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Statistical analysis of experimental data

Least-squares method

@ 2 distribution
e Hypothesis Testing
© Linear Regression

@ Homework
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Maximum Likelihood Method =

Maximum Likelihood Method

L o= J[f9:x)

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the
maximum likelihood approach:

as the best estimate of the parameter set A we choose the parameter
values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL = Zlnf(x(f);A)
j=1

we can look for maximum value of £ or minimum of —2/¢ = —2InL
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Maximum Likelihood Method > -

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple
parameters:

N N
A=(A1...2p) L:Hf(x(f);)\) gzzm F(x9; A)
Jj=1 j=1

Best estimate of A\, for given set of experimental results x| corresponds
to maximum of the likelihood function, which can be found by solving a
system of equations: a0

O\ =0

ili=1..p
The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f(x; A) containing an unknown parameters of interest A and
observations xU), all information relevant for the estimation of the
parameters A is contained in the likelihood function L(X;x) = [T f(xY); \).
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Maximum Likelihood Method -

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter
estimates A are given by the measured variable values x.

Unlike parameters A, parameter estimates A are random variables
(functions of x) and so we can consider covariance matrix for A:

020 N\
%= = (“ava)

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the
decrease of the log-likelihood function by 0.5 for one, by 2 for two and by
4.5 for three standard deviations.
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Confidence intervals

Normal distribution
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Meaning of ¢ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value

within & N ¢ interval:

1—«
+10 = 68.27
+20 = 09545
+30 = 99.73
+40 = 99.9937
+50 =

%
%
%
%

99.999943 %

f(x; 1,0)
1-a
o/2 /2
| | | |
-3 -2 -1 0 1 2 3
(x-wW/c

There is a non-zero chance for deviation grater than 50, but it is extremely small
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Confidence intervals

Frequentist confidence intervals

General procedure

parameter 6

=pw=

X x,(6), 0,(x)

50) %0

Possible experimental values x

\,
U4
. W 5

calculate limits of probability
intervals for x, x1(0) and x2(9),
for different values of 6

calculated intervals define the
“accepted region” in (6, x)
confidence interval for 0 is
defined by drawing line x = x,
in the accepted region

limit on 6 for given xn,, 01(xm),
corresponds to limit on x for
given 0: x, = x1(61).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Bayesian limits -
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Procedure

Bayes theorem can be applied to the case of counting experiment:

P(uinm) = de/(,;)nE’n/,:), 1) - P(u)

Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat “prior distribution” for 1 (no earlier constraints) we get:

p' et
Pluin) = —

Upper limit on the expected number of events can be then calculated as:

Hul
/ dp Pluinm) = 1—a
0

Surprisingly, the numerical result is the same as for Frequentist approach...
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Unified approach -
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Solution

We still want to start with probability intervals in random variable x (or n)
for given hypothesis p.

Let pipest(x) be the parameter value best describing measurement x.

How consistent is the considered parameter value ;1 with our measurement
(described by fipest) can be described by likelihood ratio:

N P(x; 1)
RO = Bl i)

We can now create the probability interval for x, [xi, x2], by selecting

values with highest R, up to given CL:

x2
/ dx P(x;p) = 1—a and Vg ) R(x) < R(x1) = R(x)

1
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Unified approach -
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Solution

We still want to start with probability intervals in random variable x (or n)
for given hypothesis p.

Let pipest(x) be the parameter value best describing measurement x.

How consistent is the considered parameter value ;1 with our measurement
(described by fipest) can be described by likelihood ratio:
P(n; 1)
R(n; = ———— <1
)= B ipes ()

We can now create the probability interval for n, [n1, ny], by selecting
values with highest R, up to given CL:

n
> P(mp) = 1—a and Vagn.m R(n) < R(n)NR(n) < R(n)

n=ny
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Unified approach -

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

NN
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Calculations of 90% CL interval for counting experiment (Poisson variable)
in the presence of known mean background i, = 3.0

Central 90% CL intervals Unified 90% CL intervals
Confidence intervals Confidence intervals
3 f 3T
c 14 c 14
© © L
(0] n o] L
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@ L @ L
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af 8
6
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2k 2 :
ot AT 0 A S P
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Measured n Measured n
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Statistical analysis of experimental data
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Least-squares method

@ 2 distribution
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x? distribution >

Maximum Likelihood Method see lectures 04 and 05

Let us consider N independent measurements of variable Y. Assuming
measurement fluctuations are described by Gaussian pdf, the likelihood
function is:

N N N
L = [[6Wini.oi) =]] \1/geXp <_;W)

i=1 i=1 i i

Log-likelihood: ) assuming o; are known

L (vi — i)
{ = —5207’2+c0nst
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x? distribution >

Maximum Likelihood Method see lectures 04 and 05

Let us consider N independent measurements of variable Y. Assuming
measurement fluctuations are described by Gaussian pdf, the likelihood
function is:

