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Lecture 07
December 01, 2022
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Maximum Likelihood Method

Maximum Likelihood Method
The product:

L =
N∏
j=1

f (x(j); λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the
maximum likelihood approach:
as the best estimate of the parameter set λ we choose the parameter
values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

` = ln L =
N∑
j=1

ln f (x(j); λ)

we can look for maximum value of ` or minimum of −2 ` = −2 ln L
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Maximum Likelihood Method

Multiple parameter estimate
Likelihood function (and log-likelihood) can depend on multiple
parameters:

λ = (λ1 . . . λp) L =
N∏
j=1

f (x(j); λ) ` =
N∑
j=1

ln f (x(j); λ)

Best estimate of λ, for given set of experimental results x(j), corresponds
to maximum of the likelihood function, which can be found by solving a
system of equations:

∂`

∂λi

∣∣∣∣
i=1...p

= 0

The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f (x; λ) containing an unknown parameters of interest λ and
observations x(j), all information relevant for the estimation of the
parameters λ is contained in the likelihood function L(λ; x) =

∏
f (x(j); λ).
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Maximum Likelihood Method

Parameter covariance matrix
For the considered case of multivariate normal distribution, best parameter
estimates λ̂ are given by the measured variable values x.

Unlike parameters λ, parameter estimates λ̂ are random variables
(functions of x) and so we can consider covariance matrix for λ̂:

Cx = Cλ̂ =
(
− ∂2`

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter
values, but also extract uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the
decrease of the log-likelihood function by 0.5 for one, by 2 for two and by
4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parametersA.F.Żarnecki Statictical analysis 07 December 01, 2022 5 / 50
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Confidence intervals

Normal distribution
Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value
within ±N σ interval:

1− α
± 1 σ ⇒ 68.27 %
± 2 σ ⇒ 95.45 %
± 3 σ ⇒ 99.73 %
± 4 σ ⇒ 99.9937 %
± 5 σ ⇒ 99.999943 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

There is a non-zero chance for deviation grater than 5σ, but it is extremely small
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Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x
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calculate limits of probability
intervals for x , x1(θ) and x2(θ),
for different values of θ
calculated intervals define the
“accepted region” in (θ, x)
confidence interval for θ is
defined by drawing line x = xm
in the accepted region

⇒ limit on θ for given xm, θ1(xm),
corresponds to limit on x for
given θ: xm = x1(θ1).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Bayesian limits

Procedure
Bayes theorem can be applied to the case of counting experiment:

P(µ; nm) = P(nm;µ)∫
dµ′ P(nm;µ′)

· P(µ)

Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat “prior distribution” for µ (no earlier constraints) we get:

P(µ; n) = µn e−µ

n!

Upper limit on the expected number of events can be then calculated as:∫ µul

0
dµ P(µ; nm) = 1− α

Surprisingly, the numerical result is the same as for Frequentist approach...
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Unified approach

Solution
We still want to start with probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x .

How consistent is the considered parameter value µ with our measurement
(described by µbest) can be described by likelihood ratio:

R(x ;µ) = P(x ;µ)
P(x ;µbest(x)) ≤ 1

We can now create the probability interval for x , [x1, x2], by selecting
values with highest R, up to given CL:∫ x2

x1

dx P(x ;µ) = 1− α and ∀x /∈[x1,x2] R(x) < R(x1) = R(x2)
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Unified approach

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for counting experiment (Poisson variable)
in the presence of known mean background µbg = 3.0

Central 90% CL intervals Unified 90% CL intervals
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χ2 distribution

Maximum Likelihood Method see lectures 04 and 05

Let us consider N independent measurements of variable Y . Assuming
measurement fluctuations are described by Gaussian pdf, the likelihood
function is:

L =
N∏
i=1

G (yi ;µi , σi ) =
N∏
i=1

1
σi
√

2π
exp

(
−1

2
(yi − µi )2

σ2
i

)
Log-likelihood: assuming σi are known

` = −1
2
∑ (yi − µi )2

σ2
i

+ const

We can define

χ2 = −2 ` = −2 ln L =
N∑
i=1

(yi − µi )2

σ2
i

Maximum of (log-)likelihood function corresponds to minimum of χ2
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χ2 distribution

N=2
Let us introduce “shift” variables:

zi = yi − µi
σi

which are (by construction) described by Gaussian pdf with µ = 0, σ = 1.

