p=455E05 S wcfo” e
< —4o p=20 %103:' Yo

[} E -+
< =50 p=0 g o L -,

& -
Fluctuations up: 10° E Ve
>1lo p = 0.13553469 e L .
>20 p = 0.02702754 o "I
>3U p2000344483 :0 ‘S‘H I10III I15II I‘2[]” H25 H3[0
>40 p = 0.00029364 variable

>50 p=1.774e-05 Much longer tail of positive fluctuations!
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Gamma distribution

Results of the Monte Carlo test (1 = o® = 10, 10 000 000 generations)

Down fluctuations:

< —-1lco p = 0.1533757  Probability distribution from MC

< 20  p=00046445 7 0|~

< =30 p:O 'OI;‘me; -rrr ‘H‘lk-‘l"\

< —40 p=0 gm.a?fj el

< =50 p=0 §10_4;JJ RHL,H
Fluctuations up: 10 J H"’\_

>1lo p = 0.1554444 H,Hl

>20 p = 0.0368358 10 EJ

> 30 p = 00067406 OH‘ ‘5‘ H10HH15H‘I20HH25‘ ‘HSUH ‘35‘ 40

>40 p = 0.0010105 variable

>50 p = 0.0001305 Even longer, 50 fluctuations not excluded
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Normal distribution in N-D

It is also important to notice that the fractions presented previously
(eg. 68% within 1) refer to one-dimensional normal distribution only!

If we consider 2-D distribution
Fractions within No contours:

% Deviation Dimension
1 2 3 4
lo 0.683 0.393 0.199 0.090
20 0.954 0.865 0.739 0.594
3o 0.997 0.989 0.971 0.939
40 1. 1. 0.999 0.997
X1
Less than 40% is contained G. Bohm and G. Zech

inside 1o contour...
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Interpreting results

As demonstrated above, quoting numerical result with uncertainties gives
only partial information on the measurement...

It is sufficient, if we can assume normal distribution of the variable.

Also, we need to assume that the width of the distribution does not
depend on the measured parameter. Only then the likelihood function will
be Gaussian as well...

In the general case, parameter uncertainty does not give us full
information on the tails of the distribution...

How should we present results of the experiment, if we are more interested
in the probability of (large) result fluctuations?...
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Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given
probability distribution, f(x; X), when the parameter values A are known.

November 10, 2022 33 /55
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Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given
probability distribution, f(x; X), when the parameter values A are known.

The actual situation is usually different: for given set of measurements x
we extract estimates of the parameter values A.

Uncertainties estimated from log-likelihood variation indicate the expected
level of agreement (in Gaussian approximation) between our estimate A
and the true parameter values A.

Can we present measurement results in a way which gives us more precise
information about the possible fluctuations?
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Confidence intervals

Interpreting results
There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given
probability distribution, f(x; X), when the parameter values A are known.

The actual situation is usually different: for given set of measurements x
we extract estimates of the parameter values A.

Uncertainties estimated from log-likelihood variation indicate the expected
level of agreement (in Gaussian approximation) between our estimate A
and the true parameter values A.

Can we present measurement results in a way which gives us more precise
information about the possible fluctuations?

Yes, but we need to define the problem differently...
We should not ask about the probability of A...
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Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to
the probability distribution, f(x; A).

For given outcome of the experiment x,,, 1 — o confidence level (C.L.)

interval for parameter \ is [A1, Ap], if for all values X € [A1, 2], our result
Xm is inside the corresponding 1 — « probability interval for f(x; \').
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Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to
the probability distribution, f(x; A).

For given outcome of the experiment x,,, 1 — o confidence level (C.L.)
interval for parameter \ is [A1, Ap], if for all values X € [A1, 2], our result
Xm is inside the corresponding 1 — « probability interval for f(x; \').

This definition clearly depends on the way we define probability intervals
for f(x; \') - it is rather a concept, more assumptions are needed.