N N N
L = [[6Wini.oi) =]] \1/geXp <_EW)

i=1 i=1 7i i
Log-likelihood: ) ) assuming o; are known
¢ = —22(%;;') + const

We can define
- i = pi)?
= 20= 2L = Y AL

i=1 i

Maximum of (log-)likelihood function corresponds to minimum of y?
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x? distribution >

N=2

Let us introduce ‘“shift” variables:
Yi — Hi
o

zZi =

which are (by construction) described by Gaussian pdf with 4 =0, o = 1.
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x? distribution =

N=2

Let us introduce ‘“shift” variables:

zZi =

Yi — Hi
o

which are (by construction) described by Gaussian pdf with 4 =0, o = 1.
For N = 2 independent variables we can write:

1 1
f(z1,2) = > exp <—2(212+z22)>

December 01, 2022 13 /50
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x? distribution =

N=2

Let us introduce ‘“shift” variables:
Yi — Hi
o

zZi =

which are (by construction) described by Gaussian pdf with 4 =0, o = 1.
For N = 2 independent variables we can write:

1 1
f(z1,2) = > exp <—2(212+z22)>

and then change variables to polar coordinates see lecture 03

1 1
f(r27¢z) = Zrz eXp<_2rz2>
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x? distribution >

N=2

Integrating over ¢, and changing variable to r?
1 1
2 2
f(rz) = 5 exp <_2rz>

Distribution is exponential, corresponds to decay time pdf for 7 = 2...
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x? distribution
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N=2

Integrating over ¢, and changing variable to r? = 2

1 1
f(X2) = 5 &P <—2X2>

Distribution is exponential, corresponds to decay time pdf for 7 = 2...
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x? distribution _im

N=2

Integrating over ¢, and changing variable to r?

Distribution is exponential, corresponds to decay time pdf for 7 = 2...
Even N case

Sum of n = N/2 numbers from exponential pdf, is distributed according to
Gamma distribution with k = n=N/2, A\=1/7=1/2 lecture 02

FO08) = g (O A e
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x? distribution _im

N=2
Integrating over ¢, and changing variable to r?

1 1
f 2 —_ =2
(x%) 5 exp< 5X >
Distribution is exponential, corresponds to decay time pdf for 7 = 2...
Even N case

Sum of n = N/2 numbers from exponential pdf, is distributed according to

Gamma distribution with k = n=N/2, A\=1/7=1/2 lecture 02
1 (1)?
N 2
100 = o (3) (e
r(3) \2

The formula (as one can expect) works also for odd N...
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N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z°=
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X2 distribution _\/ i-w

N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z°=
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X2 distribution _\/

N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z°=
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X2 distribution _\/

N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z°=
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X2 distribution _\/

N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z°=

Mi(t) = E(e%) = / dz f(z) e*?

/+OO dZ 72/2
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X2 distribution _\/ i-w

Arbitrary N Bonamente

N

Considered random variables z; are independent, and x2 = 22,2 Moment
generating function for 2 distribution is thus given by:

N N/2
Mu(t) = J[Mi(t) = (1_12t>
i=1

A.F.Zarnecki Statictical analysis 07 December 01, 2022



N
W

X2 distribution _\/

Arbitrary N Bonamente

Considered random variables z; are independent, and x2 = 22,2 Moment
generating function for 2 distribution is thus given by:

N N2
() = T - ()
i=1

We can compare it with the moment generating functions for Gamma pdf

+o0 1
Mc(t) = E(e™) = / dx ——xK71 \K e7x ot
0
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X2 distribution _\/

Arbitrary N Bonamente

Considered random variables z; are independent, and x2 = 22,2 Moment
generating function for 2 distribution is thus given by:

N N2
() = T - ()
i=1

We can compare it with the moment generating functions for Gamma pdf

+00 1
Mg (t) = E(e¥) = /0 dx ka*1 MK @mAx gt

)\k +o00 dx’ 'k—1 ,
xX'=x(\—t) = / X >
0

(k) )k ©
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x? distribution _im

Arbitrary N Bonamente

Considered random variables z; are independent, and x2 = 22,2 Moment
generating function for 2 distribution is thus given by:

N N2
() = T - ()
i=1

We can compare it with the moment generating functions for Gamma pdf

+00 1
Mg (t) = E(e¥) = /0 dx ka*1 MK @mAx gt

)\k 00 s X/kfl , 1 k
/ — )\ —t — _— T X =
X =xA=) FMLA G- oF © (1—;)
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X2 distribution _\/

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
k:E and AZE

December 01, 2022 17 /50
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x? distribution _im

x? distribution
We conclude that distribution of x? is described by Gamma pdf with:

N 1
k:E and AZE

Properties of the x? distribution (see lecture 02)

k
2
= —:N
(x°) 3
k
V(x?) = p:”\’
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x? distribution _im

x? distribution
We conclude that distribution of x? is described by Gamma pdf with:

