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Non-linear fit procedure

Iterative procedure (Brandt)

We start from some “initial guess” of parameter values a0.

Assuming small variations of the model parameters, a = a0 + δa, we can
expand χ2 in a series:

χ2(a) = χ2(a0)− b · (a− a0) + . . .

where b is the negative gradient of χ2:

b = −∇ χ2(a0) bj = −∂χ
2

∂aj
=

N∑
i=1

2(yi − µi )
σ2
i

· ∂µi
∂aj

Vector b defines the direction of steepest χ2 descent.
One of the possible procedures is to make a step in this direction:

a1 = a0 + ε b

with small ε > 0 and then repeat the whole procedure...
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Non-linear fit procedure

Iterative procedure (Brandt)

We can try to be “smarter”. Expanding χ2 to quadratic term:

χ2(a) = χ2(a0)− b · (a− a0) + 1
2(a− a0)ᵀA(a− a0) + . . .

where A is the so called Hessian matrix of second derivatives:

Ajk = ∂2χ2

∂aj ∂ak

∣∣∣∣
a=a0

≈
N∑
i=1

2
σ2
i

· ∂µi
∂aj
· ∂µi
∂ak

(neglecting
∂2µi
∂aj ∂ak

)

In this approximation, we can calculate the expected position of the χ2

minimum:
∇ χ2(a) = − b + A (a− a0) = 0

⇒ am = a0 + A−1b

and we can try to “jump” directly to the minimum...
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Non-linear fit procedure

Marquardt Minimization (Brandt)

One of the popular approaches, combining the two previously discussed:

ai+1 = ai + (A + λ · I)−1 b

where λ is an additional parameter determining the performance of the
algorithm:

for λ� 1 we make a small step along the gradient direction
which corresponds to the gradient minimization with ε ≈ 1

λ

for λ� 1 we try to “jump” directly to the minimum position
Hessian matrix solution is reproduced for λ→ 0

The key element proposed by D.W.Marquardt (1963) was to use variable λ
parameter, adjusting its value to the results of the previous step...

A.F.Żarnecki Statictical analysis 09 December 15, 2022 5 / 56



F -test
Comparison of variances
If the precision of the measurement is known, we can calculate the χ2

value resulting from the fit (or arithmetic averaging in the simplest case) to
verify the consistency of the procedure (uncertainty estimate in particular).

However, we can also try to compare two independent series of
measurements to check, if they are consistent. We can do it even, if our
estimate of experimental uncertainties is not very reliable.

One can also consider it as a way to compare two different estimates of
the variance of the measurement, and check if they are compatible.

We define the random variable F as: introduced by R.A.Fisher in 1924

F = χ2
1/N1
χ2

2/N2

where χ2
1 and χ2

2 are χ2 values (or sample variances if we set σ ≡ 1) of
the two independent measurements with N1 and N2 degrees of freedom.
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F -test

F variable distribution
Example distributions of the Fisher’s F variable

Significant tail towards high values, even for relatively large N1,N2
A.F.Żarnecki Statictical analysis 09 December 15, 2022 7 / 56



F -test

F -test
Plot of “critical values” of F for N2 =20

Variations decresase with the size of the reference sample
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F -test

F -test for fit model (Bonamente)

It turns out that the F variable can also be used to test our fit model.

Let us assume we have a model with m adjustable (free) parameters, which
we apply to the set of N data points. Are all model parameters relevant?

We can consider “reduced” version of model with m −∆m parameters.
It is clear that the resulting χ2 value will be larger:

χ2
(m−∆m) = χ2

(m) + ∆χ2

If reduced model is equivalent to the “full” one, distribution of ∆χ2 is
given by the χ2 distribution with ∆m degrees of freedom. We can test this
hypothesis by considering:

F = ∆χ2/∆m

χ2
(m)/(N −m)

where we need to note that χ2
(m) and ∆χ2 are independent.
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F -test

F -test for fit model
Example of F -test application. We try to fit the data with polynomial
background (3 parameters) and two Gaussian peaks (3+3 parameters).
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Constrained fit

Model constraints
We consider set of N measurement points (xi , yi ), which can be compared
to model predictions depending on parameters a in terms of the χ2 value:

χ2(a) =
N∑
i=1

(yi − µ(xi , a))2

σ2
i

Best estimate of a should correspond to the minimum of χ2(a).

