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Hypothesis Testing

Problem

So far, we focused on the problem of extracting model parameters from
the collected data sample. We used maximum likelihood approach
(or χ2 minimization, which is a special case).

However, what we often want to do is to “make choice”, discriminate
between two (or more) hypothesis based on the collected data.

We already addressed this problem (partially) when discussing limits
(lecture 06) and consistency of the fit (lecture 07).

The general formulation of the problem: how to discriminate between two
model hypothesis H0 and H1 based on the collected data D?

Common case:
H0 - Standard Model is valid, H1 - SM + additional BSM contribution
D - the whole collected data sample, subset, or a single measurement
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Hypothesis Testing

Neyman–Pearson Lemma

According to Neymann and Pearson, the optimal, “most powerful” method
to discriminate between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)

When considering single measurements, making a cut on Q(x) is the
optimal way to classify events. By using likelihood ratio, multi-dimensional
measurements (whole events) are also presented as single number...

When we consider the whole sample of collected data, value of Q(D) is the
best discriminant between the two hypothesis.

Still, one needs to compare the value of Q(D) resulting from the
measurement, with the expected Q distributions for the two hypothesis.
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Hypothesis Testing

CLs method

The two hypothesis we consider in this case:
H0 - Standard Model without Higgs contribution - “background” only (b)
H1 - SM with Higgs contribution - “signal+background” (s+b)

where we can consider different masses of the Higgs, mH

Instead of using Q, it is more convenient to use

q = −2 lnQ = −2`(D|H1) + 2`(D|H0) = χ2(D|H1)− χ2(D|H0)

where:

positive q values are expected for data more in agreement with
background only hypothesis (H0)

negative q values indicate that data are better described by
signal+background hypothesis (H1)
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Hypothesis Testing

CLs method

Value of q from LEP, qdat , was compared with distribution obtained with
multiple Monte Carlo experiments for mH = 115.6 GeV.
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Hypothesis Testing

CLs method
Experiments at LEP, running with energy up to

√
s = 210 GeV,

could only observe Higgs bosons with mass of up to about 118 GeV
For higher masses, signal+background hypothesis (H1) becomes
indistinguishable from background only one (H0)...

With tight event selection, experiments observed 4 candidate events with
mrec

H > 109GeV . Expectations of background only hyposthesis: b = 1.2

In strictly frequentiest approach we could exclude (on 95%CL) not only
the SM, but also all Higgs scenarios (H1) with mH > 118GeV !..

Frequentist approach gives us result which is correct (from statistical point
of view) but not very useful... Too sensitive to background fluctuations?

Solution is to look for confidence level of H1 relative to H0:

CLs =
CLs+b

CLb
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 7

Probability of background hypothesis to result in Nobs ≤ 7 is 98.8%

⇒ CLs limit on number of signal events is 10.17 (95% CL)
almost the same as the Frequentist limit (CLs+b): 10.15

A.F.Żarnecki Statictical analysis 11 January 12, 2023 8 / 54



Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 3

Probability of background hypothesis to result in Nobs ≤ 3 is 64.7%

⇒ CLs limit on number of signal events is 5.40 (95% CL)
only slightly higher than the Frequentist limit (CLs+b): 4.75
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 1

Probability of background hypothesis to result in Nobs ≤ 1 is 19.9%

⇒ CLs limit on number of signal events is 3.64 (95% CL)
significantly higher than the Frequentist limit (CLs+b): 1.74
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 0

Probability of background hypothesis to result in Nobs = 0 is 4.98%

⇒ CLs limit on number of signal events is 3.00 (95% CL)
while all signal hypothesis are excluded in Frequentist approach (CLs+b)!
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Hypothesis Testing

CLs method

In the modified approach, we exclude
(at 95% CL) all scenarios with

CLs < 0.05

This means that the probability of
H1 to reproduce the collected data is
less than 5% of the SM probability:

P(q > qdat |H1) < 0.05 P(q > qdat |H0)

Final Higgs limits from LEP
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Event classification

Problem definition

The problem is similar to the one discussed in lecture 10: we want to
discriminate between two model hypothesis H0 and H1 based on the
collected data D.

Common case - interpretation of measurement results:

H0 - Standard Model is valid,

H1 - SM has to be extended by adding BSM contribution

D - the whole collected data sample

According to Neymann and Pearson, the optimal, “most powerful” method
to discriminate between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)
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Problem definition
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discriminate between two model hypothesis H0 and H1 based on the
collected data D.