N 1
k:E and AZE

Properties of the x? distribution (see lecture 02)

k
2
= —:N
X% 3
k
V(X2) = p:2N

For small N, value of y? is a subject to large fluctuations...
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 2 Mean 2.002
StdDev  1.998
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Exponential distribution
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 2 Mean 2.002
© StdDev 1.998
£
= B
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=] g ““x\
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%2 value

Exponential distribution
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x* distribution

x? distribution
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Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N =1 Mean  0.9934
@ 1.8 Std Dev  1.403
=
= 16
=
5 14
g 1.2
2 1
E
_8 O.S[E
o 0.6 _L
& 04 :\
02 F o
0_\\||| AN TR T TSI T S TN T T AT T T ST T T I S A T S 1
0 2 4 6 8 10 12 14 16 18 20

%2 value

Sharply peaked at zero, but with long tail
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N =1 Mean  0.9934
o} StdDev  1.403
£
= 5
c B
> 10
7} E
o F
.y N
= 102 E T
2 f st
8 N
E 10—3 E “'Iq“
o F ‘q'ed]_,1
104 E in
0 2 4 6 8 10 12 14 16 18 20

%2 value
Sharply peaked at zero, but with long tail
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 3 Mean 2.998
© 025 StdDev 2451
= g
= |
c 0.2
S
g Hl
> 0.15
% -

T 0if H\

E |
o B
0.05 | 1"&'\‘\
0_..‘....."‘*———_—
0 5 10 15 20 25

%2 value
Very asymmetric, most events below average value...
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

%2 distribution for N =4 Mean 4.002
N Std Dev  2.839

0.18 ™
0.16 f Lt
0.14
0.12
0.1
0.08
0.06 11'
0.04 Ii

' ey
0.02

0 5 10 15 20 25 30

%2 value

A LT TTTTTT T TTTTTT
™

Probability per unit time

Very asymmetric, most events below average value...
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N=5 Mean 5.004
016 E StdDev  3.168

0.14
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T
P
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' bt
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A

h,
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o
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T =L 111

Very asymmetric, most events below average value...
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2 distribution

x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 6 Mean 5.976
0.14 Std Dev  3.456

0.12 E fth{\‘
I
H

0.1

Probability per unit time

0.04

7
r’
H

0.02 |
0 “‘.“.'"P-—

0 5 10 15 20 25 30 35
%2 value
It is interesting to note that maximum position, x2,., = N —2 (!!1)
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x? distribution
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Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 8

0.1
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0.04

Probability per unit time
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Mean 7.995
Std Dev  3.977
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It is interesting to note that maximum position, x2,., = N —2 (!!1)
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2 distribution

x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 10 Mean 10
GEJ 0.1 i j’*\ Std Dev  4.469
= i
S o008 b
N
o - f
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%2 value
It is interesting to note that maximum position, x2,., = N —2 (!!1)
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x* distribution

x? distribution

\,
N
. W 5

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 15
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0.07
0.06
0.05
0.04
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Probability per unit time
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0

A.F.Zarnecki
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 20 Mean 19.97
0.07 StdDev 6.324
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 25 Mean 25.02
UEJ 0.06 F rrP‘LLL Std Dev  7.081
E 005F i
5 g JJ
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x* distribution

\,
N
. W 5

x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 50 Mean 50.08

'f'fﬁ_\L Std Dev  10.02
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

%2 distribution for N = 100 Mean 100
© 0.03F StdDev 14.13
= 2 ‘IH‘L.L
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x* distribution
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x? distribution

Results of the Monte Carlo sample generation (compared with predictions)

%2 distribution for N = 100 Mean 100
UEJ F Std Dev 1413
= 1072 E f
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Asymmetry in tails remains even for large N...
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X2 distribution _\/

Reduced y?

When discussing consistency of large data samples it is often convenient to
use reduced x? value:

g = &
red N

Distribution of X%ed is again described by Gamma pdf with

N N
kZE and )\25
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X2 distribution _\/

N
W

Reduced y?

When discussing consistency of large data samples it is often convenient to

use reduced x? value:
Y2

2
Xred — N

Distribution of X%ed is again described by Gamma pdf with

N N
k = 5 and A\ = 5
Properties of the distribution:
red red Xy N
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x? distribution

Number of degrees of freedom

So far, we have only considered an ideal case, where both the expected
values p and measurement uncertainties o are known.

However, it is quite a common situation, when the expected value is
extracted from the data:

where we assume uniform uncertainties for simplicity.
What is the expected distribution for {2 ?

Mean value corresponds to maximum likelihood = §2 < x?
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x? distribution >

Number of degrees of freedom
We already know (lecture 03) that unbiased variance estimate for N

measurements is )
> vi—y)?

so one can conclude:
(?) = N-1

but this does not give us full information about the distribution...