We always refer to probability distribution for x!
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Frequentist confidence intervals

It is interesting to note that the modern concept of confidence intervals
was proposed by Polish statistician Jerzy Neyman only in 1937
Jerzy Neyman obtained his PhD (1924) and habilitation (1928) at UW

X—Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability

By J. NEYmMaN
Reader in Statistics, University College, London

(Communicated by H. Jerrreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937)

CONTENTS
Page
T e e e T T TR AR S A TR S ORI 333
(a) General Remarks, Notation, and Definitions . . . . . . . . . . . . . ..
(b) Review of the Solutions of the Problem of Estimation Advanced Hereto
(¢) Estimation by Unique Estimate and by Interval . . . . . . . . . . . ..
I CONFIDENGE INTERVALS .« ' oo feio o o o o =0 s s 8 s s oio s s o afs s v
(a) Statementof the Problem . . . . . o ¢« ¢ .ot ooe s e e s e
(b) Solution of the Problem of Confidence Intervals
e e B A
(EL 5 T LU e ey e R
(¢) Family of Similar Regions Based on a Sufficien
e S e e S IR SR RCE SR R

J.Neyman, Phil. Trans. Royal Soc. London, Series A, 236 333-80 (1937).
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Frequentist confidence intervals
As mentioned above, to define confidence interval for parameter, we need

to define how the probability interval for our measurement is defined.
There are three “natural” choices:

@ We constrain the measurement from above:

+oo
/ dx f(x;\) = «

ul

@ We constrain the measurement from below:

Xl
/ dx f(x;\) = «

—0o0

@ We use central probability interval: as presented for Gaussian pdf

/Xl dx F(x:)) = a/2 and /;OO dx F(x:\) = a2

—00 >

November 10, 2022 36 /55
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Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

1 1(x—A)?
f(x;\ o) = . 27reXP(—2( 02)>

assuming o is known (and fixed).
What is the central 90% C.L. interval for A, if we measure x = x,?
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Confidence intervals "7

Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

1 1(x—A)?
f(x;\ o) = . 27reXP(—2( 02)>

assuming o is known (and fixed).
What is the central 90% C.L. interval for A, if we measure x = x,?

From the Gaussian pdf properties we can directly obtain:

x1 = A — 1.640 xo = A+ 1.640
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Confidence intervals >

Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

fxro) = —o exp(—l(X_)\)2>

oV 2T 2 o2

assuming o is known (and fixed).
What is the central 90% C.L. interval for A, if we measure x = x,?

From the Gaussian pdf properties we can directly obtain:
x1 =A—1.640 X = A+ 1.640
Definition of the confidence interval for A is based on the condition:
X1 < Xm < X2
Which is fulfilled for all X in range:
AM = Xm—1640 < AN < xpm+1.640 = Mo
So the central 95% C.L. interval for A is [x, — 1.640, x;, + 1.640]...

A.F.Zarnecki Statictical analysis 05 November 10, 2022
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Frequentist confidence intervals

Graphical presentation of the procedure for o =1

6 TTT T[T T T T [TT T T[T T T T[T TTT[TTTT]

2N

AP R FENY/4 R e
-1 0 1 2 3
Measured Mean x

QT
IS

G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Confidence intervals

Frequentist confidence intervals

Graphical presentation of the general procedure

7 """"""?""E""

%

2 3 4 5 6
X

(=]
-

G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Frequentist confidence intervals

General procedure @ calculate limits of probability

intervals for x, x1(0) and x2(9),
for different values of 6

X x,(6), 0,(x)

x1(8), 8,(x)

parameter 6

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Frequentist confidence intervals

General procedure @ calculate limits of probability

intervals for x, x1(0) and x2(9),
for different values of 6

@ calculated intervals define the

= 2,(6), 8,) “accepted region” in (6, x)

x1(8), 8,(x)

parameter 6

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Frequentist confidence intervals

General procedure @ calculate limits of probability

intervals for x, x1(0) and x2(9),
= for different values of 0

@ calculated intervals define the

. : ™ x1,(6), 8,(x) “accepted region” in (6, x)
confidence interval for 6 is
defined by drawing line x = x,
in the accepted region

parameter 6
=8
=~
D
=
f==}
=
&
(]

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Frequentist confidence intervals

General procedure @ calculate limits of probability

— intervals for x, x1(0) and x2(9),
= for different values of 0

@ calculated intervals define the
= 2,(6), 8,) “accepted region” in (6, x)
confidence interval for 6 is
defined by drawing line x = x,
in the accepted region

parameter 6
=8
=~
D
=
D
=
&
(]

= limit on 6§ for given xm, 01(xm),
corresponds to limit on x for
given 0: xp, = x1(61).

