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Lecture 08
December 08, 2022
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χ2 distribution

Maximum Likelihood Method see lectures 04 and 05

Let us consider N independent measurements of variable Y . Assuming
measurement fluctuations are described by Gaussian pdf, the likelihood
function is:

L =
N∏
i=1

G (yi ;µi , σi ) =
N∏
i=1

1
σi
√

2π
exp

(
−1

2
(yi − µi )2

σ2
i

)
Log-likelihood: assuming σi are known

` = −1
2
∑ (yi − µi )2

σ2
i

+ const

We can define

χ2 = −2 ` = −2 ln L =
N∑
i=1

(yi − µi )2

σ2
i

Maximum of (log-)likelihood function corresponds to minimum of χ2
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χ2 distribution

χ2 distribution
We conclude that distribution of χ2 is described by Gamma pdf with:

k = N

2 and λ = 1
2

Properties of the χ2 distribution (see lecture 02)

〈χ2〉 = k

λ
= N

V(χ2) = k

λ2 = 2N

√
V(χ2) = σχ2 =

√
2N

For small N, value of χ2 is a subject to large fluctuations...
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χ2 distribution

χ2 distribution
Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, χ2
max = N − 2 (!!!)
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χ2 distribution

Reduced χ2

When discussing consistency of large data samples it is often convenient to
use reduced χ2 value:

χ2
red = χ2

N

Distribution of χ2
red is again described by Gamma pdf with

k = N

2 and λ = N

2

Properties of the distribution:

〈χ2
red〉 = 1 V(χ2

red) = σ2
χ2
red

= 2
N
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Linear Regression

General case
We introduced χ2 in a very general form:

χ2 =
N∑
i=1

(yi − µi )2

σ2
i

where different µi and σi are possible for each of N measurement yi

It is quite often the case that values of µi depend on some controlled
variables xi and a smaller set of model parameters:

µi = µ(xi ; a)

we can then use the least-squares method to extract the best estimates of
parameters a from the collected set of data points (xi , yi )

We can look for minimum of χ2 using different numerical algorithms...
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Linear Regression

Linear case
The case which is particularly interesting is when the dependence is linear
in parameters (!):

µ(x ; a) =
M∑
k=1

ak fk(x)

where fk(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:

fk(x) = xk ⇒ µ(x ; a) =
M∑
k=1

ak xk−1

but any set of functions can be used, if they are not linearly dependent.
Functions ortogonal on given set of points xi should work best...
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Linear Regression

Parameter fit Bonamente

We obtain a set of M equations for M parameters ai :
N∑
i=1

fl(xi )
σ2
i

(
yi −

M∑
k=1

ak fk(x)
)

= 0 l = 1 . . .M

which can be rewritten as:
M∑
k=1

(
N∑
i=1

fl(xi ) fk(xi )
σ2
i

)
ak =

N∑
i=1

fl(xi ) yi
σ2
i

or in the matrix form:
A · a = b

where Alk =
N∑
i=1

fl(xi ) fk(xi )
σ2
i

and bl =
N∑
i=1

fl(xi ) yi
σ2
i
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Linear Regression

Parameter fit
Solution of this set of equations can be obtained by inverting matrix A

a = A−1 · b

This also gives us the estimate of parameter covariance matrix:

Ca =
(
− ∂2`

∂al ∂ak

)−1
=
(

1
2
∂2χ2

∂al ∂ak

)−1
= A−1

One can write

Ca =
(

N∑
i=1

fl(xi ) fk(xi )
σ2
i

)−1

Expected uncertainties of the extracted parameter values depend on the
choice of measurement points xi but, surprisingly, do not depend on the
actual results yi ⇒ very useful when planning the experiment...
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Linear Regression

Polynomial fit example
For clarity of notation, it is convenient to change parameter numbering to
k , l = 0 . . .M (for polynomial fit of order M, M + 1 parameters).

Al k =
N∑
i=1

x
(l+k)
i

σ2
i

and bl =
N∑
i=1

x li yi
σ2
i

For uniform uncertainties it is then:

A = 1
σ2

N∑
i=1


1 xi . . . xMi

xi x2
i . . . xM+1

i

...
...

xMi xM+1
i . . . x2M

i

 b = 1
σ2

N∑
i=1


yi

yi xi

...

yi x
M
i


quite simple to implement...
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Non-linear fit procedure

General case
We consider χ2 in a general form:

χ2(a) =
N∑
i=1

(yi − µi )2

σ2
i

where in general different σi are allowed for each of N measurements yi .

