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Event classification

Problem definition

The problem is similar to the one discussed in lecture 10: we want to
discriminate between two model hypothesis H0 and H1 based on the
collected data D.

Different case - classification of collected measurements:

H0 - measurement can be attributed to the Standard Model,

H1 - measurement is due to BSM contribution,

D - single measurement (“event” in HEP experiments)

According to Neymann and Pearson, the optimal, “most powerful” method
to discriminate between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)
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Event classification

Classification errors O.Behnke et. al, Data Analysis in High Enegy Physics

Selecting the classification cut, two types of error need to be considered

Probability of accepting fake Probability of rejecting good

α =

∫
y(m)>ycut

dm p(m|H0) β =

∫
y(m)<ycut

dm p(m|H1)

A.F.Żarnecki Statictical analysis 12 January 19, 2023 4 / 59



Event classification

Simple example

Discriminator function distribution
We expect y → −1 for fake coin, y → +1 for good coin
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Event classification

ROC curve
For both good and fake coins, efficiency depends on the assumed ycut
value. All possible choices on a Receiver-Operating-Characteristic curve:

In the realistic case, we can not have α→ 0 and β → 0 at the same time...
Optimal cut value strongly depends on the actual goal of the analysis...
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Naive Bayes Classifier

Likelihood classifier

Single measurement (event) often corresponds to a set of observables:

x = (x1, x2, . . . xN)

If N is large, it is difficult to reconstruct probability density function of x.

We usually start from considering probabilities for single variable:

p
(j)
k (xj) = P(xj |Hk) =

∫
· · ·
∫
i 6=j
dxi P(x,Hk) k = 1, 2

We can then apply the Bayes’ Theorem to single variable distribution:

P(H1|xj) =
f1 · p(j)

1 (xj)

f1 p
(j)
1 (xj) + (1− f1) p

(j)
0 (xj)
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Naive Bayes Classifier

Likelihood classifier

Assuming the absence of correlations between the observables,
treating different observables as independent random variables,
multi-deminsional pdf can be calculated as a product of variable pdfs.

Likelihood of hypothesis k for measured event x is then given by

Lk(x) = L(Hk |x) =
∏
j

P(Hk |xj)

We can then construct the classifier based on the likelihood ratio:

γ(x) =
L1(x)

L0(x) + L1(x)

which should be equivalent to the Neyman-Pearson classifier.
Assuming correlations can be neglected and in the limit of large training samples.
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Naive Bayes Classifier

Example

Efficient classification can be obtained for uncorrelated variables.

However, it is clearly far from optimal in case of correlations!

Implementation of the Gaussian Naive Bayes Classifier in sklearn.
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Nearest neighbors classifier

Principle

This classifier refers directly to the Neymann and Pearson Lemma.

It is based on the expectation, that the likelihood ratio can be related to
the ratio of the expected event densities:

Q(x) =
L(x|H1)

L(x|H0)
=

1

N1

dN1

dx

(
1

N0

dN0

dx

)−1

=
N0

N1

dN1

dN0

where dNk represent the expected number of events for hypothesis k ,
in a small variable space volume dx (in the limit dx→ 0, Nk →∞)

The idea is to replace the expected event densities dNk by numbers of
events in the actual data (training sample including H0 and H1 events):

dNk(x) → nk(x) =
∑

x′∈∆(x)

x′ ⊂ Hk

The key point is how to define “neighborhood” region ∆(x) of point x
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Nearest neighbors classifier

Principle

Two possible approaches are commonly used.

One can define ∆(x) by specifying maximum distance d between points:

∆(x) = {x ′ : d(x′, x) < Rmax}

However, Rmax has to be sufficiently large to always accept a sample of
training events, also in the regions of lowest probability density...
That is why this approach is not very efficient...

This problem is “solved” in the “k nearest neighbors” (kNN) classification.
We sort training events x’ according to their distance from the test point x
and take the closest k points:

∆(x) = {x ′ : d(x′, x) < R(x)} and R(x) :
∑

x′

1 = k

Where we still need to define the distance measure d(x′, x)...
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Nearest neighbors classifier

k Nearest Neighbors

To take different variable scales int account, one could redefine considered
set of variables to span the same numerical range and use Euclidean
metric. This however will neglects possible correlations.