However, we now need to look for this minimum taking set of additional
constraints into account:

wk(a) = 0 k = 1 . . .K

where number of constraints K should be lower than number of
parameters M.

How can we find the best parameter values in this case?
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Constrained fit

Model reduction
The first approach is to reduce number of model parameters, using
constraints to eliminate some of the model variables.
We thus reduce the problem with M model parameters to problem with
M ′ = M − K independent parameters. (method of elements)

Example
We would like to fit polynomial model to a series of measurements where
the polar angle θ ∈ [−π,+π] is the controlled variable:

µ(x ; a) =
M−1∑
k=0

ak

(
θ

π

)k

=
∑
k

ak xk

where we introduced x = θ
π for simplicity.

And we expect that the distribution should vanish for θ → ±π:

µ(−1; a) = µ(+1; a) = 0 K = 2
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Constrained fit

Method of Lagrange Multipliers (Behnke)

The method, invented by J.L.Lagrange in 1788, applies to general
minimization problem with additional constraints imposed.

Problem of finding minimum of χ2 (a) with constraints wk(a) = 0 is
equivalent to finding a stationary point (point with all first derivatives at
zero) of the Lagrange function:

L(a,λ) = χ2(a) +
∑
k

2λkwk(a)

where we introduce additional K parameters λk - Lagrange multipliers

Our problem is now reduced to finding parameters a and λ fulfilling
∂L
∂aj

= 0 and ∂L
∂λk

= 0

(without any additional constraints)
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Constrained fit

Method of Lagrange Multipliers
We can write these equations the matrix form: A D

Dᵀ 0

 ·
 a

λ

 =

 b

c


Ã

where: Ajk =
N∑
i=1

fj(xi ) fk(xi )
σ2
i

, Djk = dk, j and bj =
N∑
i=1

fj(xi ) yi
σ2
i

and the problem can be solved by inverting matrix Ã.

Covariance matrix for a can be extracted as:

(Ca)ij = (Ã−1)ij i , j = 1 . . .M

(seems to work for linear problems).
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Systematic effects

Statistical uncertainties
We have considered numerical results of experiments as random variables.

Probability to obtain given numerical result was described by PDF.
Results of a repeated experiment were considered as independent variables.

Uncertainties of the results were related to the fluctuations in the
measurement, which can be due to (lecture 01)

actual nature of the physics process studied
eg. exponential distribution for decay time measurement
finite precision of our instruments
eg. precision with which decay time is measured in the detector
inhomogeneity of the population studied
eg. different particles/isotopes in the considered sample

Uncertainties related to fluctuations of the individual measurement results
are usually referred to as statistical uncertainties.
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Systematic effects

Systematic uncertainties
Particle physics experiments are quite complex, and so is the data analysis.
We frequently use Monte Carlo methods to correct for different effects.

Simplest example is the (differential) cross section measurement:

σi = Ni

εi Ai L

where: Ni is the measured number of events (in given bin i), ε - event
selection efficiency, A - detector acceptance and L - integrated luminosity.

Statistical uncertainty of the extracted cross section value is due to the
Poisson fluctuations in the number of reconstructed events.

But we also need to take into account that other factors (εi , Ai , L) are
also known with finite precision ⇒ systematic uncertainties
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Systematic effects

Sources of systematic uncertainties
One needs to distinguish between systematic effect/error and uncertainty!

(Bonamente) The term systematic error designates sources of error that
systematically shift the signal of interest either too high or too low.
Sources of systematic errors need to be identified to correct the erroneous
offset. A typical example is an instrument that is miscalibrated and
systematically reports measurements that have an erroneous offset.