Values of µi depend on some controlled variables xi and a set of model
parameters a:

µi = µ(xi ; a)

We look for the best estimate of a, which should correspond to the global
minimum of χ2(a) for given set of data points (xi , yi ).

For linear problem, this minimum can be found directly... (lecture 07)

For non-linear problems, we need to use iterative procedures...
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Non-linear fit procedure

Iterative procedure (Brandt)

We start from some “initial guess” of parameter values a0.

Assuming small variations of the model parameters, a = a0 + δa, we can
expand χ2 in a series:

χ2(a) = χ2(a0)− b · (a− a0) + . . .

where b is the negative gradient of χ2:

b = −∇ χ2(a0) bj = −∂χ
2

∂aj
=

N∑
i=1

2(yi − µi )
σ2
i

· ∂µi
∂aj

Vector b defines the direction of steepest χ2 descent.
One of the possible procedures is to make a step in this direction:

a1 = a0 + ε b

with small ε > 0 and then repeat the whole procedure...
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Non-linear fit procedure

Iterative procedure (Brandt)

We can try to be “smarter”. Expanding χ2 to quadratic term:

χ2(a) = χ2(a0)− b · (a− a0) + 1
2(a− a0)ᵀA(a− a0) + . . .

where A is the so called Hessian matrix of second derivatives:

Ajk = ∂2χ2

∂aj ∂ak

∣∣∣∣
a=a0

≈
N∑
i=1

2
σ2
i

· ∂µi
∂aj
· ∂µi
∂ak

(neglecting
∂2µi
∂aj ∂ak

)

In this approximation, we can calculate the expected position of the χ2

minimum:
∇ χ2(a) = − b + A (a− a0) = 0

⇒ am = a0 + A−1b

and we can try to “jump” directly to the minimum...
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Non-linear fit procedure

Iterative procedure (Brandt)

Efficiency of the iterative procedure depends strongly on the model and
the data used, but also on the initial choice of model parameters a0.

If our “initial guess” is close to the true minimum, procedure based on
Hessian matrix inversion is very efficient and converges fast.
However, it can be unstable, if we start too far from the actual minimum...

Iterative procedure based on the gradient calculation only is much slower,
but it much more robust. It allows to find the minimum even when
starting from a parameter space point far away from it.

There are many different numerical algorithms for solving this problem,
and there is no universal “best choice”...

One of the main problems in minimization is that finding the minimum
does not guarantee that it is a global minimum...
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Non-linear fit procedure

Marquardt Minimization (Brandt)

One of the popular approaches, combining the two previously discussed:

ai+1 = ai + εb ai+1 = ai + A−1b

ai+1 = ai + (A + λ · I)−1 b

where λ is an additional parameter determining the performance of the
algorithm:

for λ� 1 we make a small step along the gradient direction
which corresponds to the gradient minimization with ε ≈ 1

λ

for λ� 1 we try to “jump” directly to the minimum position
Hessian matrix solution is reproduced for λ→ 0

The key element proposed by D.W.Marquardt (1963) was to use variable λ
parameter, adjusting its value to the results of the previous step...
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Non-linear fit procedure

Marquardt Minimization (Brandt)

The following algorithm can be used:
1 Take initial parameter values a0 resulting in χ2 value of χ2

0.
Assume λ0 = 0.01.

2 Calculate matrix A and vector b for current ai.
3 Calculate new parameter vector:

ai+1 = ai + (A + λi · I)−1 b
and calculate the corresponding value of χ2

i+1
4 Compare with the previous iteration:

If χ2
i+1 < χ2

i :
⇒ accept the new parameter set and decrease λ by factor 10
If χ2

i+1 ≥ χ2
i :

⇒ keep old parameter values (ai+1 = ai) and increase λ by factor 10
5 Iterate points 2–4 until required precision reached
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Non-linear fit procedure

Marquardt Minimization example
Fitting Fourier series to example data set

y(x) = a1 + a2 sin(a0 x) + a3 cos(a0 x)
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Non-linear fit procedure