In the general case, distance measure properly reflecting properties of the
data set should be used. Frequent choice:

d2(x′, x) = (x′ − x)ᵀ C−1
x (x′ − x) =

∑
jk

(x ′j − xj) (C−1
x )jk (x ′k − xk)

where Cx is the covariance matrix of the measurement.

This is so-called “Mahalanobis distance” measure.

Similar to the calculation of the χ2 value between two points
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Nearest neighbors classifier

kNN example separation of 2D Gaussian distributions

Two-dimensional data set with large correlation between variables
With Mahalanobis distance measure (including correlations)

Implementation of the k Nearest Neighbors classifier in sklearn.
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Nearest neighbors classifier

k Nearest Neighbors

While Naive Bayes and Fisher Linear Classifiers are based on modeling the
likelihood distribution, nearest neighbors classifier is very general, can be
used in (almost) any case. Example application:

Unfortunately, it is also very slow and requires large training samples...
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Fisher Linear Discriminant

Linear discriminant (Behnke)

Classifier based on the linear combination of input variables:

F (x; w) = w0 +
N∑
j=1

wj xj = w0 + w · x

Resulting decision boundaries, F (x) = Fcut , are hyperplanes in N dim.

Weight vector w defines the direction, on which all events are projected.
Projection “reduces” the N variable problem to single variable F (x).

If we assume Gaussian variable distributions, we can look at the direction
which maximizes the relative distance between the two hypothesis in F :

D(w) =
(h1 − h0)2

σ2
1 + σ2

0

hk and σ2
k are the expected values and variances of F (x) for hypothesis k.
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Fisher Linear Discriminant

Linear discriminant (Behnke)

Classifier based on the linear combination of input variables:

F (x; w) = w0 +
N∑
j=1

wj xj = w0 + w · x

Resulting decision boundaries, F (x) = Fcut , are hyperplanes in N dim.

Weight vector w defines the direction, on which all events are projected.
Projection “reduces” the N variable problem to single variable F (x).

However, the problem can be also solved without looking at the global
properties, by minimizing the “loss function”. Possible choice, “distance”:

L(w) =
∑

events i

[
t(i) − y(F (x(i); w))

]2

where y is the “activation function”, t(i) is true class of event x(i).
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Iterative procedure

Activation function

Source: Artificial Intelligence Wiki
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Iterative procedure

Perceptron Learning “Learning on errors”

One can consider the iterative procedure of adjusting the weights:

w(n+1) = w(n) − η
∑
i

(
y (i) − t(i)

)
· x(i)

where η is the learning rate parameter.

Events which are incorrectly classified contribute most to loss function.
They also have largest impact in the weigh adjustment procedure...

This approach was first proposed by M. Rosenblatt in 1958.

Weight correction can be applied on event by event basis (starting from
the beginning when event loop completed) or calculating global correction
for the whole sample.

Surprisingly, with proper choice of η this procedure works, results in
classification optimization, even without referring to the loss function...
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Iterative procedure

Perceptron Learning example

Example results for linear discriminant, starting from random weights:
N=1000

Iterative procedure (dashed cyan) compared with Fisher discriminant (solid red)
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Artificial Neural Networks

Linear discriminant Single percepton training

Linear discriminant is quite effective for separation of two Gaussian
samples, but clearly not optimal for more complicated cases

Can we do better?
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Artificial Neural Networks

Single percepton

We can present the data flow in as a simple diagram:

1 2x x

1

y Classification is based on the output
y of the activation function.

Activation function is calculated for a
linear combination of three inputs:

two input variables, x1 and x2

constant offset (1)

Input weights can be found in the iterative “learning procedure”

w(n+1) = w(n) − η
∑
events

(
y (i) − t(i)

)
· x(i)

But single linear combination always results in a linear decision boundary...

A.F.Żarnecki Statictical analysis 12 January 19, 2023 21 / 59



Artificial Neural Networks

Single percepton

We can present the data flow in as a simple diagram:

1 2x x

1

y Classification is based on the output
y of the activation function.