Different case - classification of collected measurements:

H0 - measurement can be attributed to the Standard Model,

H1 - measurement is due to BSM contribution,

D - single measurement (“event” in HEP experiments)

According to Neymann and Pearson, the optimal, “most powerful” method
to discriminate between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)
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Event classification

Simple example

Fake gold coins have lower mass than the true ones.
We can select good coins (reject fake coins) by measuring the mass...

Example distribution for mgood=50g, mfake=45g, σm =1g.

Fake coin contribution (5%) clearly visible (5σ separation)...
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Fake gold coins have lower mass than the true ones.
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Example distribution for mgood=50g, mfake=47g, σm =1g.
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Event classification

Simple example

We use the Neymann–Pearson Lemma directly:

Q(m) =
L(m|H1)

L(m|H0)
with

H1 − good coin

H0 − fake coin

Assuming Gaussian uncertainties of the mass measurement

Q(m) =
G (m;m1, σ)

G (m;m0, σ)

= exp

[
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2

(
m −m1

σ

)2
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m −m0
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Event classification

Simple example

Q is not very convenient to use, changes from very small to very large
values. We already considered (LEP Higgs limits):

q(m) = −2 logQ(m) = −2

(
m1 −m0

σ2

)(
m − m1 + m0

2

)

One can also consider discriminator function: −1 < y < +1

y(m) =
1− Q

1 + Q
=

L(m|H1)− L(m|H0)

L(m|H1) + L(m|H0)

= tanh

(
−q(m)

4

)
= tanh

((
m1 −m0

2σ2

)(
m − m1 + m0

2

))
Final selection should be based on a cut: y(m)>ycut or Q(m)>Qcut ...
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Event classification

Simple example

Good vs fake coin discriminator function
We expect y → −1 for fake coin, y → +1 for good coin

Classification gets more and more difficult with decreasing ∆m...
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Event classification

Classification errors O.Behnke et. al, Data Analysis in High Enegy Physics

Selecting the classification cut, two types of error need to be considered

Probability of accepting fake Probability of rejecting good

α =

∫
y(m)>ycut

dm p(m|H0) β =

∫
y(m)<ycut

dm p(m|H1)
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Event classification

Simple example

Discriminator function distribution
We expect y → −1 for fake coin, y → +1 for good coin

Large separation in ∆m ⇒ very efficient classification possible
A.F.Żarnecki Statictical analysis 11 January 12, 2023 21 / 54



Event classification

Simple example

Discriminator function distribution
We expect y → −1 for fake coin, y → +1 for good coin
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Event classification

Simple example

Discriminator function distribution
We expect y → −1 for fake coin, y → +1 for good coin

Classification still possible, but error rate substantial
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Event classification

Simple example

Discriminator function distribution
We expect y → −1 for fake coin, y → +1 for good coin

Efficient classification “coin by coin” no longer possible...
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Event classification

ROC curve
For both good and fake coins, efficiency depends on the assumed ycut
value. All possible choices on a Receiver-Operating-Characteristic curve:
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Event classification

ROC curve
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Optimal cut value strongly depends on the actual goal of the analysis...
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Naive Bayes Classifier

Problem definition

According to Neymann and Pearson, the optimal, “most powerful” method
to discriminate between the two hypothesis is to look at likelihood ratio

Q(x) =
L(x|H1)

L(x|H0)

where we now consider classification of single measurement x.

However, this can be directly used only, if the likelihoods are known.
For example (in particle physics), if we know the differential cross sections
for the considered signal and background processes, and detector effects
can be neglected...

In most cases, we need to decide on the selection procedure based on the
data (or pseud-data from Monte Carlo simulation) itself, try to use it to
’reconstruct’ the likelihood ratio dependence on x...
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Naive Bayes Classifier

Bayes’ Theorem refer to lecture 01

We can try to apply Bayes’ Theorem to the classification problem.
We can ask for the “probability” of the considered hypothesis H for given
outcome x (data) of the measurement:

P(H|x) =
P(x|H)

P(x)
· P(H)

Let us assume that we know the probability density functions (properly
normalized) for the two considered hypothesis:

p0(x) = P(x|H0) p1(x) = P(x|H1)

and the expected fraction of events corresponding to H1: f1. Then:

P(H1|x) =
f1 · p1(x)

f1 p1(x) + (1− f1) p0(x)
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Naive Bayes Classifier

Likelihood classifier

Single measurement (event) often corresponds to a set of observables:

x = (x1, x2, . . . xN)

If N is large, it is difficult to reconstruct probability density function of x.