Marquardt Minimization example
Fitting Fourier series to example data set

y(x) = a1 +
M∑
n=1

a2n sin(na0x) + a2n+1 cos(na0x) M = 2
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Non-linear fit procedure

Marquardt Minimization example
Fitting Fourier series to example data set
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Non-linear fit procedure

Marquardt Minimization example
Fitting Fourier series to example data set

y(x) = a1 +
M∑
n=1

a2n sin(na0x) + a2n+1 cos(na0x) M = 5
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Non-linear fit procedure

Marquardt Minimization example
Fit converges fast when the initial values are “correct” (a0 = 3)

y(x) = a1 + a2 sin(a0 x) + a3 cos(a0 x)
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Non-linear fit procedure

Marquardt Minimization example
Much slower convergence when the initial values are “wrong” (a0 = 6)

y(x) = a1 + a2 sin(a0 x) + a3 cos(a0 x)
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Non-linear fit procedure

Marquardt Minimization example
“Wrong” initial values can result in incorrect result (a0 = 6)

y(x) = a1 +
2∑

n=1
a2n sin(na0x) + a2n+1 cos(na0x)
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A.F.Żarnecki Statictical analysis 08 December 08, 2022 22 / 53



Non-linear fit procedure

Marquardt Minimization example
“Wrong” initial values can result in incorrect result (a0 = 6)

y(x) = a1 +
2∑

n=1
a2n sin(na0x) + a2n+1 cos(na0x)
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Non-linear fit procedure

Marquardt Minimization example
Result of the same fit with “correct” initial values (a0 = 3)

y(x) = a1 +
2∑

n=1
a2n sin(na0x) + a2n+1 cos(na0x)
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Non-linear fit procedure

Using derivatives
There are many different algorithms with multiple implementations
(libraries and programs) for least-square fits of model parameters.

However, general algorithms need to be based on numerical calculation of
model function derivatives.

Using dedicated code, with analytical derivative calculation (as in the
presented examples) has advantages:

number of calls to model function significantly reduced (speed)
better precision of derivatives/numerical stability
possibility to tune fit performance to particular needs
to further improve fit efficiency

When large number of fits is to be performed to similar sets of data, one
should consider implementing his/hers own fit procedure...
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Statistical analysis of experimental data

Least-squares method (2)

1 Non-linear fit procedure

2 F -test

3 Constrained fit

4 Homework
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F -test
Comparison of variances
If the precision of the measurement is known, we can calculate the χ2

value resulting from the fit (or arithmetic averaging in the simplest case) to
verify the consistency of the procedure (uncertainty estimate in particular).

However, we can also try to compare two independent series of
measurements to check, if they are consistent. We can do it even, if our
estimate of experimental uncertainties is not very reliable.

One can also consider it as a way to compare two different estimates of
the variance of the measurement, and check if they are compatible.

We define the random variable F as: introduced by R.A.Fisher in 1924

F = χ2
1/N1
χ2

2/N2

where χ2
1 and χ2

2 are χ2 values (or sample variances if we set σ ≡ 1) of
the two independent measurements with N1 and N2 degrees of freedom.
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F -test

F variable distribution
Distribution of the Fisher’s F variable is given by:

f (F ;N1,N2) = A(N1,N2) F
N1
2 −1

(
1 + N1

N2
F

)−N1+N2
2

Expected (mean) value of F is slightly above one:

〈F 〉 = N2
N2 − 2 N2 > 2

and the variance is:

V(F ) 2
N1

· N2
2 (N1 + N2 − 2)

(N2 − 2)2(N2 − 4)

(for N2 � N1 given by the variance of the reduced χ2 with N1 d.o.f.)
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F -test

F variable distribution
Example distributions of the Fisher’s F variable
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F -test

F variable distribution
Example distributions of the Fisher’s F variable

Significant tail towards high values, even for relatively large N1,N2
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F -test

F -test
When the calculated value of F is large, F � 1, we can conclude that the
two considered data sets are not consistent...

However, we need to be careful, as large fluctuations possible!

Conclusion can depend on the assumed confidence level for F , i.e. the
maximum probability we allow for given (or higher) value to result from
the statistical fluctuations in the (consistent) data sets.