December 01, 2022
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x? distribution >

Number of degrees of freedom

We already know (lecture 03) that unbiased variance estimate for N
measurements is

so one can conclude:

(%) = N-1
but this does not give us full information about the distribution...
Simple variable transformation can be used: (Brandt)
1
xx = —n+...+y — k=1...N—-1
k Kk + 1)()/1 Yk Yk+1)
XN = \/N . )7

One can verify that this is an orthogonal transformation...
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x* distribution

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;
Also:

N

N
Yoxt o= D>y
=1

i=1
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X2 distribution _\/

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;.
Also:

N N
2 2
2% = 2
i=1 i=1
We can now rewrite the formula for ¥2 in the new basis:
N N N
2 = D i =D -0 i+ NP
i=1 i=1 i=1
N
= Zylz - N)_/z

i=1
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X2 distribution _\/

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;.
Also:

N N
2 2
2% = 2
i=1 i=1
We can now rewrite the formula for ¥2 in the new basis:
N N N
2 = D i =D -0 i+ NP
i=1 i=1 i=1
N N N—1
RN = Y = L

i=1 i=1 i=1

= distribution of {2 corresponds to that of x? for Ngr = N — 1 variables...
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Statistical analysis of experimental data

\,
N
. W 5

Least-squares method

e Hypothesis Testing
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Hypothesis Testing -

Fo.

Data consistency test

Value of x? (or x2,;) can be used to verify the consistency of given data
set y (with uncertainties o) with model predictions given by p

We can try to verify the model this way, our estimates of measurement
uncertainties, or the experimental procedure...

If the model does not describe the data, higher x? values are expected.

How to quantify the level of agreement?

A.F.Zarnecki Statictical analysis 07 December 01, 2022 24 /50



"W, 2
\y

Hypothesis Testing -

Fo.

Data consistency test

Value of x? (or x2,;) can be used to verify the consistency of given data
set y (with uncertainties o) with model predictions given by p

We can try to verify the model this way, our estimates of measurement
uncertainties, or the experimental procedure...

If the model does not describe the data, higher x? values are expected.
How to quantify the level of agreement?

We can calculate the probability of obtaining given value of x? or lower:

2

P(x*) = /OX dx® f(x*)

which corresponds to the cumulative probability distribution.
1 — P(x?) is sometimes referred to as p-value
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Hypothesis Testing

Data consistency test

Plot of p-values as a function of x? for different Ngys
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Hypothesis Testing >

N
W

Critical \?

The other approach is to define, for given probability P (confidence level)
the critical value of y?, corresponding the the frequentist upper limit:

Xgrit +oo
/ dx’ f(x?) = P / d’f(x®) =1-P =1-a
0 X

2
crit
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Hypothesis Testing -

Fo.

.

Critical \?

The other approach is to define, for given probability P (confidence level)
the critical value of y?, corresponding the the frequentist upper limit:

Xgrit +oo
/ dx’ f(x*) = P / d’f(x*) =1-P =1-a
0 Xg‘rit
If the x? value obtained in the actual measurement is higher than the

selected X2, then we should reject the hypothesis of data consistency
with the model (can still be due to the data, not the wrong model).
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Hypothesis Testing -
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.

Critical \?

The other approach is to define, for given probability P (confidence level)
the critical value of y?, corresponding the the frequentist upper limit:

Xgrit “+o00o
/ dx’ f(x?) = P / d’f(x®) =1-P =1-a
0 X

2 .
crit
If the x? value obtained in the actual measurement is higher than the

selected X2, then we should reject the hypothesis of data consistency
with the model (can still be due to the data, not the wrong model).

Very low P values (P < 1) are also not expected (not likely)!
If x? < N (except for very small ), this usually indicates a problem:
@ overestimated uncertainty of measurements

@ hidden correlations between measurements
(which we treat as independent variables)
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Hypothesis Testing 7

Critical \?

Table of critical x? values (Brand)

Xp
P =f0 fx% fdx?
P
f 0.900 0.950 0.990 0.995 0.999
1 2.706 3.841 6.635 7.879 10.828
2 4.605 5.991 9.210 10.597 13.816
3 6.251 7.815 11.345 12.838 16.266
4 7.779 9.488 13.277 14.860 18.467
5 9.236 11.070 15.086 16.750  20.515
6 10.645 12.592 16.812 18.548  22.458
7 12.017 14.067 18.475 20.278  24.322
8 13.362 15.507 20.090 21.955 26.124
9 14.684 16919 21.666 23.589 27.877
10 15.987 18.307 23.209 25.188  29.588
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Hypothesis Testing ;

Critical \?

Plot of critical values for reduced x?

Critical 42 curves
e 4
—

Corfidence leval

g L
m w

3]

i

<
== & | Y

=} TTTT
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Hypothesis Testing ;

Critical \?

Plot of critical values for reduced x? (indicated is p = 1 — P)
2.5

x%/n

0 10 20 30 40 50
Degrees of freedom n ( P DG)
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Hypothesis Testing >

N
W

Student’s t Distribution

We can verify consistency of the series of measurements x with the true
value p by looking at the parameter

where mean value X is the best estimate of p assuming Gaussian pdf.
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Student’s t Distribution

We can verify consistency of the series of measurements x with the true
value p by looking at the parameter

where mean value X is the best estimate of p assuming Gaussian pdf.