For N = 2 independent variables we can write:

f (z1, z2) = 1
2π exp

(
−1

2(z2
1 + z2

2 )
)

and then change variables to polar coordinates see lecture 03

f (rz , φz) = 1
2π rz exp

(
−1

2 r
2
z

)
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χ2 distribution

N=2
Integrating over φz and changing variable to r2

z

f (r2
z ) = 1

2 exp
(
−1

2 r
2
z

)
Distribution is exponential, corresponds to decay time pdf for τ = 2...

Even N case
Sum of n = N/2 numbers from exponential pdf, is distributed according to
Gamma distribution with k = n = N/2, λ = 1/τ = 1/2 lecture 02
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χ2 distribution

N=2
Integrating over φz and changing variable to r2

z = χ2

f (χ2) = 1
2 exp

(
−1

2χ
2
)

Distribution is exponential, corresponds to decay time pdf for τ = 2...

Even N case
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χ2 distribution

N=2
Integrating over φz and changing variable to r2

z

f (χ2) = 1
2 exp

(
−1

2χ
2
)

Distribution is exponential, corresponds to decay time pdf for τ = 2...

Even N case
Sum of n = N/2 numbers from exponential pdf, is distributed according to
Gamma distribution with k = n = N/2, λ = 1/τ = 1/2 lecture 02

f (χ2) = 1
Γ(N2 )

(
1
2

)N
2

(χ2)
N
2 −1 e−χ

2/2

The formula (as one can expect) works also for odd N...
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χ2 distribution

N=1 Bonamente

One can consider moment generating function (see lecture 03) for
distribution of u = z2= χ2:

M1(t) = E(etu) =
∫ +∞

−∞
dz f (z) etz2

= 1√
2π

∫ +∞

−∞
dz e−z

2( 1
2−t)

z ′2 = z2(1
2 − t) = 1√

2π

∫ +∞

−∞

dz ′√
1
2 − t

e−z
′2

= 1√
2π

1√
1
2 − t

√
π = 1√

1− 2t
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χ2 distribution

Arbitrary N Bonamente

Considered random variables zi are independent, and χ2 =
∑

z2
i . Moment

generating function for χ2 distribution is thus given by:

MN(t) =
N∏
i=1

M1(t) =
(

1
1− 2t

)N/2

We can compare it with the moment generating functions for Gamma pdf

MG (t) = E(etx) =
∫ +∞

0
dx

1
Γ(k)x

k−1 λk e−λx etx

=

=
(

1
1− t

λ

)k
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χ2 distribution

χ2 distribution
We conclude that distribution of χ2 is described by Gamma pdf with:

k = N

2 and λ = 1
2

Properties of the χ2 distribution (see lecture 02)

〈χ2〉 = k

λ
= N

V(χ2) = k

λ2 = 2N

√
V(χ2) = σχ2 =

√
2N

For small N, value of χ2 is a subject to large fluctuations...
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

Exponential distribution
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

Sharply peaked at zero, but with long tail
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

Very asymmetric, most events below average value...
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, χ2
max = N − 2 (!!!)
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

Asymmetry in tails remains even for large N...
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χ2 distribution

Reduced χ2

When discussing consistency of large data samples it is often convenient to
use reduced χ2 value:

χ2
red = χ2

N

Distribution of χ2
red is again described by Gamma pdf with

k = N

2 and λ = N

2

Properties of the distribution:

〈χ2
red〉 = 1 V(χ2

red) = σ2
χ2
red

= 2
N
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χ2 distribution

Number of degrees of freedom
So far, we have only considered an ideal case, where both the expected
values µ and measurement uncertainties σ are known.

However, it is quite a common situation, when the expected value is
extracted from the data:

χ̃2 =
N∑
i=1

(yi − ȳ)2

σ2

where we assume uniform uncertainties for simplicity.

What is the expected distribution for χ̃2 ?

Mean value corresponds to maximum likelihood ⇒ χ̃2 ≤ χ2
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χ2 distribution

Number of degrees of freedom
We already know (lecture 03) that unbiased variance estimate for N
measurements is

s2 = 1
N − 1

∑
i

(yi − ȳ)2

so one can conclude:
〈χ̃2〉 = N − 1

but this does not give us full information about the distribution...