We can define critical value of F , Fcrit , corresponding the the frequentist
upper limit for given confidence level CL:∫ Fcrit

0
dF f (F ) = CL

∫ +∞

Fcrit

dF f (F ) = 1− CL = p
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F -test

F -test (Brandt)

“Critical values” of F for small numbers of degrees of freedom N1 and N2
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F -test

F -test
Plot of “critical values” of F for N2 =10

Variations decresase with the size of the reference sample
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F -test

F -test
Plot of “critical values” of F for N2 =20

Variations decresase with the size of the reference sample
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F -test

F -test for fit model (Bonamente)

It turns out that the F variable can also be used to test our fit model.

Let us assume we have a model with m adjustable (free) parameters, which
we apply to the set of N data points. Are all model parameters relevant?

We can consider “reduced” version of model with m −∆m parameters.
It is clear that the resulting χ2 value will be larger:

χ2
(m−∆m) = χ2

(m) + ∆χ2

If reduced model is equivalent to the “full” one, distribution of ∆χ2 is
given by the χ2 distribution with ∆m degrees of freedom. We can test this
hypothesis by considering:

F = ∆χ2/∆m

χ2
(m)/(N −m)

where we need to note that χ2
(m) and ∆χ2 are independent.

A.F.Żarnecki Statictical analysis 08 December 08, 2022 32 / 53



F -test

F -test for fit model (Bonamente)

It turns out that the F variable can also be used to test our fit model.

Let us assume we have a model with m adjustable (free) parameters, which
we apply to the set of N data points. Are all model parameters relevant?

We can consider “reduced” version of model with m −∆m parameters.
It is clear that the resulting χ2 value will be larger:

χ2
(m−∆m) = χ2

(m) + ∆χ2

If reduced model is equivalent to the “full” one, distribution of ∆χ2 is
given by the χ2 distribution with ∆m degrees of freedom. We can test this
hypothesis by considering:

F = ∆χ2/∆m

χ2
(m)/(N −m)

where we need to note that χ2
(m) and ∆χ2 are independent.
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F -test

F -test for fit model
Example of F -test application. We try to fit the data with polynomial
background (3 parameters) and two Gaussian peaks (3+3 parameters).
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F -test

F -test for fit model
Example of F -test application. Is the second signal component really
needed?! Fit with one peak gives a reasonable description of the data.
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F -test

F -test for fit model
Example of F -test application.

N = 20 m = 9

∆m = 3

χ2
(m) ≈ 14.23 χ2

(m)/(N −m) ≈ 1.294

∆χ2 ≈ 14.33 ∆χ2/∆m ≈ 4.777

F ≈ 3.69
p ≈ 0.047

There is about 5% chance that the improvement in the fit result, when
adding the second signal component, was only due to the statistical
fluctuations in the data...
Second component fit result misleading: A2 = 4.950± 1.523 (3.25σ)
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F -test

F -test for fit model
Example (2). Significantly reduced measurement errors.
Fit with one signal component.
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F -test

F -test for fit model
Example (2). Significantly reduced measurement errors.
Fit with two signal components.
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F -test

F -test for fit model
Example (2) of F -test application.

N = 20 m = 9 ∆m = 3

χ2
(m) ≈ 9.34 χ2

(m)/(N −m) ≈ 0.849

∆χ2 ≈ 85.97 ∆χ2/∆m ≈ 28.66

F ≈ 33.75
p ≈ 8 · 10−6

corresponding to about 4.3 σ deviation...

Can not yet be claimed as discovery, but significant enough to be shown...

A.F.Żarnecki Statictical analysis 08 December 08, 2022 36 / 53



Statistical analysis of experimental data

Least-squares method (2)

1 Non-linear fit procedure

2 F -test

3 Constrained fit

4 Homework
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Constrained fit

Model constraints
Different quantities measured in our experiment can be related.

Relations, which are usually given in form of equations, can be due to
theoretical predictions, model assumptions or experimental constraints.
For example:

measurements of energy and momentum of the particle, are related
by the invariant mass formula E 2 = p2 + m2

contribution of different channels to the particle decays are related by
the total branching ration of 100%

contribution of different components to the measured distribution can
be constrained by the total normalization of the sample
distributions can be constrained by the acceptance of the detector
we can make additional assumptions regarding eg. symmetry of the
distribution or asymptotic behavior
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Constrained fit

Model constraints
We consider set of N measurement points (xi , yi ), which can be compared
to model predictions depending on parameters a in terms of the χ2 value:

χ2(a) =
N∑
i=1

(yi − µ(xi , a))2

σ2
i

Best estimate of a should correspond to the minimum of χ2(a).