But this works only, if we know the uncertainty, oz = o/V'N.
We need to know measurement uncertainties to calculate y2...
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Hypothesis Testing >

N
W

Student’s t Distribution

We can verify consistency of the series of measurements x with the true
value p by looking at the parameter

where mean value X is the best estimate of p assuming Gaussian pdf.

But this works only, if we know the uncertainty, oz = o/V'N.
We need to know measurement uncertainties to calculate y2...

If the measurement uncertainties are unknown, or not reliable, we can
estimate the variance of the sample from the data itself (lecture 03)

1
2 A Y
s° = 7N—1E (xi — X)

i

s? distribution corresponds to x? distribution for N — 1 degrees of freedom
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Hypothesis Testing >

N
W

Student’s t Distribution

We can now verify consistency of our measurements x with the true value
1 by considering the parameter

X—p

s/vN

but the distribution of ¢t is no longer Gaussian (due to s being a random
variable as well).
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Hypothesis Testing >

N
W

Student’s t Distribution

We can now verify consistency of our measurements x with the true value
1 by considering the parameter

X—p
s/vV/N

but the distribution of ¢t is no longer Gaussian (due to s being a random
variable as well). It can still be calculated analytically:

G A
N O (”n)

where n is the number of degrees of freedom, n = N — 1.
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Hypothesis Testing >

N
W

Student’s t Distribution

We can now verify consistency of our measurements x with the true value
1 by considering the parameter

X—p
s/vV/N

but the distribution of ¢t is no longer Gaussian (due to s being a random
variable as well). It can still be calculated analytically:

G A
N O (”n)

where n is the number of degrees of freedom, n = N — 1.
Distribution is symmetric and has a mean of zero, but larger tails than the
Gaussian distribution, for small N in particular.
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution for different numbers of measurements

t distribution for N = 2 Mean  0.001454
Std Dev 1.623

0.4 bbb e ]
0.35
03
0.25
0.2
0.15
0.1
0.05

-5 -4 -3 -2 -1 0 1 2 3 4 5
Nys=N—-1=1 tvalue

Probability per unit time
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution for different numbers of measurements

t distribution forN =4 Mean  —0.003984
GEJ F Std Dev 1.338
= 04:_ .....................................................................................................................
= =

%0.355—

o 03F

o =

30.25;—

3 2

8 0.2E

90.15;—

R ] =

0.05 |- e
I s SR PR DUVUR FUUE TS PR s

-5 -4 -3 -2 -1 0 1 2 3 4 5
Nysg=N—-1=3 tvalue
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution for different numbers of measurements

t distribution forN = 6 Mean  0.001031
Std Dev 1.225

04
0.35
03
0.25
0.2
0.15
0.1
0.05

Probability per unit time

-1 0 1 2 3 4 5
Nys=N—-1=5 tvalue
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution for different numbers of measurements

t distribution for N =8 Mean  0.0002528
Std Dev 1.158

04
0.35
03
0.25
0.2
0.15
0.1

0.05 R " S R S R S
5 -4 3 2 -1 0 1 2 3 4 5

Nys=N—1= tvalue

Probability per unit time
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution for different numbers of measurements

t distribution for N =8 Mean  0.0002528
| Std Dev 1.158

Probability per unit time

-5 -4 -3 -2 - 0 1 2 3 4 5

Ngs=N—1=7 tails are clearly non-Gaussian... tvalue
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N = 2 Mean —0.00705
Std Dev 1619

0.4 Fbom bbb b
0.35
03
0.25
0.2
0.15
0.1
0.05

Probability per unit time

-1 0 1 2 3 4 5
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution forN =4 Mean  0.0006665
Std Dev 1.343
04 ..............................................................................

0.35
03
0.25
0.2
0.15
0.1

0.05 i

-5 -4 -3 -2 - 0 1 2 3 4 5

Probability per unit time
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Hypothesis Testing ;

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution forN = 6 Mean  0.002253
Std Dev 1.218

04
0.35
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0.2
0.15
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0.05

Probability per unit time

-4 -3 -2 -1 0 1 2 3 4 5
Nys=N—-1=5 tvalue

|
w

A.F.Zarnecki Statictical analysis 07 December 01, 2022 33/50



N
. W 5

Hypothesis Testing ;

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N =8 Mean  0.001729
Std Dev 1.163
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-5 -4 -3 -2 -1 0 1 2 3 4 5
Nys=N—-1=7 tvalue

Probability per unit time
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Hypothesis Testing >

N
W

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N =8 Mean  0.001729
b | Std Dev 1.163
E '