Activation function is calculated for a
linear combination of three inputs:

two input variables, x1 and x2

constant offset (1)

Input weights can be found in the iterative “learning procedure”

But single linear combination always results in a linear decision boundary...
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Artificial Neural Networks

Two perceptons

We can try to train two independent classifiers:

21

1 2

xx
1

y y

If starting from random initial weights, training results could be different...

But how to combine them?
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Artificial Neural Networks

Two percepton layers

It seems quite natural to add additional percepton to combine the two...

Output-layer neuron:

y = f

w
(1)
0 +

2∑
j=1

w
(1)
j hj


Hidden-layer neuron:

hj = f

(
w

(2)
j ,0 +

2∑
k=1

w
(2)
j ,k xk

)

⇒ nine independent weights
one for each arrow

21

1 2

xx

h h

1

1

y
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Artificial Neural Networks

Learning rules Miroslav Kubat, An Introduction to Machine Learning

Backpropagation of Errors: contribution of event i to the weight-adjusting
procedure is proportional to the classification error:

δ
(1)
i = (yi − ti )

(1− yi ) (1 + yi )

Additional factor reduces impact of “well classified” events, y → ±1
⇒ we focus on those where classification was “weak”, yi ∼ 0.

For the output layer neurons, we can apply procedure similar to the
percepton learning:

w(1)(n+1) = w(1)(n) − η
∑
i

δ
(1)
i · hi

where hi is the vector of hidden layer results + offset
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Artificial Neural Networks

Learning rules

For hidden layer, we need to define the corresponding “error” for each
node j . We “back propagate” it for each event from the output node:

δ
(2)
j ,i = w

(1)
j δ

(1)
i (1− hj ,i ) (1 + hj ,i )

where we include weight w
(1)
j connecting given node to output neuron.

Again, we suppress impact of events with “strong opinion”.

Weight update rule for hidden layer neurons:

w
(2)(n+1)
j = w

(2)(n)
j − η

∑
i

δ
(2)
j ,i · xi

Iterative procedure, starting from random weights:

calculate yi for train sample events ⇒ extract δ
(1)
i and δ

(2)
j ,i

update w(1) and w
(2)
j , decrease η, repeat from the beginning
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A.F.Żarnecki Statictical analysis 12 January 19, 2023 25 / 59



Artificial Neural Networks

Learning rules

For hidden layer, we need to define the corresponding “error” for each
node j . We “back propagate” it for each event from the output node:

δ
(2)
j ,i = w

(1)
j δ

(1)
i (1− hj ,i ) (1 + hj ,i )

where we include weight w
(1)
j connecting given node to output neuron.

Again, we suppress impact of events with “strong opinion”.

Weight update rule for hidden layer neurons:

w
(2)(n+1)
j = w

(2)(n)
j − η

∑
i

δ
(2)
j ,i · xi

Iterative procedure, starting from random weights:

calculate yi for train sample events ⇒ extract δ
(1)
i and δ

(2)
j ,i

update w(1) and w
(2)
j , decrease η, repeat from the beginning
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Artificial Neural Networks

Simplest case

Simplest network: one hidden layer with two preceptons...
Visible improvement in efficiency and flexibility of classification!

Correlation for signal sample ρ = 0.7
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Artificial Neural Networks

Simplest case

Simplest network: one hidden layer with two preceptons...
Visible improvement in efficiency and flexibility of classification!

Correlation for signal sample ρ = −0.7
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Artificial Neural Networks

More complex case

We can have arbitrary number of neurons in hidden layer...

N1

1 2 M

1
xx

y

1 h h h

as well as more input variables...
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Artificial Neural Networks

More complex case

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot...
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Artificial Neural Networks

Multilayer example

One hidden layer only - limited shape flexibility

Multi-layer Perceptron classifier class from sklearn
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A.F.Żarnecki Statictical analysis 12 January 19, 2023 29 / 59



Artificial Neural Networks

Multilayer example

One hidden layer only - limited shape flexibility

Not much gain going above 10 nodes in hidden layer...
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Artificial Neural Networks

Multilayer example

Two hidden layer - more shape flexibility

Multi-layer Perceptron classifier class from sklearn
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Artificial Neural Networks