Simple variable transformation can be used: (Brandt)

xk = 1√
k(k + 1)

(y1 + . . .+ yk − yk+1) k = 1 . . .N − 1

xN =
√
N · ȳ

One can verify that this is an orthogonal transformation...
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so one can conclude:
〈χ̃2〉 = N − 1

but this does not give us full information about the distribution...

Simple variable transformation can be used: (Brandt)

xk = 1√
k(k + 1)

(y1 + . . .+ yk − yk+1) k = 1 . . .N − 1

xN =
√
N · ȳ
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χ2 distribution

Number of degrees of freedom
If yi are independent random variables with Gaussian pdf, so are xi .
Also:

N∑
i=1

x2
i =

N∑
i=1

y2
i

We can now rewrite the formula for χ̃2 in the new basis:

σ2 · χ̃2 =
N∑
i=1

(yi − ȳ)2 =
N∑
i=1

y2
i − 2ȳ

N∑
i=1

yi + Nȳ2

=
N∑
i=1

y2
i − Nȳ2 =

N∑
i=1

x2
i − x2

N =
N−1∑
i=1

x2
i

⇒ distribution of χ̃2 corresponds to that of χ2 for Ndf = N− 1 variables...
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N∑
i=1

y2
i − 2ȳ
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Hypothesis Testing

Data consistency test
Value of χ2 (or χ2

red) can be used to verify the consistency of given data
set y (with uncertainties σ) with model predictions given by µ

We can try to verify the model this way, our estimates of measurement
uncertainties, or the experimental procedure...

If the model does not describe the data, higher χ2 values are expected.

How to quantify the level of agreement?

We can calculate the probability of obtaining given value of χ2 or lower:

P(χ2) =
∫ χ2

0
dχ2′ f (χ2′)

which corresponds to the cumulative probability distribution.
1− P(χ2) is sometimes referred to as p-value
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A.F.Żarnecki Statictical analysis 07 December 01, 2022 24 / 50



Hypothesis Testing

Data consistency test
Plot of p-values as a function of χ2 for different Ndf
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Hypothesis Testing

Critical χ2

The other approach is to define, for given probability P (confidence level)
the critical value of χ2, corresponding the the frequentist upper limit:∫ χ2

crit

0
dχ2 f (χ2) = P

∫ +∞

χ2
crit

dχ2 f (χ2) = 1− P = 1− α

If the χ2 value obtained in the actual measurement is higher than the
selected χ2

crit , then we should reject the hypothesis of data consistency
with the model (can still be due to the data, not the wrong model).

Very low P values (P � 1) are also not expected (not likely)!
If χ2 � N (except for very small N), this usually indicates a problem:

overestimated uncertainty of measurements
hidden correlations between measurements
(which we treat as independent variables)
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Hypothesis Testing

Critical χ2

Table of critical χ2 values (Brand)
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Hypothesis Testing

Critical χ2

Plot of critical values for reduced χ2
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Hypothesis Testing

Critical χ2

Plot of critical values for reduced χ2 (indicated is p = 1− P)
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A.F.Żarnecki Statictical analysis 07 December 01, 2022 29 / 50

https://pdg.lbl.gov/


Hypothesis Testing

Student’s t Distribution
We can verify consistency of the series of measurements x with the true
value µ by looking at the parameter

z = x̄ − µ
σx̄

where mean value x̄ is the best estimate of µ assuming Gaussian pdf.

But this works only, if we know the uncertainty, σx̄ = σ/
√
N.

We need to know measurement uncertainties to calculate χ2...

If the measurement uncertainties are unknown, or not reliable, we can
estimate the variance of the sample from the data itself (lecture 03)

s2 = 1
N − 1

∑
i

(xi − x̄)2

s2 distribution corresponds to χ2 distribution for N − 1 degrees of freedom
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Hypothesis Testing

Student’s t Distribution
We can now verify consistency of our measurements x with the true value
µ by considering the parameter

t = x̄ − µ
s/
√
N

but the distribution of t is no longer Gaussian (due to s being a random
variable as well).