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Statistical analysis of experimental data
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Parameter Inference

© Real life example
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HERA
electron(positron)-proton collider at DESY

et/e~ p
27.5 GeV 820 GeV
920 GeV

HERA |  1994-2000
about 100pb~1! collected per experiment i
mainly e* p data, unpolarised 100

Status: 1-July-2007
400 ———————

[ — electrons
[ — positrons
o lowE

200 -

HI Integrated Luminosity / pb™

HERA Il 2002-2007 .

1 . 0 500‘ — ‘10‘00‘ — ‘15‘00
about 400pb™" per experiment Days of running

similar amount of e~ p and e™p data
with longitudinal polarization of e* beams (30-40%)

and small samples collected at reduced proton beam energy

A.F.Zarnecki Statictical analysis 05 November 10, 2022 42 /55



N
W

Introduction =

Deep Inelastic e*p Scattering  Main process studied by H1 and ZEUS

1 Rup 122145 Event 69500 Date 19/06/1985

N C D I S QT = 25030 GeV', y =056, A =211 Gev .

L

oty

Kinematic variables:
2 g 2 ; ;
(k) e o[k Q> =—(k—FK)* |virtuality| of the exchanged boson

o Q? fraction of proton momenta
TT9p. (k— k) carried by stuck quark

1
y = P-(k—F) fraction of lepton energy
Pk transfered in the proton rest frame

November 10, 2022 43 /55
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SM predictions from HERA

10

N

10

do/dQ? (pb/GeV?)

o

10°

&

10°

H1 and ZEUS
E T T T Ty .
- o HERANCEpUn' NC and CC DIS cross sections
F oy o meancepsn' 3 comparable for the highest Q2 values
E o wsss HERAPDF2.0 NC e'p E|
E Bg a s HERAPDF2.0NC ¢'p 1
3 5 E 2 2 2
i N ] Q7 ~ Mz, My
E =2 . 3
E o e 1 Combined QCD+EW analysis shows
3 . % good agreement with SM predictions
£ ® HERA CCep0.4fb q
E m HERACCeposh! E
[ == HERAPDF20 CCép \'?] Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628
E  msss HERAPDF2.0 CCe'p RE!
10°
Q/ GeV?

High precision data could also be used to look for possible BSM effects...

A.F.Zarnecki
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Quark radius limits -

F..

Quark form factor
“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is expected to
decrease at high momentum transfer:

SM 2 2 5 2
Z/y do = do . 1_&02 : 1_&(32
dQ? dQ? 6 6

t=]

Rq

where R, is the root mean-square radius of the electroweak charge
distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for e™p and e p !
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QCD+BSM fit
Approach used for HERAPDF2.0 determination extended to take into
account the possible BSM contribution

. .. .12
[m’ + > yim's; — ,u’}
TR 0
X (posin) =) , o+
i <5i,stat + 5i,uncor) (/“LO) J

p and s are vectors of PDF parameters p, and systematic shifts s;,
7 is the parameter describing BSM contribution (eg. 7 = Rg)

= we fit them simultaneously to the combined HERA data

Rg Data ™ _ _02.1073% cm?

pé and m'(p,n) are measured and predicted (SM-+BSM) cross sections,
fyjf, 0i stat and & uncor are the relative correlated systematic, relative statistical and
relative uncorrelated systematic uncertainties of the input data point /
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Limit setting
Limits derived using the technique of MC replicas (frequentist approach).

Replicas are generated sets of cross-section values that are calculated for
given RZ 1" and varied randomly according to the statistical and
systematic uncertainties (including correlations) of the input data.

