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Maximum Likelihood Method

Parameter covariance matrix
For the considered case of multivariate normal distribution, best parameter
estimates λ̂ are given by the measured variable values x.

Unlike parameters λ, parameter estimates λ̂ are random variables
(functions of x) and so we can consider covariance matrix for λ̂:

Cx = Cλ̂ =
(
− ∂2`

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

σλ̂i
=

(
− ∂

2`

∂λ2
i

)−1/2
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Maximum Likelihood Method

Parameter covariance matrix
Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily
extracted from log-likelihood:

σi =
√
Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the
decrease of the log-likelihood function by 0.5 for one, by 2 for two and by
4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Confidence intervals

Normal distribution
Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value
by more than Nσ:

α
± 1 σ ⇒ 31.73 %
± 2 σ ⇒ 4.55 %
± 3 σ ⇒ 0.27 %
± 4 σ ⇒ 0.0063 %
± 5 σ ⇒ 0.000057 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Fluctuations up and down are observed with equal probability...
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Confidence intervals

Normal distribution in N-D
It is also important to notice that the fractions presented previously
(eg. 68% within ±1σ) refer to one-dimensional normal distribution only!

If we consider 2-D distribution

Less than 40% is contained
inside 1σ contour...

Fractions within Nσ contours:

G. Bohm and G. Zech
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Confidence intervals

Frequentist confidence intervals
Classical (frequentist) definition of the confidence interval refers directly to
the probability distribution, f (x; λ).

For given outcome of the experiment xm, 1− α confidence level (C.L.)
interval for parameter λ is [λ1, λ2], if for all values λ′ ∈ [λ1, λ2], our result
xm is inside the corresponding 1− α probability interval for f (x ;λ′).

This definition clearly depends on the way we define probability intervals
for f (x ;λ′) - it is rather a concept, more assumptions are needed.

We always refer to probability distribution for x!

Excluded are parameter values λ′, which correspond to the probability of
consistency with the observed experimental result xm below α
(1− α probability interval for f (x , λ′) does not include xm).
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Confidence intervals

Frequentist confidence intervals
As mentioned above, to define confidence interval for parameter, we need
to define how the probability interval for our measurement is defined.
There are three “natural” choices:

We constrain the measurement from above:∫ +∞

xul

dx f (x ;λ) = α

We constrain the measurement from below:∫ xll

−∞
dx f (x ;λ) = α

We use central probability interval: as presented for Gaussian pdf∫ x1

−∞
dx f (x ;λ) = α/2 and

∫ +∞

x2

dx f (x ;λ) = α/2
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Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x
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calculate limits of probability
intervals for x , x1(θ) and x2(θ),
for different values of θ
calculated intervals define the
“accepted region” in (θ, x)
confidence interval for θ is
defined by drawing line x = xm
in the accepted region

⇒ limit on θ for given xm, θ1(xm),
corresponds to limit on x for
given θ: xm = x1(θ1).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Frequentist confidence intervals

Procedure
Let us consider the simplest example of Gaussian pdf: width fixed σ ≡ 1

f (x ;µ, σ) = 1
σ
√

2π
exp

(
−1

2
(x − µ)2

σ2

)
calculate limits of probability
intervals for x , x1(µ) and x2(µ),
for different values of µ

calculated intervals define the
“accepted region” in (µ, x)
confidence interval for µ is
defined by drawing line x = xm
in the accepted region

⇒ limit on µ for given xm, µ1(xm),
corresponds to limit on x for
given µ: xm = x1(µ1).
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Frequentist confidence intervals

Procedure
Let us consider the simplest example of Gaussian pdf: width fixed σ ≡ 1

f (x ;µ, σ) = 1
σ
√

2π
exp

(
−1

2
(x − µ)2

σ2

)
calculate limits of probability
intervals for x , x1(µ) and x2(µ),
for different values of µ
calculated intervals define the
“accepted region” in (µ, x)
confidence interval for µ is
defined by drawing line x = xm
in the accepted region

⇒ limit on µ for given xm, µ1(xm),
corresponds to limit on x for
given µ: xm = x1(µ1).
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Frequentist confidence intervals

Procedure
The procedure can be easily used also for Gauss with variable σ:

σ(µ) = 1 + arctan(µ− 1)/π

calculate limits of probability
intervals for x , x1(µ) and x2(µ),
for different values of µ

calculated intervals define the
“accepted region” in (µ, x)
confidence interval for µ is
defined by drawing line x = xm
in the accepted region