It can still be calculated analytically:

f (t; n) = 1√
n π

Γ(n+1
2 )

Γ(n2 )

(
1 + t2

n

)− n+1
2

where n is the number of degrees of freedom, n = N − 1.
Distribution is symmetric and has a mean of zero, but larger tails than the
Gaussian distribution, for small N in particular.
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution for different numbers of measurements

Ndf = N − 1 = 1
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution for different numbers of measurements

Ndf = N − 1 = 5
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution for different numbers of measurements

Ndf = N − 1 = 7
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution for different numbers of measurements

Ndf = N − 1 = 7 tails are clearly non-Gaussian...
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution compared with Gaussian distribution

Ndf = N − 1 = 1
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution compared with Gaussian distribution
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Hypothesis Testing

Student’s t Distribution
Shape of the t distribution compared with Gaussian distribution

Probability of large fluctuations still significantly enhanced!
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A.F.Żarnecki Statictical analysis 07 December 01, 2022 33 / 50



Hypothesis Testing

Student’s t Distribution
Shape of the t distribution compared with Gaussian distribution

Converges to the Gaussian distribution for large N
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Hypothesis Testing

Student’s t Distribution (Brandt)

“Critical values” of t for small numbers of degrees of freedom f
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Hypothesis Testing

Student’s t Distribution
Plot of critical values for t

Large deviations much more probable for small N
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Linear Regression

General case
We introduced χ2 in a very general form:

χ2 =
N∑
i=1

(yi − µi )2

σ2
i

where different µi and σi are possible for each of N measurement yi

It is quite often the case that values of µi depend on some controlled
variables xi and a smaller set of model parameters:

µi = µ(xi ; a)

we can then use the least-squares method to extract the best estimates of
parameters a from the collected set of data points (xi , yi )

We can look for minimum of χ2 using different numerical algorithms...
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Linear Regression

Linear case
The case which is particularly interesting is when the dependence is linear
in parameters (!):

µ(x ; a) =
M∑
k=1

ak fk(x)

where fk(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:

fk(x) = xk ⇒ µ(x ; a) =
M∑
k=1

ak xk−1

but any set of functions can be used, if they are not linearly dependent.
Functions ortogonal on given set of points xi should work best...
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A.F.Żarnecki Statictical analysis 07 December 01, 2022 38 / 50



Linear Regression

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood
approach, when we can assume Gaussian pdf for measurements yi .

As the best estimate of the parameter set a we choose the values for
which χ2 has a (global) minimum (⇒ maximum of log-likelihood)

To look for χ2 maximum, we consider partial derivatives:

∂χ2

∂al
= ∂

∂al

N∑
i=1

(
yi −

∑M
k=1 ak fk(x)
σi

)2

= 0

= −2
N∑
i=1

(
yi −

∑M
k=1 ak fk(x)
σ2
i

)
fl(xi )
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Linear Regression

Parameter fit Bonamente

We obtain a set of M equations for M parameters ai :
N∑
i=1

fl(xi )
σ2
i

(
yi −

M∑
k=1

ak fk(x)
)

= 0 l = 1 . . .M

which can be rewritten as:
M∑
k=1

(
N∑
i=1

fl(xi ) fk(xi )
σ2
i

)
ak =

N∑
i=1

fl(xi ) yi
σ2
i

or in the matrix form:
A · a = b

where Alk =
N∑
i=1

fl(xi ) fk(xi )
σ2
i

and bl =
N∑
i=1

fl(xi ) yi
σ2
i
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Linear Regression

Parameter fit
Solution of this set of equations can be obtained by inverting matrix A

a = A−1 · b

This also gives us the estimate of parameter covariance matrix:

Ca =
(
− ∂2`

∂al ∂ak

)−1
=
(

1
2
∂2χ2

∂al ∂ak

)−1
= A−1

One can write

Ca =
(

N∑
i=1

fl(xi ) fk(xi )
σ2
i

)−1

Expected uncertainties of the extracted parameter values depend on the
choice of measurement points xi but, surprisingly, do not depend on the
actual results yi ⇒ very useful when planning the experiment...
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Linear Regression

Linear fit example
Fitting Fourier series to example data set

y(x) =
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Linear Regression

Linear fit example
Fitting Fourier series to example data set

y(x) = a0 + a1 sin(x) + a2 cos(x)
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Linear Regression

Linear fit example
Fitting Fourier series to example data set

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 2

A.F.Żarnecki Statictical analysis 07 December 01, 2022 42 / 50



Linear Regression

Linear fit example
Fitting Fourier series to example data set Probably optimal choice

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 3
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Linear Regression

Linear fit example
Fitting Fourier series to example data set “Overtraining”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 4
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Linear Regression

Linear fit example
Fitting Fourier series to example data set “Overtraining”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 5
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Linear Regression

Linear fit example
Fitting Fourier series to example data set “Overtraining”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 6