2 Data p2 True
Rq Rq

. . .g 240~ T T T T ™3
!Each replica is then us_ed as an £ 20 — 3
Input to QCD"—BSM f|t = 180E (RY™ = 0.4786 x 10° GeV?
2 Fit 160F- (RY'™ =6 x10° GeV?
= Rq 140? Fraction of (R)"™ < (RY)"™ :
120 1.84 %
100
. 80F
Number of replicas for each poscl
. . 40
considered R "¢ value o E
. (112 L 1 Il L dX
= distribution of RZFit 0 5 I
aq R:/GeV
R; True is tested by comparing R3 it distribution with the value of R3 Data
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Quark radius limits -

Limit setting

ZEUS

TheprobabilityofobtainingaF\’gFlt § e e
. ~ L e PDF +R,replicas -
value smaller than that obtained for Eote, --- PDF + R, fit 1
IR e S o |
the actual data f\f I “~.\. Ronymt

5. e 95% C.L. limit

. & AN

2 Fit 2 Data = 10 . =
PrOb(Rq < Rq ) E E “ne B
g . ]
- : : 2 True [ A ]
is studied as a function of kg : Loee 1
L H ‘\*\ .

\?
Rj True yalues corresponding to the s 3
probability smaller than 5% are E | e o

0

0.05 0.1 0.15 0.2 0.25
R;Tme ((10-16 cm)?)

Ry < 0.43-10"*°cm

excluded at the 95% C.L.

limits obtained for fixed PDF parameters are too strong by about 10%
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3
Quark radius limits o
Results ZEUS
= T T
o [@) 105 . »
° L ! ; ® HERANC ep 0.4 fb”
r 0.95
10° 10*
|fe-m-m-m - S
C |
3 4
10 10 Q@ (GeV?)
= [ : :
o [b)1os Quark Radius B
R ) 95% CL Limits ]
r 1 — RZ= (0.4310"°cm)? 1
2 -16 2
- =-(0.47-10""cm)
[ 0.95 Rq B
10° 10*
1pe ———————tntnsa® e g
E ‘ ]
3
10 10* Q@ (GeV?)

—(0.47-10"*cm)® < RZ < (0.43-10 '®cm)?

A.F.Zarnecki Statictical analysis 05 November 10, 2022



\
s

Fo.

\
W

Contact Interactions -

Framework
For many scenarios of “new physics” at much larger energy scale,
BSM interactions can be approximated as eeqq Contact Interactions (Cl)

eeqq contact interactions (Cl)

Different Cl scenarios assume
different helicity structure of new
interactions.

We consider different benchmark
E R models with 1 as BSM parameter.

K=}
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Analysis method ;
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Limit setting
Limits derived using the technique of MC replicas (frequentist approach).

Replicas are generated sets of cross-section values that are calculated for
given 7" and varied randomly according to the statistical and systematic
uncertainties (including correlations) of the input data.

,”Dnta ,”Tru(:

- - w

Each replica is then used as an £ 160 ' SEpanEae-

: . 5 1a0f et Be

input to QCD+BSM fit B e e

= T]F it s Mean = 14035 x 107 Gev?

1 100F RMS = 05708 x 107 GeV?

805 Fraction of 7 < 1™ ; E

g 479 % &=

. 60E Fraction of 1< 1™ E

Number of replicas for each 93 L

considered 1" value ook E
:> dIStrIbUtlon Of 77F1t 0 0 0‘.1 0.2 0.3 014 017 102

N/ Gev?

n™e is tested by comparing 1"t distribution with the value of 7Pt
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Analysis method

Limit setting

(I O 77 ¥ S B AL AL

. S 10T ) 3

Use replicas to calculate: &7 F C .o E

g [ VVmodel L° ° . :

. Er o o . :

PI‘Ob(?’]Flt < nData) _:; F ] - 3 “ il

~ 10 ° s —

for n > nP¥a g IR ‘e E

F . 0 ¢ ]

. F 0 . ¢ ]

PI‘Ob(?]Flt > nData) [ ¢¢ §° i ]

Data 1 —

for n<n E %é + Prob(n < o) i E

C % o Prob(mf > nPaa) |

. [ o Fit _ .SM B

for different n'e - H Probin™> 13 -
101 b L el Lo b Lo L e L dx10®

2015 01 005 0 0.05 0.1 015 02
nTre (GeV?)
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Analysis method

Limit setting

. R LI R T Y S L B I LI S

Use replicas to calculate: £7F M L E

g [ VVmodel L° ° . ]

. E [ el ° ° ‘. 7

Prob(nft < 5Pata) Pl L ]

Data &0 ° o N =

for n>n E o0 o  95%CLallowed % E

u P ]

. F 0 . ' ]

PI‘Ob(?]Flt > nData) L ¢¢ §° i ]

Data 1 —

fOI' n < Ui E ‘} i « Prob(nfit < nPata) t 3

C % o Prob(mf > nPaa) b

. [ o Fit _ .SM T

for different n'e - H Probin™> 13 -
gorbe LTl b i v i e k10t

015 01 -0.05 0 005 01 015 02
Tlan (Gev-l)

Excluded on 95% C.L. are ™" resulting in probability below 5%.