We usually start from considering probabilities for single variable:

p
(j)
k (xj) = P(xj |Hk) =

∫
· · ·
∫
i 6=j
dxi P(x,Hk) k = 1, 2

We can then apply the Bayes’ Theorem to single variable distribution:

P(H1|xj) =
f1 · p(j)

1 (xj)

f1 p
(j)
1 (xj) + (1− f1) p

(j)
0 (xj)
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Naive Bayes Classifier

Likelihood classifier

Assuming the absence of correlations between the observables,
treating different observables as independent random variables,
multi-deminsional pdf can be calculated as a product of variable pdfs.

Likelihood of hypothesis k for measured event x is then given by

Lk(x) = L(Hk |x) =
∏
j

P(Hk |xj)

We can then construct the classifier based on the likelihood ratio:

γ(x) =
L1(x)

L0(x) + L1(x)

which should be equivalent to the Neyman-Pearson classifier.
Assuming correlations can be neglected and in the limit of large training samples.
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Naive Bayes Classifier

Example separation of 2D Gaussian distributions

We first use the train sample of events to reconstruct individual p
(j)
k .

Training results can be then applied to the independent test sample...

Implementation of the Gaussian Naive Bayes Classifier in sklearn.
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Naive Bayes Classifier

Example

Efficient classification can be obtained for uncorrelated variables.

However, it is clearly far from optimal in case of correlations!

Implementation of the Gaussian Naive Bayes Classifier in sklearn.
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Statistical analysis of experimental data

Classification

1 Event classification

2 Naive Bayes Classifier

3 Fisher Linear Discriminant

4 Nearest neighbors

5 Iterative procedure

6 Homework
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Fisher Linear Discriminant

Linear discriminant (Behnke)

Classifier based on the linear combination of input variables:

F (x; w) = w0 +
N∑
j=1

wj xj = w0 + w · x

Resulting decision boundaries, F (x) = Fcut , are hyperplanes in N dim.
How to find vector w giving best separation between two classes of events?

For the general case, to use numerical optimization procedure, one needs
to define the “loss function”. Possible choice: (similar to χ2)

L(w) =
∑

events i

[
t(i) − y(F (x(i); w))

]2

where y is the decision (“activation”) function (eg. step function or
tanh), t(i) is true class of training event x(i) (−1 for H0 and +1 for H1).
Iterative procedure can be applied to minimize L(w).
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Fisher Linear Discriminant

Linear discriminant (Behnke)

Weight vector w defines the direction, on which all events are projected.
Projection “reduces” the N variable problem to single variable F (x).

If we assume Gaussian variable distributions, we can look at the direction
which maximizes the relative distance between the two hypothesis in F :

D(w) =
(h1 − h0)2

σ2
1 + σ2

0

hk and σ2
k are the expected values and variances of F (x) for hypothesis k :

hk = E(F (x)|Hk) and σ2
k = V(F (x)|Hk)

How to relate hk and σ2
k to the properties of the x distribution for Hk :

µk = E(x|Hk) and Cx ?
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Fisher Linear Discriminant

Linear discriminant (Behnke)

One can note that:

h1 − h0 = w · µ1 − w · µ0 = w · (µ1 − µ0)

and so the nominator of D(w) can be written as:

(h1 − h0)2 = wᵀ B w where B = (µ1 − µ0)(µ1 − µ0)ᵀ

is the so-called between-class matrix.

Introducing also the within-class matrix

W = C(H1)
x + C(H0)

x

one can directly write F distance between two hypothesis in terms of w:

D(w) =
wᵀ B w

wᵀ W w
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Fisher Linear Discriminant

Linear discriminant (Behnke)

Matrices B and W depend only on x pdfs for the two hypothesis.
They do not depend on the classifier weights w.