Multilayer example

Two hidden layer - more shape flexibility

Much better modeling of the signal distribution...
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Artificial Neural Networks

Multilayer example

Three hidden layer - more details can be included

Multi-layer Perceptron classifier class from sklearn
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Artificial Neural Networks

Multilayer example

Three hidden layer - more details can be included

Different numbers of nodes in different layers possible...
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Artificial Neural Networks

Comparison of the output discriminator function distribution

Single hidden layer with 20 neurons

Clear improvement of the event classification
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Artificial Neural Networks

Comparison of the output discriminator function distribution

Two hidden layers, with 20 and 5 neurons

Clear improvement of the event classification
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Artificial Neural Networks

Comparison of the output discriminator function distribution

Three hidden layers, with 20, 5 and 2 neurons
Clear improvement of the event classification
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Artificial Neural Networks

sklearn tips... https://scikit-learn.org/

Multi-layer perceptron is sensitive to variable scales.

It is highly recommended to scale input data, so each variable has the same
range (eg. [−1,+1]) or same mean and variance (eg. µ = 0 and σ = 1).
Both training and test samples need to be scaled in the same way!

Different, more advanced learning algorithms are implemented in sklearn,
one can choose between them with ’solver’ parameter.

’lbfgs’ converges faster and with better solutions on small datasets.

For relatively large datasets, ’adam’ is very robust. It usually
converges quickly and gives pretty good performance.

’sgd’ can perform best if learning rate is correctly tuned.
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Boosting

Ensemble methods

It is relatively easy (in most cases) to design a classification algorithm
which will result in the classification efficiency (fraction of correct
classifications) slightly above 50% (random classification level).

Such classifiers are called “weak classifiers”

It is much more difficult (in most realistic cases) to design a single
classifier, which will result in efficiency close to 100% (error-less
classification).

Such classifiers are called “strong classifiers”

However, it turns out that one can build a strong classifier from many
weak classifiers!

This is the underlying principle in many machine learning techniques...
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Boosting

Example weak discriminant

Generate Ntry = 100 random linear discriminants. Select the one with the
highest efficiency (highest number of properly classified events).

This is clearly a weak discriminant (for this problem; ε ∼ 50− 60%)
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Boosting

Ensemble methods https://scikit-learn.org/

Two families of ensemble methods are usually distinguished:

In averaging methods, the driving principle is to build several
estimators independently and then to average their predictions.
On average, the combined estimator is usually better than any of the
single base estimator because its variance is reduced.

In boosting methods, base estimators are built sequentially and one
tries to reduce the bias of the combined estimator. The motivation is
to combine several weak models to produce a powerful ensemble.

The two methods can also be combined...
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Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y

(j)
i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(

1−εj
εj

)
5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1
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w
(j+1)
i = w
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i 6= ti ,

w
(j+1)
i = w

(j)
i for y

(j)
i = ti .
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Boosting

Procedure
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Boosting

Procedure (Behnke)

By reweighting events, we force subsequent classifiers to focus on events
(i.e. value ranges) where classification was poor.

New classifiers are still “weak”,
but they properly classify different classes of events.

We get a sequence of classifiers focusing on different variable regions.

We can get much stronger classifier by combining their outputs

CBoost(x) =
1

M

∑
j

aj Cj(x)

where M is the total number of classifiers in the collection.

This procedure is referred to as “adaptive boost” (AdaBoost)
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Boosting

Classifier boosting

Example of weak classifier (linear discriminant) boosting
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Boosting

Classifier boosting

Example of weak classifier (linear discriminant) boosting
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Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”
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Boosting

Box cut classifier

Random box cut based on two random points in the parameter space:
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Boosting

Box cut classifier

Box cut with highest efficiency selected out of 10 random box cuts
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Boosting

Box cut classifier

Box cut with highest efficiency selected out of 100 random box cuts
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Boosting

Box classifier boosting

Example of weak classifier (best box cut out of 10 random) boosting
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Boosting

Box classifier boosting

Example of weak classifier (best box cut out of 100 random) boosting

Final selection closely follows input train data...
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Boosting

Box classifier boosting

Example of weak classifier (best box cut out of 100 random) boosting

Selection worse for test data, but still very efficient!
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Boosting

Box classifier boosting

Event random box cut (without selection) can get boosted

Results clearly worse than with optimized input classifier, but still useful...
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Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework
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Decision Trees

Principle

It is quite a common approach in data selection to apply cuts on variables
considered in the analysis.
We can profit from our understanding of the processes considered...