A.F.Żarnecki Statictical analysis 07 December 01, 2022 42 / 50



Linear Regression

Best fit choice?
If the functional dependence is not predicted by any theory/model, we can
try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained χ2

Adding new parameter results in only moderate χ2 decrease, O(1)
Parameters become highly correlated
Values and errors of the individual parameters increase
differences of large contributions
Additional parameters are consistent with zero
Fit starts to follow fluctuations of the measurement results
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Linear Regression

Best fit choice?
Example of fit with too high polynomial order
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Linear Regression

Best fit choice?
Example of fit with proper polynomial order
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Linear Regression

Learning on errors
When “wrong” set of functions (highly correlated) is selected...

y(x) = a0 + a1 sin(x) + a2 cos(x)
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y(x) = a0 +
M∑
n=1

a2n−1 sinn(x) + a2n cosn(x) M = 2
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When “wrong” set of functions (highly correlated) is selected...

y(x) = a0 +
M∑
n=1

a2n−1 sinn(x) + a2n cosn(x) M = 3
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Linear Regression

Learning on errors
When “wrong” set of functions (highly correlated) is selected...

y(x) = a0 +
M∑
n=1

a2n−1 sinn(x) + a2n cosn(x) M = 4
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Linear Regression

Learning on errors
When “wrong” set of functions (highly correlated) is selected...

y(x) = a0 +
M∑
n=1

a2n−1 sinn(x) + a2n cosn(x) M = 5

A.F.Żarnecki Statictical analysis 07 December 01, 2022 45 / 50



Linear Regression

Polynomial fit example
For clarity of notation, it is convenient to change parameter numbering to
k , l = 0 . . .M (for polynomial fit of order M, M + 1 parameters).

Al k =
N∑
i=1

x
(l+k)
i

σ2
i

and bl =
N∑
i=1

x li yi
σ2
i

For uniform uncertainties it is then:

A = 1
σ2

N∑
i=1


1 xi . . . xMi

xi x2
i . . . xM+1

i

...
...

xMi xM+1
i . . . x2M

i

 b = 1
σ2

N∑
i=1


yi

yi xi

...

yi x
M
i


quite simple to implement...
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Linear Regression

Uncertainty estimate
The χ2 value at the minimum can be then calculated as:

χ̃2 = (y − µ(x; a))ᵀ A (y − µ(x; a))

Its distribution should correspond to the χ2 distribution for Ndf = N −M

If uncertainty is the same for all measurements, the extracted parameter
values are independent on it (!). We can use the calculated value of χ̃2 to
validate the model (test model hypothesis), but also to “correct” our
uncertainties, if we consider them unreliable (or they are unknown):

σ̃2 = σ2 χ̃2

N −M

This is useful in particular when χ̃2 � Ndf (overestimated σ)
For χ̃2 � Ndf we need to consider the possibility that our model is wrong...

A.F.Żarnecki Statictical analysis 07 December 01, 2022 47 / 50



Linear Regression

Uncertainty estimate
The χ2 value at the minimum can be then calculated as:

χ̃2 = (y − µ(x; a))ᵀ A (y − µ(x; a))

Its distribution should correspond to the χ2 distribution for Ndf = N −M

If uncertainty is the same for all measurements, the extracted parameter
values are independent on it (!).

We can use the calculated value of χ̃2 to
validate the model (test model hypothesis), but also to “correct” our
uncertainties, if we consider them unreliable (or they are unknown):

σ̃2 = σ2 χ̃2

N −M

This is useful in particular when χ̃2 � Ndf (overestimated σ)
For χ̃2 � Ndf we need to consider the possibility that our model is wrong...
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Linear Regression

Multiple independent variables
The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

µ(x , z ; a) =
M∑
k=0

M∑
l=0

akl x
k z l

All we need to do is to order the pairs of indexes, so that vector a is
properly defined. Example for M = 1 (2-D plane): a = (a00, a10, a01)

A = 1
σ2

N∑
i=1


1 x z

x x2 x z

z x z z2

 b = 1
σ2

N∑
i=1


y

y x

y z


where indexes i = 1 . . .N were skipped for variables xi , yi and zi
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Homework

Homework Solutions to be uploaded by December 15.

Download the set of data from the lecture home page.

Use linear regression method to fit polynomial dependence to the data.

Select the order of polynomial, which is adequate for the description of the
data and give arguments for your choice.
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