Maximum relative distance requirement corresponds to ∇D(w) = 0
condition. The solution is:

w = a W−1 (µ1 − µ0)

where a is an arbitrary scaling factor. w0 is the second free parameter

When parameters of the pdfs are not known, they can be derived from the
properties of the training sample:

w = a
(
Ĉ(H1)

x + Ĉ(Ho)
x

)−1 (
x̄(H1) − x̄(H0)

)
where x̄ and Ĉ are the mean and covariance matrices for the training data
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Fisher Linear Discriminant

Example separation of 2D Gaussian distributions

Fisher discriminant takes variable correlations properly into account
Different correlation coefficients ρ for well separated data

Solid red: based on the pdf parameters Dashed magenta: based on data
Data driven analysis: implementation of the Linear Discriminant Analysis in sklearn.
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A.F.Żarnecki Statictical analysis 11 January 12, 2023 35 / 54



Fisher Linear Discriminant

Example separation of 2D Gaussian distributions

Fisher discriminant takes variable correlations properly into account
Different correlation coefficients ρ for less separated data

Solid red: based on the pdf parameters Dashed magenta: based on data
Data driven analysis: implementation of the Linear Discriminant Analysis in sklearn.
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Fisher Linear Discriminant

Example separation of 2D Gaussian distributions

Fisher discriminant takes variable correlations properly into account
Different relative separation for high correlation coefficient ρ = 0.9

Solid red: based on the pdf parameters Dashed magenta: based on data
Data driven analysis: implementation of the Linear Discriminant Analysis in sklearn.
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Fisher Linear Discriminant

Example separation of 2D Gaussian distributions
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Statistical analysis of experimental data

Classification

1 Event classification

2 Naive Bayes Classifier

3 Fisher Linear Discriminant

4 Nearest neighbors

5 Iterative procedure

6 Homework
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Nearest neighbors classifier

Principle

This classifier refers directly to the Neymann and Pearson Lemma.

It is based on the expectation, that the likelihood ratio can be related to
the ratio of the expected event densities:

Q(x) =
L(x|H1)

L(x|H0)
=

1

N1

dN1

dx

(
1

N0

dN0

dx

)−1

=
N0

N1

dN1

dN0

where dNk represent the expected number of events for hypothesis k ,
in a small variable space volume dx (in the limit dx→ 0, Nk →∞)

The idea is to replace the expected event densities dNk by numbers of
events in the actual data (training sample including H0 and H1 events):

dNk(x) → nk(x) =
∑

x′∈∆(x)

x′ ⊂ Hk

The key point is how to define “neighborhood” region ∆(x) of point x
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Nearest neighbors classifier

Principle

Two possible approaches are commonly used.

One can define ∆(x) by specifying maximum distance d between points:

∆(x) = {x ′ : d(x′, x) < Rmax}

However, Rmax has to be sufficiently large to always accept a sample of
training events, also in the regions of lowest probability density...
That is why this approach is not very efficient...

This problem is “solved” in the “k nearest neighbors” (kNN) classification.
We sort training events x’ according to their distance from the test point x
and take the closest k points:

∆(x) = {x ′ : d(x′, x) < R(x)} and R(x) :
∑

x′

1 = k

Where we still need to define the distance measure d(x′, x)...
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Nearest neighbors classifier

k Nearest Neighbors

We can then define our classifier as

γ(x) =
n1(x)

n0(x) + n1(x)
=

n1(x)

k

where γcut = 0.5 is assumed in most cases...

For the distance measure, standard Euclidean metric is usually assumed:

d(x′, x) = |x′ − x| =

∑
j

(x ′j − xj)
2

 1
2

which, however, neglects differences in value scales of different variables
and possible correlations between them
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Works already for k = 1: decision based on the nearest train event.
Very large fluctuations, reflecting fluctuations in the training sample...

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Classification results more stable for larger k .
Impact of fluctuations still visible...

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Smooth classification boundary for k > 10, but details can be lost...
Classification seems not to be optimal? (linear discriminator)

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Precision of classification improves with size of training sample
But it also gets more and more time consuming...

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Default procedure, assuming Euclidean metric, clearly fails when scales of
the considered observables are very different...

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

k Nearest Neighbors

To solve the problem of different variable scales, one could redefine
considered set of variables to span the same numerical range or to have
same variances. This however will still neglect possible correlations.

In the general case, distance measure properly reflecting properties of the
data set should be used. Frequent choice:

d2(x′, x) = (x′ − x)ᵀ C−1
x (x′ − x) =

∑
jk

(x ′j − xj) (C−1
x )jk (x ′k − xk)

where Cx is the covariance matrix of the measurement.

This is so-called “Mahalanobis distance” measure.