IDM scalar pair-production
with di-lepton signature

However, tuning the cuts by hand is difficult...
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Decision Trees

Example

We can write down the cuts that will perfectly classify our training sample:
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Decision Trees

Example

But on test sample results will be worse! Efficiency ∼93%

Note that this will get much poorer in multi-dimensional space...
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Decision Trees

Example

The tree for full sample classification very complicated already in 2-D...
X[1] <= -0.481

gini = 0.5
samples = 1000

value = [515, 485]

X[1] <= -0.617
gini = 0.06

samples = 257
value = [249, 8]

True
X[1] <= 1.346

gini = 0.46
samples = 743

value = [266, 477]

False

X[1] <= -0.806
gini = 0.017

samples = 233
value = [231, 2]

X[0] <= 0.763
gini = 0.375

samples = 24
value = [18, 6]

X[0] <= -0.947
gini = 0.009

samples = 214
value = [213, 1]

X[1] <= -0.802
gini = 0.1

samples = 19
value = [18, 1]

X[0] <= -0.984
gini = 0.027

samples = 72
value = [71, 1]

gini = 0.0
samples = 142
value = [142, 0]

gini = 0.0
samples = 71
value = [71, 0]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 18
value = [18, 0]

X[0] <= -0.103
gini = 0.457

samples = 17
value = [11, 6]

gini = 0.0
samples = 7
value = [7, 0]

X[1] <= -0.535
gini = 0.198
samples = 9
value = [8, 1]

X[1] <= -0.56
gini = 0.469
samples = 8
value = [3, 5]

gini = 0.0
samples = 6
value = [6, 0]

X[1] <= -0.525
gini = 0.444
samples = 3
value = [2, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 2
value = [2, 0]

X[1] <= -0.594
gini = 0.32

samples = 5
value = [1, 4]

X[1] <= -0.526
gini = 0.444
samples = 3
value = [2, 1]

X[0] <= 0.221
gini = 0.5

samples = 2
value = [1, 1]

gini = 0.0
samples = 3
value = [0, 3]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 1
value = [0, 1]

X[0] <= -0.539
gini = 0.387

samples = 647
value = [170, 477]

gini = 0.0
samples = 96
value = [96, 0]

X[1] <= 0.78
gini = 0.45

samples = 158
value = [104, 54]

X[0] <= 0.998
gini = 0.234

samples = 489
value = [66, 423]

X[0] <= -1.2
gini = 0.254

samples = 94
value = [80, 14]

X[0] <= -1.214
gini = 0.469

samples = 64
value = [24, 40]

X[0] <= -1.662
gini = 0.342

samples = 64
value = [50, 14]

gini = 0.0
samples = 30
value = [30, 0]

gini = 0.0
samples = 25
value = [25, 0]

X[0] <= -1.321
gini = 0.46

samples = 39
value = [25, 14]

X[0] <= -1.331
gini = 0.494

samples = 27
value = [15, 12]

X[0] <= -1.215
gini = 0.278

samples = 12
value = [10, 2]

X[1] <= -0.309
gini = 0.48

samples = 25
value = [15, 10]

gini = 0.0
samples = 2
value = [0, 2]

X[0] <= -1.45
gini = 0.375
samples = 4
value = [1, 3]

X[0] <= -1.418
gini = 0.444

samples = 21
value = [14, 7]

gini = 0.0
samples = 3
value = [0, 3]

gini = 0.0
samples = 1
value = [1, 0]

X[1] <= 0.496
gini = 0.337

samples = 14
value = [11, 3]

X[0] <= -1.381
gini = 0.49

samples = 7
value = [3, 4]

X[1] <= 0.428
gini = 0.444
samples = 9
value = [6, 3]

gini = 0.0
samples = 5
value = [5, 0]