⇒ limit on µ for given xm, µ1(xm),
corresponds to limit on x for
given µ: xm = x1(µ1).
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Frequentist confidence intervals

Procedure
When considering one side (upper or lower) parameter limits (quite a
common case) the procedure can be simplified. For upper limit (95% CL):

for different values of µ, consider
the probability of experimental
result x < xm (consistent with
measurement): P(x < xm;µ)

scan parameter µ to find the
value corresponding to:

P(x < xm;µul) = α

⇒ For higher parameter values,
µ′ > µul , probability of
reproducing experimental result

P(x < xm;µ′) < α
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Quark radius limits

Limit setting

The probability of obtaining a R2 Fit
q

value smaller than that obtained for
the actual data

Prob(R2 Fit
q < R2 Data

q )

is studied as a function of R2 True
q
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q values corresponding to the

probability smaller than 5% are
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limits obtained for fixed PDF parameters are too strong by about 10%
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Frequentist confidence intervals

Procedure
The procedure can be also adapted for the counting experiment, Poisson
distribution:

P(n;µ) = µn e−µ

n! for n = 0, 1, 2, . . .

calculate probability intervals for
n for different values of µ

! As n is discrete random variable,
we can not guarantee exact
“coverage”. The requirement is:

P(n1(µ) ≤ n ≤ n2(µ)) ≥ 1− α

calculated intervals define the
“accepted region” in (µ, n)

confidence interval for µ is
defined by drawing line n = nm
in the accepted region
(and taking maximal range)
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Frequentist confidence intervals
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Frequentist confidence intervals

Results
For the case of Poisson variable, calculation of the upper limit for the
expected number of events µ, when observing nm events, can be reduced
to solving the equation for µ:

nm∑
n=0

µn e−µ

n! = α

For higher numbers of expected events µ′ > µul , probability that the
repeated experiment will result in the measurement consistent with actual
observation

P(n ≤ nm;µ′) < α

⇒ these values are excluded on 1− α confidence level...
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Frequentist confidence intervals

Results

Lower and upper (one-sided) limits
for the mean µ of a Poisson variable
given n observed events in the
absence of background, for
confidence levels of 90% and 95%.

R.L. Workman et al. (Particle Data Group),
Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Bayes’ Theorem

Bayesian approach
Bayes theorem can be used to generalize the concept of probability.
In particular, one can consider “probability” of given hypothesis H
(theoretical model or model parameter, eg. Hubble constant)
when taking into known outcome D (data) of the experiment

P(H|D) = P(D|H)
P(D) · P(H)

There are two problems with this approach:
H can not be considered an event, sampling space can not be defined
(no experiment to repeat)
we need to make a subjective assumption about the “prior” P(H)
describing our initial belief in hypothesis H

For these reasons I rather use term “degree of belief” for the result of the
Bayesian procedure applied to non random events
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Bayesian limits

Procedure
Bayes theorem can be applied to the case of counting experiment:

P(µ; nm) = P(nm;µ)∫
dµ′ P(nm;µ′)

· P(µ)

Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat “prior distribution” for µ (no earlier constraints) we get:

P(µ; n) = µn e−µ

n!

Upper limit on the expected number of events can be then calculated as:∫ µul

0
dµ P(µ; nm) = 1− α

Surprisingly, the numerical result is the same as for Frequentist approach...
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Bayesian limits

Numerical check
Comparison of 95% C.L. upper limits from Frequentist approach (green)
with corresponding limits obtained from Bayesian approach (blue).
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Bayesian limits

Procedure
Bayes theorem can be applied to the Gaussian measurement as well:

P(µ; xm) = G (xm;µ, σ)∫
dµ′ G (xm;µ′, σ)

· P(µ)

Integral in the denominator is equal to 1 only if σ is fixed (!).
With flat “prior distribution” for µ (no earlier constraints) and fixed σ:

P(µ; x) = G (x ;µ, σ)

Upper limit on the expected number of events can be then calculated as:∫ µul

0
dµ P(µ; xm) = 1− α

and the numerical result is (again) the same as for Frequentist approach...
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A.F.Żarnecki Statictical analysis 06 November 17, 2022 22 / 42



Bayesian limits

General comments
For the two simplest cases, which one could consider, limits obtained from
the Bayesian approach are exactly the same as the Frequentist limits.

However, this is not the case in the general!
Bayesian limits do not have well defined “confidence levels”,
probability of experimental result being consistent with considered
measurement is not defined!