':; 1
= -
5 10
S
o)
o
=
T 102
o
o]
e
o

107

-5 4 -3 -2 - 0 1 2 3 4 5
Nyg=N—-1=7 tvalue
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Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N = 10 Mean —0.004272
@ | Std Dev 1.124
E
=
=
c
=1
S
o)

o
=
=
o
o
o]
[=}
L=
o

-5 4 -3 -2 - 0 1 2 3 4 5
Probability of large fluctuations still significantly enhancedvalue
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N = 20 Mean  0.0001408
GEJ E /r—\“ éstm 1.056
;; 10—1 Lo gl g s
c =
> F
(E}- [
b 10—2 E_ ..............................................................................................................
B C
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o 10-2 L1 e e s T e, T
& : "llr
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t value
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Hypothesis Testing ;

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N = 50 Mean —0.001321
GEJ - T 7| StdDev  1.021
;; 10—1 TN /AN SOCSRRSRRTFNIE Hr. SHNNE FHSSRRRRRSVINS SN SR0tcs, VYOS NNNNNNUNN: HORRRORION NN
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Hypothesis Testing -

Student’s t Distribution

Shape of the t distribution compared with Gaussian distribution

t distribution for N = 100 Mean —0.004766
GEJ E e Std Dev 1.01
;; 10—1 L ............................
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= i
(E}- [
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Converges to the Gaussian distribution for large N tvalue
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Hypothesis Testing ;

Student’s t Distribution (Brandt)

“Critical values” of t for small numbers of degrees of freedom f

Ip
pP= / f@ fHde
—00
P

f[0.9000 0.9500 0.9750 0.9900 0.9950 0.9990  0.9995
1] 3078 6314 12706 31.821 63.657 318.309 636.619
2| 1.886 2920 4303 6965 9925 22327 31599
3| 1.638 2353 3.182 4541 5841 10215 12924
4| 1533 2132 2776 3.747 4604 7173 8610
5| 1476 2015 2571 3365 4.032 5893  6.869
6| 1440 1943 2447 3143 3707 5208  5.959
7] 1415 1895 2365 2998 3499 4785 5408
8| 1397 1860 2306 289 3.355 4501 5041
9| 1383 1833 2262 2821 3250 4297 4781
10| 1372 1812 2228 2764 3.169 4144 4587
11| 1363 1796 2201 2718 3.106 4025 4437
12| 1356 1782 2179 2681 3.055 3930 4318
13| 1350 1771 2160 2650 3012 3852 4221
14| 1345 1761 2145 2624 2977 3787 4140
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Hypothesis Testing ;

Student’s t Distribution

Plot of critical values for t

Critical t curves
+°

¢ Confidence lavel

— 048
— 085
= 099

— 0.999

Lo O A < L LI = TN R o+ R (e ]

Large deviations much more probable for small N
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Statistical analysis of experimental data

\,
N
. W 5

Least-squares method

© Linear Regression
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Linear Regression ;

General case

We introduced 2 in a very general form:

N

2
> (vi — i)
X = Z o2
1

i=1

where different p; and o; are possible for each of N measurement y;
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General case

We introduced x? in a very general form:

N

2
> (vi — i)
X = Z o2
1

i=1
where different p; and o; are possible for each of N measurement y;

It is quite often the case that values of u; depend on some controlled
variables x; and a smaller set of model parameters:

pi = plx;a)

we can then use the least-squares method to extract the best estimates of
parameters a from the collected set of data points (x;, y;)

We can look for minimum of x? using different numerical algorithms...
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Linear Regression %

N
W

Linear case

The case which is particularly interesting is when the dependence is linear
in parameters (!):

M
pxia) = Y ak fi(x)
k=1

where f(x) is a set of functions with arbitrary analytical form.
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N
W

Linear case

The case which is particularly interesting is when the dependence is linear
in parameters (!):

M
pxia) = Y ak fi(x)
k=1

where f(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:
M
fil(x) = xk = p(x;a) = Zak xk=1
k=1

but any set of functions can be used, if they are not linearly dependent.
Functions ortogonal on given set of points x; should work best...
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Linear Regression <

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood
approach, when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the values for
which x? has a (global) minimum (= maximum of log-likelihood)
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Linear Regression 5

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood
approach, when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the values for
which x? has a (global) minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

N

o 6Z<y;22”1ak fk(X)>2 -

Ga, 8a, (o
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Linear Regression "%

Parameter fit Bonamente

N
W

Least-squares method is the special case of the maximum likelihood
approach, when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the values for
which x? has a (global) minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

2
9 i Yi — S0y an %)
Ga, 8a, i

" gj
=1
N M
Yi — 2 k=1 3 fx(x)
= 2 fi(x;
> (5 0
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Linear Regression 5

Parameter fit Bonamente

N

We obtain a set of M equations for M parameters a;:

N fl(Xi) M
Z 02 y,-—Zak fk(X) =0 /
k=1

i=1

I
S
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Linear Regression 5

Parameter fit Bonamente

N

We obtain a set of M equations for M parameters a;:

L fi(x) M
Yo (rdakx)) =0 I=1..M
k=1

i=1

which can be rewritten as:

i(i fi(x) gk(x,-)> Y Z”:f,(x,gy,-

k=1 \i=1 !
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Linear Regression 5

Bonamente

Parameter fit
We obtain a set of M equations for M parameters a;:

M
f/(zi) <yi_zakfk(x)> _ I=1...M
k=1

o
i=1 !