X[0] <= -1.583
gini = 0.375
samples = 8
value = [6, 2]

gini = 0.0
samples = 1
value = [0, 1]

X[0] <= -1.649
gini = 0.5

samples = 4
value = [2, 2]

gini = 0.0
samples = 4
value = [4, 0]

gini = 0.0
samples = 1
value = [1, 0]

X[1] <= -0.236
gini = 0.444
samples = 3
value = [1, 2]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 2
value = [0, 2]

gini = 0.0
samples = 3
value = [0, 3]

X[1] <= 0.54
gini = 0.375
samples = 4
value = [3, 1]

gini = 0.0
samples = 3
value = [3, 0]

gini = 0.0
samples = 1
value = [0, 1]

X[1] <= 0.653
gini = 0.165

samples = 11
value = [10, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 9
value = [9, 0]

X[1] <= 0.671
gini = 0.5

samples = 2
value = [1, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 14
value = [14, 0]

X[0] <= -0.953
gini = 0.32

samples = 50
value = [10, 40]

X[1] <= 1.024
gini = 0.444

samples = 18
value = [6, 12]

X[1] <= 0.967
gini = 0.219

samples = 32
value = [4, 28]

X[0] <= -0.981
gini = 0.245

samples = 14
value = [2, 12]

gini = 0.0
samples = 4
value = [4, 0]

X[0] <= -1.061
gini = 0.142

samples = 13
value = [1, 12]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 8
value = [0, 8]

X[0] <= -1.046
gini = 0.32

samples = 5
value = [1, 4]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 4
value = [0, 4]

X[1] <= 0.888
gini = 0.444
samples = 3
value = [2, 1]

X[1] <= 1.115
gini = 0.128

samples = 29
value = [2, 27]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 2
value = [2, 0]

X[1] <= 1.112
gini = 0.219

samples = 16
value = [2, 14]

gini = 0.0
samples = 13
value = [0, 13]

X[1] <= 1.063
gini = 0.124

samples = 15
value = [1, 14]

gini = 0.0
samples = 1
value = [1, 0]

X[1] <= 1.054
gini = 0.278
samples = 6
value = [1, 5]

gini = 0.0
samples = 9
value = [0, 9]

gini = 0.0
samples = 5
value = [0, 5]

gini = 0.0
samples = 1
value = [1, 0]

X[0] <= 0.539
gini = 0.145

samples = 459
value = [36, 423]

gini = 0.0
samples = 30
value = [30, 0]

X[1] <= 0.853
gini = 0.272

samples = 197
value = [32, 165]

X[0] <= 0.916
gini = 0.03

samples = 262
value = [4, 258]

X[1] <= -0.222
gini = 0.497

samples = 52
value = [28, 24]

X[0] <= 0.535
gini = 0.054

samples = 145
value = [4, 141]

X[0] <= -0.081
gini = 0.083

samples = 23
value = [1, 22]

X[1] <= 0.679
gini = 0.128

samples = 29
value = [27, 2]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 22
value = [0, 22]

gini = 0.0
samples = 25
value = [25, 0]

X[0] <= 0.367
gini = 0.5

samples = 4
value = [2, 2]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 2
value = [0, 2]

X[0] <= 0.037
gini = 0.041

samples = 144
value = [3, 141]

gini = 0.0
samples = 1
value = [1, 0]

X[0] <= 0.031
gini = 0.083

samples = 69
value = [3, 66]

gini = 0.0
samples = 75
value = [0, 75]

X[1] <= 1.012
gini = 0.057

samples = 68
value = [2, 66]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 1
value = [1, 0]

X[1] <= 1.247
gini = 0.029

samples = 67
value = [1, 66]

gini = 0.0
samples = 48
value = [0, 48]

X[1] <= 1.248
gini = 0.1

samples = 19
value = [1, 18]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 18
value = [0, 18]

X[1] <= -0.462
gini = 0.015

samples = 258
value = [2, 256]

X[1] <= 0.343
gini = 0.5

samples = 4
value = [2, 2]

X[0] <= 0.671
gini = 0.5

samples = 2
value = [1, 1]