The limit-calculation procedure was repeated for systematic variations considered.
The weakest of the obtained coupling limits was taken as the result of the
analysis and used to calculate the final mass-scale limits.
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Results i!w
Contact Interaction limits ZEUS
HERA e®p 1994-2007 95% C.L. limits (TeV)
ZEUS Observed
HERA ep 1994-2007 95% C.L. Limits Model (exp+mod) Expected Psm
LL |[Dexp T T A= AT A~ At (%)
R | expeotod | i 1 L | 128 45| 59 63 | 7.0
N —— . RR | 147 44| 57 61 | 59
w| F= ] LR | 47 55| 57 63 | 34
AR —— i RL 5.0 5.3 5.6 6.5 42
" R — . W | 139 90| 112 114 25
I
xe| - 1 AA | 157 42| 79 7.8 | 06
X3 —t— | VA 3.6 35 4.2 4.2 5.8
ot e . X1 32| 54 55 | 04
———
xsi‘”_”“””HH‘HH“H‘* X2 10.4 6.4 7.8 8.3 24
oo™ oo X3 179 62| 83 87 | 7.3
N= +41/A* (TeV?)
X4 7.2 7.5 8.0 8.6 39
limits calculated without and with modeling X5 9.5 6.4 .7 7.7 27
uncertainties compared with the expected ones X6 3.1 5.3 5.5 0.3
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ZEUS
Heavy Leptoquark limits AL@/Miq 95% C.L. limits (Tev—1)
Observed
ZEUS Model (exp-+mod) Expected PsM
HERA e*p 1994-2007 95% C.L. Limits S¢ 0.28 0.56 9.0
Sk&“”“”“”“”‘mexp Sé? 1.03 0.72 55
! —— Borperes | SR 1.71 18
—E g S5t/ 0.83 0.76 43
12 [—
o 7 58, 1.04 0.92 39
S ] 55 1.66 1.39 38
o p— - st 1.18 062 | <0.01
o [
Vo — : VOL 0.44 0.5
) — | 74 1.47 0.99 1.8
e . VR 0.18 0.53 5.5
B 8 Vi 1.19 1.29 38
Vi, —— a 1/2 : .
VOl VIR/2 0.67 0.57 39
0 0.2 04 0.6 0.8 1 1.2 14 16 I.Ez 2 \7L 0 59 0 49 43
A
Lo v/ 0.41 0.25 32
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Analysis method

QCD+4-CI fit results
Improved description of the data for four models (3CI+1LQ): Ax? < —4.

\,
N
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ZEUS ZEUS
= . - s o -
Zel ] Gl ]
5T ayaf 5T ayaf E ]
© 1+ HERANC e'p 0.51b" © - HERANC e'p 0.5fb"
F =3 | HERANC ep 04107 | P lpeerrrssssrerer=r=F | HERANC ep 0.4b”
L ook j ZCIPDF i L oo 11 zcipoF
10 10* 10 10* 10°
1 F e -J';,-,—,----,:i 1 F
7\ L ] 7\ L
3 3 4
10 10* Q@ (GeV) 10 10 Q@ (GeV?)
Z5[ ‘ ] 25 ]
% [ b)rif ] g [ b)rif 4 ]
I 47— full QCD+X6 fit | L . 2 — full QCD+s! fit |
¢ * -.-. SM part of QCD+X6 ffit ¢ - SM part of QCD-+S" fit
o oo0oF B Eoo0oF 4 B
10 10° IR‘M 10* 10° 10*
1F e 1F
7\ L ] 7\ L
10° 10* 10° 10*

Q (GeV?)

X6: change dominated by Cl contribution

Ax? = —6.01

A.F.Zarnecki

Q (GeV?)

Sk: significant change in proton PDF !
Ax? =111
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