However, we now need to look for this minimum taking set of additional
constraints into account:

wk(a) = 0 k = 1 . . .K

where number of constraints K should be lower than number of
parameters M.

How can we find the best parameter values in this case?
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Constrained fit

Model reduction
The first approach is to reduce number of model parameters, using
constraints to eliminate some of the model variables.
We thus reduce the problem with M model parameters to problem with
M ′ = M − K independent parameters. (method of elements)

Example
We would like to fit polynomial model to a series of measurements where
the polar angle θ ∈ [−π,+π] is the controlled variable:

µ(x ; a) =
M−1∑
k=0

ak

(
θ

π

)k

=
∑
k

ak xk

where we introduced x = θ
π for simplicity.

And we expect that the distribution should vanish for θ → ±π:

µ(−1; a) = µ(+1; a) = 0 K = 2
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Constrained fit
Model reduction example
Our constraints give us direct relations between model parameters:

µ(+1; a) =
∑
k

ak (+1)k = 0

µ(−1; a) =
∑
k

ak (−1)k = 0

We can add and subtract these two equations to obtain:∑
k=0,2,4...

ak = 0 and
∑

k=1,3,5...
ak = 0

⇒ we have independent constrains on even and odd parameters.

We can reduce number of parameters to M ′ = M − 2 by writing
parameters for two highest terms (for even M) as:

aM−2 = −
M−4∑

k=0,2,4...
ak and aM−1 = −

M−3∑
k=1,3,5...

ak
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Constrained fit

Model reduction example
Example polynomial fit without and with model constraints

µ(−1) = µ(+1) = 0

3rd order polynomial not describing data at all
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Constrained fit

Model reduction example
Example polynomial fit without and with model constraints

µ(−1) = µ(+1) = 0

4th order polynomial fit still not satisfactory...
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Constrained fit

Model reduction example
Example polynomial fit without and with model constraints

µ(−1) = µ(+1) = 0

Reasonable description of the data.
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Constrained fit

Model reduction example
Example polynomial fit without and with model constraints

µ(−1) = µ(+1) = 0

Even better description of the data. Constraints hardly affect the fit...
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Constrained fit

Model reduction example
Example polynomial fit without and with model constraints
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Constrained fit

Model reduction test for linear constraints !

We can use F -test to verify, if data are consistent with constraints.

We follow the procedure described previously: we have a model with m free
parameters and ∆m constraints, which we test on the set of N data points

Constrained (“reduced”) model has m −∆m parameters and results in
higher χ2:

∆χ2 = χ2
reduced − χ2

full ≥ 0

To test if the reduced model is equivalent to the “full” one, we consider:

F = ∆χ2/∆m

χ2
full/(N −m)

and p =
∫ +∞

F
dF ′ f (F ′)

p value (indicated in the plots) describe the probability of given χ2

change (when imposing constraints) due to statistical fluctuations only.
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Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints,
to inconsistent data set

(generated with µ(−1) = µ(+1) = 0.05)

3rd order polynomial not describing data at all
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Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints,
to inconsistent data set

(generated with µ(−1) = µ(+1) = 0.05)

Reasonable description of the data only without constraints...
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Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints,
to inconsistent data set (generated with µ(−1) = µ(+1) = 0.05)

p value indicates that data is not consistent with constraints...
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Constrained fit

Model reduction example (2)
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A.F.Żarnecki Statictical analysis 08 December 08, 2022 44 / 53



Constrained fit

Model reduction
After fitting the reduced model, constraints can be used to extract values
of eliminated parameters and their uncertainties can be calculated from
standard error propagation...

When trying to reduce the number of parameters, one should consider
redefining the parameter basis in such a way that constraints depend only
on selected parameters. Can be essential for numerical stability...

However, elimination of variables is not always possible or can result in
problems with minimization / numerical instabilities.

Also, when iterative fit procedure is to be used, initial parameter values
should be “guessed”, but imposing constraints “by hand” can be difficult.