X[1] <= 0.9
gini = 0.008

samples = 256
value = [1, 255]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 241
value = [0, 241]

X[1] <= 0.912
gini = 0.124

samples = 15
value = [1, 14]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 14
value = [0, 14]

gini = 0.0
samples = 2
value = [0, 2]

gini = 0.0
samples = 2
value = [2, 0]

How much can we reduce the size of the decision tree?
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Decision Trees

Example

Good performance (efficiency above 90%) already for 4 cut levels!
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X[1] <= -0.481
gini = 0.5

samples = 1000
value = [515, 485]

X[1] <= -0.617
gini = 0.06

samples = 257
value = [249, 8]

True

X[1] <= 1.346
gini = 0.46

samples = 743
value = [266, 477]

False

X[1] <= -0.806
gini = 0.017

samples = 233
value = [231, 2]

X[0] <= 0.763
gini = 0.375

samples = 24
value = [18, 6]

X[0] <= -0.947
gini = 0.009

samples = 214
value = [213, 1]

X[1] <= -0.802
gini = 0.1

samples = 19
value = [18, 1]

gini = 0.027
samples = 72
value = [71, 1]

gini = 0.0
samples = 142
value = [142, 0]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 18
value = [18, 0]

X[0] <= -0.103
gini = 0.457

samples = 17
value = [11, 6]

gini = 0.0
samples = 7
value = [7, 0]

gini = 0.198
samples = 9
value = [8, 1]

gini = 0.469
samples = 8
value = [3, 5]

X[0] <= -0.539
gini = 0.387

samples = 647
value = [170, 477]

gini = 0.0
samples = 96
value = [96, 0]

X[1] <= 0.78
gini = 0.45

samples = 158
value = [104, 54]

X[0] <= 0.998
gini = 0.234

samples = 489
value = [66, 423]

gini = 0.254
samples = 94

value = [80, 14]

gini = 0.469
samples = 64

value = [24, 40]

gini = 0.145
samples = 459

value = [36, 423]

gini = 0.0
samples = 30
value = [30, 0]
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Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework
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Boosted Decision Trees

Boosted Decision Trees

For their good performance, decision trees are “natural candidates” for use
in boosting procedure, to get even better classifiers.

Boosted Decision Trees (BDT) algorithms are widely used in particle
physics, mainly for their flexibility and stability.

Many different algorithms exist, both concerning tree generation and
training, and boosting procedure.

Wide range of options implemented in sklearn library.

TMVA (Multi Variate Analysis) package for root widely used in particle
physics community.
More advanced tuning options (⇒ better performance?), but more
complicated to use. Based on root, is well integrated into data processing
and analysis framework...
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Boosted Decision Trees

BDT Example

Good performance (efficiency ∼ 95%) already with 20 trees.

20 trees
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BDT Example

Good performance (efficiency ∼ 95%) already with 20 trees.

100 trees
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Boosted Decision Trees

BDT Example

Good performance (efficiency ∼ 95%) already with 20 trees.

500 trees
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Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing
number of trees... 20 trees
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Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing
number of trees... 500 trees ⇒ 100% training efficiency

A.F.Żarnecki Statictical analysis 12 January 19, 2023 55 / 59



Boosted Decision Trees

BDT Example

But results “saturate” at some point (at efficiency ∼ 95%) for
independent test sample. 20 trees
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Boosted Decision Trees

Overtraining source: datacadamia.com

Is a common problem in all Machine Learning methods

If we try too hard (also by using too many variables !), result can get
worse...A.F.Żarnecki Statictical analysis 12 January 19, 2023 57 / 59

https://datacadamia.com/data_mining/overfitting
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Machine Learning
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Homework

Homework Solutions to be uploaded by February 2.

Three samples of events x = (x1, x2, x3, x4) were prepared:

training signal sample

training background sample

test sample with signal and background events for the analysis

⇒ to be downloaded from lecture web page

Use one of the presented approaches to obtain event classification for the
considered event samples:

draw ROC curve for the obtained classifier

extract the fraction of the signal events in the test sample

discuss how the precision of the result depends on the selection cut

Numbers of selected signal and background events have to be corrected
for classification efficiency and errors...
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