(Barlow; quotes after J. Orear, Notes on Statistics for Physicists)
”Systematic effects” is a general category which includes effects such as
background, selection bias, scanning efficiency, energy resolution, angle
resolution, variation of counter efficiency with beam position and energy,
dead time, etc.

Systematic effects are not a problem, if we understand them and know
how to model them precisely (correct the final result for systematic error).

A.F.Żarnecki Statictical analysis 09 December 15, 2022 18 / 56

http://ned.ipac.caltech.edu/level5/Sept01/Orear/Orear.html


Systematic effects

Sources of systematic uncertainties
One needs to distinguish between systematic effect/error and uncertainty!

(Bonamente) The term systematic error designates sources of error that
systematically shift the signal of interest either too high or too low.
Sources of systematic errors need to be identified to correct the erroneous
offset. A typical example is an instrument that is miscalibrated and
systematically reports measurements that have an erroneous offset.

(Barlow; quotes after J. Orear, Notes on Statistics for Physicists)
”Systematic effects” is a general category which includes effects such as
background, selection bias, scanning efficiency, energy resolution, angle
resolution, variation of counter efficiency with beam position and energy,
dead time, etc.

Systematic effects are not a problem, if we understand them and know
how to model them precisely (correct the final result for systematic error).
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Systematic effects

Sources of systematic uncertainties
Systematic uncertainty is the uncertainty in the estimation of systematics.

(O.Behnke et. al, Data Analysis in High Enegy Physics)
Systematic uncertainties: all uncertainties that are not due to statistical
fluctuations in real or simulated data samples.

Systematic effects and their uncertainties are often estimated based on
separate, independent experiments. This is the case for both the
experimental uncertainties (eg. detector calibration, alignment) as well as
those related to the theoretical model (eg. value of the coupling
parameter, particle masses, assumed cross sections).

The maximum-likelihood approach can be used to estimate the impact of
systematic effect and the resulting uncertainty of the measurement.
Likelihood function of the procedure used to constrain the systematic
effect should be folded into the likelihood function of the main experiment.
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Systematic effects

Systematic uncertainties
In our simple example of cross section measurement:

σi = Ni

εi Ai L
the statistical uncertainty on σi is due to Poisson fluctuations in Ni :

σstat = σNi

εi Ai L
=

√
Ni

εi Ai L
= σi√

Ni

Uncertainty on εi Ai can result from many different sources (including eg.
energy calibration), but one should also take into account contribution
from the finite statistics of the Monte Carlo events: ri = εi Ai

σri =
√

ri (1− ri )
NMC

(binomial distribution)

where NMC is the total number of Monte Carlo events (before selection)
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Systematic effects

Systematic uncertainties
The resulting systematic uncertainty on the cross section measurement:

σsys(MC) = σi ·
σri
ri

= σi ·
√

1− ri
ri NMC

= σi ·
√

1− ri

NMC
i

where NMC
i is the number of MC events accepted in cross section bin i .

Uncertainties due to MC statistics are not correlated between bins!

Systematic uncertainty due to integrated luminosity measurement:

σsys(L) = σi ·
σL
L

is 100% correlated between different cross section measurements (bins).

In general, arbitrary level of correlation (when more than one effect is
taken into account) is possible for systematic uncertainties...
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Estimating systematic uncertainties

Extended model
We considered outcome of our experiment yi as a random variable with
given probability density function (usually assumed to be Gaussian)

f (yi ) = G (yi ;µi , σi )

where, in the general case, the uncertainty of the measurement was given
by the (square root of) the variance of the distribution:

σ2
(stat) i = V(yi ) = 〈(yi − µi )2〉

This is how we can define the statistical uncertainty: uncertainty of the
measurement when the expected value (and other parameters of pdf) are
precisely known:

µi = µ(xi ; a)

with controlled variable xi and all model parameters a fixed.
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A.F.Żarnecki Statictical analysis 09 December 15, 2022 23 / 56



Estimating systematic uncertainties

Extended model
To describe systematic effects, we need to introduce additional parameters
in the model:

µi = µ(xi ; a, s)

where parameters sj describe different sources of systematic uncertainty.