⇒ while model reduction is a preferred solution, resulting in higher fit
efficiency in most cases, we need an alternative...
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standard error propagation...

When trying to reduce the number of parameters, one should consider
redefining the parameter basis in such a way that constraints depend only
on selected parameters. Can be essential for numerical stability...

However, elimination of variables is not always possible or can result in
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Constrained fit

Method of Lagrange Multipliers (Behnke)

The method, invented by J.L.Lagrange in 1788, applies to general
minimization problem with additional constraints imposed.

Problem of finding minimum of χ2 (a) with constraints wk(a) = 0 is
equivalent to finding a stationary point (point with all first derivatives at
zero) of the Lagrange function:

L(a,λ) = χ2(a) +
∑
k

2λkwk(a)

where we introduce additional K parameters λk - Lagrange multipliers

Our problem is now reduced to finding parameters a and λ fulfilling
∂L
∂aj

= 0 and ∂L
∂λk

= 0

(without any additional constraints)
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Constrained fit

Method of Lagrange Multipliers
Writing the full formula for L: µi = µ(xi ; a)

L(a,λ) =
N∑
i=1

(yi − µi )2

σ2
i

+
K∑

k=1
2 λk wk(a)

We obtain a set of M + K equations for the same number of parameters:

∂L
∂aj

= −2
N∑
i=1

(yi − µi )
σ2
i

∂µi
∂aj

+ 2
K∑

k=1
λk

∂wk

∂aj
j = 1 . . .M

∂L
∂λk

= 2 wk(a) = 0 k = 1 . . .K

Adding constraints modifies the resulting system of equation for a...
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Constrained fit

Method of Lagrange Multipliers
Let us consider the linear problem (linear in a):

µ(x ; a) =
M∑
j=1

aj fj(x) and wk(a) =
M∑
j=1

dk, j aj − ck

Our set of equations can be now presented as:

M∑
j=1

(
N∑
i=1

fl(xi ) fk(xi )
σ2
i

)
aj +

K∑
k=1

dk, l λk =
N∑
i=1

fl(xi ) yi
σ2
i

l = 1 . . .M

M∑
j=1

dk, j aj = ck k = 1 . . .K
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Constrained fit

Method of Lagrange Multipliers
We can write these equations the matrix form: A D

Dᵀ 0

 ·
 a

λ

 =

 b

c


Ã

where: Ajk =
N∑
i=1

fj(xi ) fk(xi )
σ2
i

, Djk = dk, j and bj =
N∑
i=1

fj(xi ) yi
σ2
i

and the problem can be solved by inverting matrix Ã.

Covariance matrix for a can be extracted as:

(Ca)ij = (Ã−1)ij i , j = 1 . . .M

(seems to work for linear problems).
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Constrained fit

Lagrange Multipliers example
Fitting sin(πx) with polynomial. Constraints: µ(−1) = µ(0) = µ(+1) = 0.

3rd order polynomial
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Constrained fit

Lagrange Multipliers example
Fitting sin(πx) with polynomial. Constraints: µ(−1) = µ(0) = µ(+1) = 0.

No improvement adding x4 term...
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Constrained fit

Lagrange Multipliers example
Fitting sin(πx) with polynomial. Constraints: µ(−1) = µ(0) = µ(+1) = 0.

Good description when x5 term included...
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Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

3rd order polynomial
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Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

With x4 term Perfect agreement between two constrain approaches
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Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Good description for 5th order polynomial...
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Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Constraints hardly affecting the fit for 7th order polynomial...
A.F.Żarnecki Statictical analysis 08 December 08, 2022 51 / 53



Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Unconstrained fit more sensitive to statistical fluctuations...
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Statistical analysis of experimental data

Least-squares method (2)

1 Non-linear fit procedure

2 F -test

3 Constrained fit

4 Homework
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Homework

Homework Solutions to be uploaded by December 22.

Consider outcome of the experiment, as illustrated in the figure.
N = 8 measurements generated from uniform background model (µ = 5, σ = 0.1)

Results can be compared to
background only model and
to background+signal:

µb = A

µb+s = B + C · sin(πx)

• Estimate probability of fitted C value deviating from zero by more than 3σ

• Verify estimate with simulation Hint: A and Ca do not depend on yi
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