For complicated measurements (eg. in High Energy Physics) Bayesian
approach is much easier to use, as it does not require generation of
multiple experiment (MC samples assuming different parameter values) -
only the measured distribution is compared with different models.

Resulting limits are only approximate, they should not be labeled with C.L.

Bayesian limits tend to correspond to higher C.L. than the assumed one...
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approach is much easier to use, as it does not require generation of
multiple experiment (MC samples assuming different parameter values) -
only the measured distribution is compared with different models.

Resulting limits are only approximate, they should not be labeled with C.L.

Bayesian limits tend to correspond to higher C.L. than the assumed one...
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Bayesian limits

Comparison
Comparison of 95% C.L. upper limits from Frequentist approach (green)
with corresponding limits obtained from Bayesian approach (blue) for the
example of Gaussian distribution with variable sigma.
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Bayesian limits

Comparison
Comparison of 95% C.L. upper limits from Frequentist approach (green)
with corresponding limits obtained from Bayesian approach (blue) for the
example of Poisson distribution with background (µbg = 3).
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Bayesian limits

General comments
One should also stress again that assumption made on prior distribution of
the parameter is always arbitrary.

Common approach is to use “flat prior”, but extracted limits are then
sensitive to the parameter choice.

Example: we want to set limits on the leptoquark production, based on
the number of observed events. Signal expectation can be written as:

µsig = L · A · σLQ

where σLQ is the signal cross section, or as

µsig = L · A · k λ2
LQ

where λLQ is the leptoquark coupling. We can use Bayesian approach with
flat prior to set limits on σLQ and λLQ , but they will not be consistent !!!
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Bayesian limits

General comments
There is also arbitrariness in defining limits in multi-parameter space.

Consider leptoquark limits again.

ZEUS collaboration used Bayesian
approach to set limits on coupling λ
as a function of LQ mass MLQ .
Assuming uniform λ2 distribution.
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ZEUS Collaboration, arXiv:hep-ex/0304008
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Consider leptoquark limits again.

ZEUS collaboration used Bayesian
approach to set limits on coupling λ
as a function of LQ mass MLQ .
Assuming uniform λ2 distribution.

But one could also consider setting
limit on MLQ as a function of λ, or
limits on effective coupling η =

(
λ
M

)2

Limit curves in (M, λ) plane would
be different!
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Bayesian limits

General comments
Limits presented in the ZEUS leptoquark publication were obtained with
Bayesian approach. We did not use “confidence level” term in our paper...

Confidence level of the obtained limits was verified for MLQ �
√
s case:
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Statistical analysis of experimental data

Parameter Inference (2)

1 Frequentist confidence intervals

2 Bayesian limits

3 Unified approach

4 Homework
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Unified approach

Problems
For counting experiment with background, results of both Frequentist and
Bayesian approach are not very useful, when the no events are observed.

In the Frequentist approach, all
values of µ > 0 can be excluded, if
background level is high and number
of events observed is significantly
lower than expected.

Probability of such background
fluctuation is small, but finite.

We should not exclude small signals
just because background has
fluctuated...

A.F.Żarnecki Statictical analysis 06 November 17, 2022 30 / 42

µbg = 3
95% C.L.



Unified approach

Problems
For counting experiment with background, results of both Frequentist and
Bayesian approach are not very useful, when the no events are observed.

In the Bayesian approach, limits for
nm = 0 are almost the same as
without background, while we would
expect them to be stronger.

These limits correspond to much
higher C.L. than the one assumed

As expected, the two approaches
agree for nm � µbg
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Unified approach

Problems
Similar problem is observed for our example Gaussian distribution, if we
assume that true mean is constrained to positive values, µ > 0.

If measured value xm is below −1.23
then probability of µ = 0 scenario is
below 5%.

⇒ all values of µ are excluded
in Frequentist approach

But we know this has to be
fluctuation...
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Unified approach

Problems
Similar problem is observed for our example Gaussian distribution, if we
assume that true mean is constrained to positive values, µ > 0.

Bayesian limits, on the other hand,
seem to be too week again.

Also limits for small positive xm are
affected, get significantly worse...
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Unified approach

Problems G.J.Feldman, R.D.Cousins, arXiv:physics/9711021
Another problem concerns the way we interpret the results of the Gaussian
measurement, if true mean is constrained to positive values, µ > 0.
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Following procedure could be applied:
If measured value xm is below 0
then we assume it is fluctuation
⇒ we quote limit for 0.