We usually assume some nominal, expected values of these parameters, s0.
Uncertainties of these parameters, σs, are then what contributes to the
systematic uncertainty of our measurements:

µi = µ(xi ; a, s) = µ(xi ; a, s0) +
∑
j

∂µi
∂sj
· (sj − s0, j)

µi = µ0(xi ; a) +
∑
j

∂µi
∂sj

σsj · δj δj = sj − s0, j
σsj

where we introduce variations δj scaled to unit normal distribution (µ = 0, σ = 1)
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Estimating systematic uncertainties

Extended model
Assuming there is no systematic bias in the measurement (or we already
corrected for it), averaging over s we should get:

E(µi ) = µ0(xi ; a)

what follows is: yi − µi = (yi − µ0, i ) + (µ0, i − µi )

V(yi ) = 〈(yi − µi )2〉 = 〈(yi − µ0, i )2〉 + 〈(µi − µ0, i )2〉

σ2
yi

= σ2
(stat) i + σ2

(sys) i

= σ2
(stat) i +

∑
j

(
∂µi
∂sj

)2
σ2
sj

where we assume independent sources of systematic variations.
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Estimating systematic uncertainties

Extended model
Covariance matrix for the series of measurements yi :

Cy = E((yi − µi )(yj − µj))

yi − µi = (yi − µ0, i ) + (µ0, i − µi )

= E((yi − µ0, i )(yj − µ0, j)) + E((µi − µ0, i )(µj − µ0, j))

where mixed terms vanish, as systematic variations and
statistical fluctuations are independent

= C(stat)
y + C(sys)

y

where covariance matrix for
statistical uncertainties is diagonal:

C(stat)
ij =

{
σ2

(stat) i for i = j

0 i 6= j

statistical fluctuations are independent

systematic uncertainties result in
correlations of expectations:

C(sys)
ij =

∑
k

(
∂µi
∂sk

)(
∂µj
∂sk

)
σ2
sk

We can no longer treat
measurements as independent...
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Estimating systematic uncertainties

Example measurement already discussed in lecture 05
SM predictions from HERA
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Combined QCD+EW analysis shows
good agreement with SM predictions

Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628

How were systematic uncertainties on the SM predictions calculated?
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Estimating systematic uncertainties

Example
Let us focus on the “PDF uncertainties”, i.e. uncertainties related to our
knowledge of the Parton Distribution Functions (PDF) of the proton.

Cross section for NC and CC DIS e±p scattering are given in terms of the
quark density functions. In the leading order:

d2σe
±p

CC

dxdQ2 =
G 2
F

4π

(
M2

W

M2
W + Q2

)2


u + c + (1− y)2(d̄ + s̄ + b̄) for e−p

(1− y)2(d + s + b) + ū + c̄ for e+p

where u, d , s, c , b are quark densities (ū, d̄ . . . - antiquark) in the proton,
extracted by fitting QCD evolution equations to the large set of data from
many different experiments (not only DIS).

However, one has to take into account uncertainties of the input data, as
well as uncertainties related to different assumptions in the fit...
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Estimating systematic uncertainties

Example
Considered analysis of HERA data was based on the QCD fit results
implemented in EPDFLIB library (M.Botje).

It provided not only the nominal parton density values, but also density
values corresponding to variations of different “systematic parameters”.
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down (dashed) variation of different parameters.
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Estimating systematic uncertainties

Example
Correlation matrix for the expected high Q2 NC DIS cross sections:
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Must be taken into account when we compare our data to SM predictions
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Estimating systematic uncertainties

General remarks
One could think that obtaining the proper final result from the analysis
(including estimate of the statistical uncertainty of the result) is most
important and most difficult. We are almost done...