N

which can be rewritten as:

i(i fi(x) gk(x,-)> o = 3 )y
A -

k=1 \i=1 i=1 i
or in the matrix form:
a = b
N N
fi(xi) fu(xi) fi(xi) yi
h Ay = _— d b = _—
where Ik Z 02 an i ’z_; 0'[.2

December 01, 2022 40 /50
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Linear Regression "%

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A

a = Al.b
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Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Alb

This also gives us the estimate of parameter covariance matrix:

2 -1 2.2 \ 1
Ca = - 87€ = 176 X = A_l
daj Day 2 0a; Oay
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Linear Regression ~;

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Alb

This also gives us the estimate of parameter covariance matrix:
20 NN 13\t
(Ca = —_—— — 77X — A—l
daj Day 2 0a; Oay

One can write .,
fi(xi) fu(xi)
Ca = (Z 0_2

i=1

Expected uncertainties of the extracted parameter values depend on the
choice of measurement points x; but, surprisingly, do not depend on the
actual results y; = very useful when planning the experiment...
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Linear Regression ;

Linear fit example

Fitting Fourier series to example data set

Pseudo data

E F
> o6f i
B L
04 |
02 |
nakb R I./I/T
04 F Ryt
0.6 o
-1 -05 0 0.5 1
X
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Linear Regression ;

Linear fit example

Fitting Fourier series to example data set

Linear fit Npar=3 %2=12.22/16

0.6 : L
: 1t
04 | , “"“}-
02 E T r ]_N I

—_—
>

S
=

N I
02 | J/P
-04 | $ H_L,r
0.6 o
—1 -05 0 05 1
X
y(x) = ao+ arsin(x) + az cos(x)

A.F.Zarnecki Statictical analysis 07 December 01, 2022 42 /50



N
. W 5

Linear Regression ;

Linear fit example

Fitting Fourier series to example data set

Linear fit Npar=5 %2=10.63/14

= F
-~ o6f I
: !
04 I oo s
02 F r/i/{/ +N '
T E T l l\t
0 :_
02 F I
—04 f I%ﬂ
0.6 Bodp
— w05 0 05 1
. X
y(x) = 30+Za2n71 sin(nx) + az2n cos(nx) M =
n=1
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Linear Regression ;

Linear fit example

Fitting Fourier series to example data set Probably optimal choice

Linear fit Npar=7 %2=8.7/12

i 28
oz BZEENY

—_—
>

S
=

0
02 | !
-04 | rw/r{f
Y3 S S S
-t ,, 05 0 0.5 1 .
y(x) = ao+Zaz,,,1 sin(nx) + axp cos(nx) M =
n=1
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Linear Regression

Linear fit example

Fitting Fourier series to example data set “Overtraining”

Linear fit Npar=9 %2=4.57/10

y o
sy

02 | j
—04 F 5

—_—
>

S
=

—

: Ryt
0.6 Ereosgpeggepop e
-, 05 0 0.5 1
. X
y(x) = a+ Y an-1sin(nx)+ azpcos(nx) M=
n=1
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Linear Regression ;

Linear fit example

Fitting Fourier series to example data set “Overtraining”
Linear fit Npar=11 %*=3.88/8
> o06f 1
04 F /+—T\
o2 f /i/%/( NJI*
o Lj
04 hyprt
) S SR
-1 y 05 0 05 1
_ X
y(x) = ao+ Z azp—1sin(nx) + agpcos(nx) M =5
n=1
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Linear Regression ;

Linear fit example

Fitting Fourier series to example data set “Overtraining”
Linear fit Npar=15 %2=0.33/4
> o06f !
o i f\m
0.2 u T 1 T
B T l 1*
02 | !
- I I/
-0.4 - ]:% T
) S SR
-1 v 05 0 0.5 1
_ X
y(x) = ao+ Z asp—1sin(nx) + agpcos(nx) M =
n=1
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can
try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can
try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained x?

e Adding new parameter results in only moderate x? decrease, O(1)

@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can
try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained x?

e Adding new parameter results in only moderate x? decrease, O(1)

@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions

@ Additional parameters are consistent with zero
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can
try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained x?

Adding new parameter results in only moderate x? decrease, O(1)

Parameters become highly correlated

Values and errors of the individual parameters increase
differences of large contributions

Additional parameters are consistent with zero

Fit starts to follow fluctuations of the measurement results
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Best fit choice?