Similar to the calculation of the χ2 value between two points
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large scale difference between variables
With default distance measure (Euclidean metric)

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large scale difference between variables
With Mahalanobis distance measure (including correlations)
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A.F.Żarnecki Statictical analysis 11 January 12, 2023 44 / 54



Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large correlation between variables
With default distance measure (Euclidean metric)

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large correlation between variables
With Mahalanobis distance measure (including correlations)

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large correlation between variables
With Mahalanobis distance measure (including correlations)

Results consistent with those obtained with Fisher linear discriminant.
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Nearest neighbors classifier

k Nearest Neighbors

While Naive Bayes and Fisher Linear Classifiers are based on modeling the
likelihood distribution, nearest neighbors classifier is very general, can be
used in (almost) any case. Example application:

Unfortunately, it is also very slow and requires large training samples...
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Statistical analysis of experimental data

Classification

1 Event classification

2 Naive Bayes Classifier

3 Fisher Linear Discriminant

4 Nearest neighbors

5 Iterative procedure

6 Homework
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Iterative procedure

Linear discriminant

In the standard approach, weights optimizing classifier based on the linear
combination of input variables:

F (x; w) = w0 +
N∑
j=1

wj xj = w0 + w · x

are found based on the properties of the considered (training) samples.

However, the problem can be also solved without looking at the global
properties, by minimizing the “loss function”. Possible choice, “distance”:

L(w) =
∑

events i

[
t(i) − y(F (x(i); w))

]2

where y is the “activation function”, t(i) is true class of event x(i).
Many choices are possible for the activation function...
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Iterative procedure

Activation function

Source: Artificial Intelligence Wiki
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https://machine-learning.paperspace.com/wiki/activation-function


Iterative procedure

Perceptron Learning

Let activation function be defined in such a way that:

lim
x→−∞

y(x) = t(H0) and lim
x→+∞

y(x) = t(H1)

so that for events far from division boundary (y = 0) we have:

y (i) ≡ y
(
F (x(i); w)

)
≈ t(i)

These events hardly contribute to the loss function.

Events which are incorrectly classified contribute most to loss function.

We can notice that the sign of y (i) − t(i) indicates the reason:

if y (i) − t(i) > 0 ⇒ weights used were too large

if y (i) − t(i) < 0 ⇒ weights used were too small
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x→+∞

y(x) = t(H1)

so that for events far from division boundary (y = 0) we have:

y (i) ≡ y
(
F (x(i); w)

)
≈ t(i)

These events hardly contribute to the loss function.

Events which are incorrectly classified contribute most to loss function.

We can notice that the sign of y (i) − t(i) indicates the reason:

if y (i) − t(i) > 0 ⇒ weights used were too large

if y (i) − t(i) < 0 ⇒ weights used were too small
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Iterative procedure

Perceptron Learning

One can consider the iterative procedure of adjusting the weights:

w(n+1) = w(n) + η
∑
i

(
t(i) − c(i)

)
· x(i)

where η is the learning rate parameter.

This approach was first proposed by M. Rosenblatt in 1958.

Weight correction can be applied on event by event basis (starting from
the beginning when event loop completed) or calculating global correction
for the whole sample.

Surprisingly, with proper choice of η this procedure works, results in
classification optimization, even without referring to the loss function...
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Iterative procedure

Perceptron Learning example

Example results for linear discriminant, starting from random weights:
N=100

Iterative procedure (dashed cyan) compared with Fisher discriminant (solid red)
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Iterative procedure

Perceptron Learning example

Example results for linear discriminant, starting from random weights:
N=1000

Iterative procedure (dashed cyan) compared with Fisher discriminant (solid red)
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Statistical analysis of experimental data

Classification

1 Event classification

2 Naive Bayes Classifier

3 Fisher Linear Discriminant

4 Nearest neighbors

5 Iterative procedure

6 Homework
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Homework

Homework Solutions to be uploaded by January 26.

You ordered 1000 silicon sensors, 36× 24 mm2, in the factory. The order
was processed on two machines (50% each) and it turns out that:

all sensors from the first machine are working OK.
They also have proper size tolerance σ1 = 0.05 mm

the second machine was faulty, produced only faulty sensors
and with worse size tolerance σ2 = 0.25 mm

Unfortunately, the two samples were mixed. When collecting your order,
you can make selection based on the measured dimensions of the sensor
and pay only for the sensors you select...

find the optimal selection approach

calculate the corresponding ROC curve

what is the optimal selection cut, if you pay 10$ for each collected
sensor, and you can sell good ones for 12$...

assume no correlation between the two dimensions
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