In many cases, proper estimate of systematic uncertainties turn out to be
much more difficult and more time consuming than the “nominal study”.

This is also because there is no “default solution” to the problem.
One should consider all possible systematic effects, sources of systematic
uncertainties, which could affect the measurement.

Each variable you use in your formula or your analysis code should be
considered as a potential source of uncertainty.

But one should also be careful not to overestimate the uncertainties!
Need to distinguish “systematic variations” and “systematic checks”...
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Estimating systematic uncertainties

Systematic checks
Usually, there are many parameters in the theoretical model or in the
detector descriptions which are known with finite precision.
This is the source of systematic uncertainties.
And systematic bias, if our estimates of these parameters are wrong.

But there are also many parameters, which we put “by hand”, i.e.
reconstruction method, selection cuts. There are also many choices, which
one can make, i.e. of the proton PDF library.

Final result of our analysis should not depend on these choice, if our
approach is valid, but some variations can occur.

One should be very careful! These variations are often due to the finite
MC statistics. One should not include them in the systematic uncertainty
estimate.
Otherwise, systematic uncertainties can easily “explode” if we use large
number of “systematic checks”...
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Statistical analysis of experimental data

Systemactic uncertainities

1 Systematic effects

2 Estimating systematic uncertainties

3 Including systematic effects

4 Reducing variables

5 Homework
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Including systematic effects

Example (Toy model)

An experiment is designed to measure an unknown parameter η.

Two measurements are considered (different experiment configurations)
corresponding to two random variables x and y related to the physics
parameter η :

xtrue = a + η

ytrue = a + 2 · η

where a is the background contribution predicted by theory.
Both variables are measured with the same statistical precision σstat

We can find the optimum way of extracting η by writing down:

χ2(η) =
(
x − a− η
σstat

)2
+
(
y − a− 2η

σstat

)2
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Including systematic effects

Example
Looking at the minimum of χ2 we find:

0 = ∂χ2

∂η
= − 2

σ2
stat

(
x − a− η + 2(y − a− 2η)

)

⇒ 5η = x + 2y − 3a ⇒ η = 1
5 x + 2

5 y − 3
5 a

This result is not surprising, if we realize that η can be extracted from x
and y independently:

η(x) = x − a and η(y) = 1
2(y − a)

ση(x) = σstat ση(y) = 1
2 σstat

and minimum of χ2 corresponds to the weighted average of the two
measurements, with uncertainty: σy = 1√

5 σstat
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Including systematic effects

Example
Let us now include systematic variation ∆sys of the background estimate
a, so that the expected results of the measurement are

〈x〉 = xtrue + ∆sys

〈y〉 = ytrue + ∆sys

We assume that systematic variation ∆sys has normal distribution with
zero mean (unbiased) and width given by σsys :

∆sys = δ · σsys
where variation δ has unit normal distribution (µ = 0, σ = 1)

First guess would be to include systematic uncertainty in the final results:

η = 1
5 x + 2

5 y − 3
5 a ⇒

σ2
y = 1

25σ
2
stat + 4

25σ
2
stat

+ 9
25σ

2
sysσ2

y = 1
5σ

2
stat

but is it the optimal procedure?
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Including systematic effects

Example
We should include systematic variation in global likelihood.
Assuming Gaussian uncertainties we get:

χ2(η, δ) =
(
x − a− η − δσsys

σstat

)2
+
(
y − a− 2η − δσsys

σstat

)2
+ δ2

where δ2 term corresponds to the likelihood of the systematic variation

We can calculate partial derivatives to get system of equations:

∂χ2

∂η
: 5η + 3σsysδ = x + 2y − 3a

∂χ2

∂δ
: 3σsysη + (2σ2

sys + σ2
stat)δ = (x + y − 2a)σsys

which we can solve to obtain:

η = (2 + f 2)y + (1− f 2)x − 3a
5 + f 2 where f = σsys

σstat
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Including systematic effects

Example
For small systematic uncertainties (σsys � σstat , f � 1)

η = (2 + f 2)y + (1− f 2)x − 3a
5 + f 2 → 2y + x − 3a

5
and we reproduce previous result.