Example of fit with too high polynomial order

Linear fit Npar=8 %2=4.76/11

L o0af
035 | O o
03 F ‘{ [ "\f\"T T
025 % Y\

0.05

e

0.2 0.4 0.6 0.8 1

o]
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Best fit choice?

Example of fit with proper polynomial order

Linear fit Npar=3 %2=10.21/16

p—
i—'
-

5.
7
v

0.05

(=]
—
(4]
e L L LA L LA R AR RN A

A.F.Zarnecki Statictical analysis 07 December 01, 2022 44 /50



N
W

Linear Regression %

Learning on errors

When “wrong” set of functions (highly correlated) is selected...

Linear fit Npar=3 %2=15.04/16
= :
> 06 %

A
R

0

.

o~
N

04 f TT
e E—
-1 -05 0 05 1
X
y(x) = ao+ aisin(x) + azcos(x)
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Learning on errors

When “wrong” set of functions (highly correlated) is selected...

Linear fit Npar=5 %2=25.75/14
= C
= o06f [
A
A
E ¥ £\
oo |
-04 $
—06{:
- w 05 0 05 1
y(x) = 30+Zazn 1sin"(x) + az2p cos”(x) /\/lx:2
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Learning on errors

When “wrong” set of functions (highly correlated) is selected...

Linear fit Npar=7 %2=24.39/12

0.6
y A

o /4/“4 {'\*\:\

0
-0.2 ¥ b4
o AN

086 [

e

L L
Bz

1 0.5 0 05 1

_ o | )
y(x) = a+ Z azp—1sin"(x) + agpcos”(x) M =
n=1
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Learning on errors
When “wrong” set of functions (highly correlated) is selected...

Linear fit Npar=9 %2=41.39/10

= :
> 06 T
i bt
0.4 [
02 %Iy\f\k
: } [
0 $ L ‘TT\
—0.23 g 1/%/
\‘@*
—oel
-1 y 05 0 05 1
y(x) = 30+Zazn 1sin"(x) + az2p cos”(x) /\/lx:
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Learning on errors

When “wrong” set of functions (highly correlated) is selected...

Linear fit Npar=11 %2=33.77/8

—_—

x C
> o0s6f
o | A
02; \ ] HT N‘;\T\
of
v e A *
AR
~06 o

1 -0.5 0 05 1

_ y | )
y(x) = a+ Z azp—1sin"(x) + agpcos”(x) M =
n=1
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Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to
k, | =0...M (for polynomial fit of order M, M + 1 parameters).

N X(l+k) N Xl yi

A/k = E ! 3 and b/ = E '2’
; g . o
i=1 ! i=1 !
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Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to
k, | =0...M (for polynomial fit of order M, M + 1 parameters).

N X(l+k) N Xl yi
A/k = E ! 3 and b/ = E ! 2’
o< o
i=1 i j=1 i
For uniform uncertainties it is then:
M
1 Xi . X Vi
2 M+1
1 N X; X; cee X 1 N Yi Xi
= 5> b= 5%
o : ; o :
=1 . . i=1
M M41 oM M
X; X; X; Yi X;

quite simple to implement...
A.F.Zarnecki
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—u(xa)T Ay — p(xa))

Its distribution should correspond to the X2 distribution for Ngg = N — M
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Linear Regression 7

U4
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—u(xa)T Ay - p(x; a)
Its distribution should correspond to the X2 distribution for Ngg = N — M

If uncertainty is the same for all measurements, the extracted parameter
values are independent on it (!).
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—u(xa)T Ay - p(x; a)
Its distribution should correspond to the X2 distribution for Ngg = N — M

If uncertainty is the same for all measurements, the extracted parameter
values are independent on it (!). We can use the calculated value of ¥? to
validate the model (test model hypothesis), but also to “correct” our
uncertainties, if we consider them unreliable (or they are unknown):

. 0_2552
N—-—M

This is useful in particular when ¥? < Ng¢ (overestimated o)
For %2 > Ngr we need to consider the possibility that our model is wrong...
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Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

M M
u(x,z;a) = ZZak/ xk 2!

k=0 /=0
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Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

xza E Eak,xz

k=0 /=0

All we need to do is to order the pairs of indexes, so that vector a is
properly defined. Example for M =1 (2-D plane): a = (ago, 210, a01)

Y 1 x z Y 3%
251 I TN S ol P2
zZ Xz z yz

where indexes i = 1... N were skipped for variables x;, y; and z;

Fo.
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Least-squares method

@ Homework
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Homework

Homework Solutions to be uploaded by December 15.
Download the set of data from the lecture home page.
Use linear regression method to fit polynomial dependence to the data.

Select the order of polynomial, which is adequate for the description of the

data and give arguments for your choice.
Linear fit Npar=1 »?>=7175.47/23

= 25 .
2 f *
F *
15 F L
F .o
- L]
1— L ]
r .o..
r *
05 | S
r LA
ofer®
0 0.2 0.4 0.6 0.8 1 1.2
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