If measured value is below 3σ
⇒ we quote 90% CL upper limit
If measured value is above 3σ
⇒ we quote 90% CL interval

This procedure seems “natural” but
results in significant undercoverage!
It is only 85% for 1.28 < µ < 4.28
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Unified approach

Problems G.J.Feldman, R.D.Cousins, arXiv:physics/9711021
Another problem concerns the way we interpret the results of the Gaussian
measurement, if true mean is constrained to positive values, µ > 0.
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then we assume it is fluctuation
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If measured value is below 3σ
⇒ we quote 90% CL upper limit
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It is only 85% for 1.28 < µ < 4.28
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Unified approach

Solution
Solution to these problem was proposed in
G.J.Feldman and R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021

New procedure gives proper confidence interval for all possible cases.

We do not need to use central probability intervals to define CL.

Feldman and Cousin concluded that we should rather select our interval
based on the likelihood of given hypothesis for the considered result.

“Best” probability interval for given hypothesis should be defined as the
one covering experimental results most consistent with it.

Such definition also gives smooth transition between “limit setting” and
“interval setting” regimes...
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A.F.Żarnecki Statictical analysis 06 November 17, 2022 33 / 42

https://arxiv.org/abs/physics/9711021


Unified approach

Solution
We still want to start with probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x .

How consistent is the considered parameter value µ with our measurement
(described by µbest) can be described by likelihood ratio:

R(x ;µ) = P(x ;µ)
P(x ;µbest(x)) ≤ 1
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Unified approach

Solution
We still want to start with probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x .

How consistent is the considered parameter value µ with our measurement
(described by µbest) can be described by likelihood ratio:

R(x ;µ) = P(x ;µ)
P(x ;µbest(x)) ≤ 1

We can now create the probability interval for x , [x1, x2], by selecting
values with highest R, up to given CL:∫ x2

x1

dx P(x ;µ) = 1− α and ∀x /∈[x1,x2] R(x) < R(x1) = R(x2)
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Unified approach

Solution
We still want to start with probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x .

How consistent is the considered parameter value µ with our measurement
(described by µbest) can be described by likelihood ratio:

R(n;µ) = P(n;µ)
P(n;µbest(x)) ≤ 1

We can now create the probability interval for n, [n1, n2], by selecting
values with highest R, up to given CL:

n2∑
n=n1

P(n;µ) ≥ 1− α and ∀n/∈[n1,n2] R(n) < R(n1) ∩ R(n) < R(n2)
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Unified approach

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for µ = 0.5, for counting experiment
(Poisson variable) in the presence of known mean background µbg = 3.0
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Unified approach

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for counting experiment (Poisson variable)
in the presence of known mean background µbg = 3.0

Central 90% CL intervals Unified 90% CL intervals
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Unified approach

Example
Calculations of 90% CL interval for counting experiment (Poisson variable)
without background (µbg = 0)

Central 90% CL intervals Unified 90% CL intervals
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Unified approach

Example
Calculations of 90% CL interval for counting experiment (Poisson variable)
without background (µbg = 0)

Central 90% CL intervals Unified 90% CL intervals
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Unified approach

Example
Calculations of 90% CL interval for counting experiment (Poisson variable)
without background (µbg = 0)

RPP Unified 90% CL intervals
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Unified approach

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for random variable with Gaussian pdf,
true mean constrained to be non-negative, µ ≥ 0. σ ≡ 1

Central 90% CL intervals Unified 90% CL intervals
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Unified approach

Example
Calculations of 90% CL interval for random variable with Gaussian pdf,
true mean constrained to be non-negative, µ ≥ 0. variable σ

Central 90% CL intervals Unified 90% CL intervals
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Unified approach

Example
Calculations of 90% CL interval for random variable with Gaussian pdf,
true mean constrained to be non-negative, µ ≥ 0. variable σ

Central 90% CL intervals Unified 90% CL intervals
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Statistical analysis of experimental data

Parameter Inference (2)

1 Frequentist confidence intervals

2 Bayesian limits

3 Unified approach

4 Homework
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Homework

Homework Solutions to be uploaded by December 1.

Calorimeter response to particle of given energy E [GeV] can be described
by Gamma distribution (see lecture 2) with:

x̄ = E

σ2 = 0.25 GeV · E

Assuming that we take the measured value as the “best” hypothesis

Ebest = xm

calculate the unified 90% CL interval for the particle energy,
when the measured value xm = 0.5 GeV.
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