However, if systematic uncertainties are large (σsys � σstat , f � 1)

η = (2 + f 2)y + (1− f 2)x − 3a
5 + f 2 → y − x

which also seems natural (systematic uncertainty cancels in y − x).

It is also interesting to note that for (σsys = σstat , f = 1), measurement of
x is not used:

η = (2 + f 2)y + (1− f 2)x − 3a
5 + f 2 = y − a

2
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Including systematic effects

Example
Weights of the two measurements and background estimate

η = wx x + wy y + wa a
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Including systematic effects

Example
How about uncertainty of the extracted η value?

We can obtain it from the covariance matrix:

C(η,δ) =
(

1
2
∂2χ2

∂al ∂ak

)−1
=

 5
σ2
stat

3σsys
σ2
stat

3σsys
σ2
stat

2σ2
sys

σ2
stat

+ 1

−1

The resulting uncertainty on η is:

ση = σstat

√
1 + 2f 2

5 + f 2

“simplified approach”

= σstat

√
1
5 + 9f 2

25 + 5f 2 ≤ σstat

√
1
5 + 9

25 f
2

for f →∞ →
√

2 σstat →∞
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Including systematic effects

General procedure
General procedure for including systematic uncertainties in the analysis is
to consider corresponding systematic shifts as additional model parameters

µi = µ(xi ; a, s)

χ2(a, s) =
N∑
i=1

(yi − µ(xi , a, s))2

σ2
i

+
K∑

k=1

(sk − s0, k)2

σ2
sk

χ2(a′) =
N∑
i=1

(yi − µ(xi , a′))2

σ2
i

+
K∑

k=1
δ2
k δk =

sk − s0, k
σsk

If systematic parameters are not independent (are correlated)

χ2(a′) =
N∑
i=1

(yi − µ(xi , a′))2

σ2
i

+
∑
k,j

(sk − s0, k)(sj − s0, j) (Cs)−1
j ,k
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Including systematic effects

General procedure
χ2 minimization procedure is basically unchanged, only the additional
terms (systematic constrains) need to be included in calculations (as for
the parameter constraints).
Negative gradient of χ2 uncorrelated systematics

bj = −∂χ
2

∂a′j
=

N∑
i=1

2(yi − µi )
σ2
i

· ∂µi
∂a′j
−

2(sj − s0, j)
σ2
sj

Hessian matrix of second derivatives:

Ajk = 1
2
∂2χ2

∂a′j ∂a
′
k

=
N∑
i=1

1
σ2
i

· ∂µi
∂a′j
· ∂µi
∂a′k

+

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Including systematic effects

General procedure
χ2 minimization procedure is basically unchanged, only the additional
terms (systematic constrains) need to be included in calculations (as for
the parameter constraints).
Negative gradient of χ2 general case

bj = −∂χ
2

∂a′j
=

N∑
i=1

2(yi − µi )
σ2
i

· ∂µi
∂a′j
− 2

∑
k

(sk − s0, k) (Cs)−1
j ,k

Hessian matrix of second derivatives:

Ajk = 1
2
∂2χ2

∂a′j ∂a
′
k

=
N∑
i=1

1
σ2
i

· ∂µi
∂a′j
· ∂µi
∂a′k

+ (Cs)−1
j ,k

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Including systematic effects

General procedure example
Fitting Gaussian peak on top of background (lecture 08)
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Including systematic effects

General procedure example
Fitting Gaussian peak on top of background (lecture 08)

Two peak fit is better, but improvement not very significant, p = 0.02
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Including systematic effects

General procedure example
Fitting Gaussian peak on top of background (lecture 08)

But we also see that background fit changes a lot...
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Including systematic effects

General procedure example
Suppose we can perform an independent background measurement with
higher precision and fit parameters of our background model
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Including systematic effects

General procedure example
We can now use parameters from the background fit in signal fit
same data sample as before
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Including systematic effects

General procedure example
We can now use parameters from the background fit in signal fit
same data sample as before

Second peak significance increase from 2.1σ to 4.3σ (p = 0.9 · 10−5)
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Statistical analysis of experimental data

Systemactic uncertainities

1 Systematic effects

2 Estimating systematic uncertainties

3 Including systematic effects

4 Reducing variables

5 Homework
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Reducing variables

Problem
In the general case, one can consider a huge number of systematic effects,
each will contribute to the final systematic uncertainty.

Number of systematic effects can be larger than the number of relevant
model parameters (which we want to extract) or even the number of
measurements.

Systematic uncertainties of our measurements are (in most cases)
correlated, so one needs to use the full covariance matrix.

Is there a way to simplify the problem?

Is there a way to reduce the number of systematic variations to consider?
This is also important when we want to model the experiment
(eg. with Monte Carlo methods)
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Reducing variables

Eigenvectors
Correlations between variables can be removed througth ’rotation’ in the
variable space.

µ
1

µ
2

∆
1

∆
2

⇒
µ

1

µ
2

v
1v

2

ε
1

ε
2

This is a problem of finding “eigenvectors” of the covariance matrix.
Directions such that:

Cs · v = σ2
v · v
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Reducing variables

Eigenvectors
Eigenvectors of the covariance matrix define “uncorrelated directions” in
the space of systematic parameter variations.

Variations along these directions are independent (uncorrelated).
We can redefine our systematic variables to remove correlations...

Eigenvalues
Eigenvalues give us the size of variations along given eigenvector (σ2

v)
⇒ we can tell what variations are most relevant

By identifying variations which give leading contributions to the covariance
matrix, we can limit number of variations considered in our problem.

Variations corresponding to eigenvectors with very small eigenvalues can
be safely ignored...

We assume eigenvectors are ordered from highest to lowest eigenvalue.
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Reducing variables

Eigenvectors
Let us consider uncertainties of the high Q2 NC DIS cross sections again.
Correlation matrix:
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PDF correlations between Q
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Reducing variables

Eigenvectors
Systematic variations corresponding to eigenvectors of correlation matrix:
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Variations relative to the nominal SM expectations
Dominant contribution from the first eigenvector...
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Reducing variables

Eigenvectors
Variations corresponding to the sum of eigenvector contributions:
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Variations relative to the nominal SM expectations

Four first eigenvectors perfectly reproduce total systematic uncertainty
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Reducing variables

Eigenvectors
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Reducing variables

Eigenvectors
Correlation matrix comparison:

Full matrix Four eigenvectors
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Correlations between variables also very well reproduced
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Reducing variables

Eigenvectors
Example problem: eigenvectors of background covariance matrix

Background expectations from the fit are correlated between points...
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Statistical analysis of experimental data

Systemactic uncertainities

1 Systematic effects

2 Estimating systematic uncertainties

3 Including systematic effects

4 Reducing variables

5 Homework
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Homework

Homework Solutions to be uploaded by January 12.

CLIC accelerator should allow to use polarized electron beam, Pe = ±0.8

Consider measurement of signal events in the presence of background,
which is polarization independent:

Nexp = L
(

σbg + (1− Pe) · σsig

)
(we assume A ε = 1 for simplicity).

Assume that polarization Pe is known with very high precision, the number
of events collected is large (Nexp � 1) and σsig of the same order that σbg

Calculate the optimal sharing of the total luminosity between runs with
negative and positive polarization, as a function of the theoretical
uncertainty on the background level, ∆ =

σσbg

σbg
(assumed to be Gaussian).

Discuss the asymptotic cases.

Optimal: resulting in most precise estimate of σsig
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