Statistical analysis of experimental data Probability distributions and their properties

Aleksander Filip Żarnecki
FACULTYOF
--潧 HYSICS
UNIVERSITY OF WARSAW

Lecture 03
October 19, 2023

Statistical analysis of experimental data

Probability distributions and their properties

(1) Random variables
(2) Probability distributions
(3) Basic probability distributions

- Binomial distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Gamma distribution
- Gaussian distribution

4 Homework

Definition of Probability

Frequentist definition

When repeating the same experiment a large number of times, $N \gg 1$, the probability of A

$$
P(A)=\lim _{N \rightarrow \infty} \frac{N(A)}{N}
$$

where $N(A)$ is the number of occurrences of the event A Probability does depends on the definition of the considered sample space!

Definition of Probability

Frequentist definition

When repeating the same experiment a large number of times, $N \gg 1$, the probability of A

$$
P(A)=\lim _{N \rightarrow \infty} \frac{N(A)}{N}
$$

where $N(A)$ is the number of occurrences of the event A
Probability does depends on the definition of the considered sample space!

Kolmogorov Axioms

Kolmogorov (1933) formulated the three conditions which have to be fulfilled by probability $P(A)$ of an event $A \subset \Omega$:
(1) probability is a non-negative number: $P(A) \geq 0$
(2) probability of all possible outcomes (sample space): $P(\Omega)=1$
(3) if A and B are mutually exclusive events: $P(A \cup B)=P(A)+P(B)$

We can derive all properties of the probability from these three axioms...

Properties of Probability

Statistical Independence

Two events A and B are said to be statistically independent if and only if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Two important properties follow:

- mutually exclusive (nonempty) events cannot be independent
- if A is subset of $B, A \subset B$, they cannot be independent, unless $B=\Omega$

Properties of Probability

Statistical Independence

Two events A and B are said to be statistically independent if and only if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Two important properties follow:

- mutually exclusive (nonempty) events cannot be independent
- if A is subset of $B, A \subset B$, they cannot be independent, unless $B=\Omega$

Conditional Probability

When two events are not independent, we can consider probability of event A given that another event B is observed:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { or } 0 \text { if } P(B)=0
$$

Properties of Probability

Statistical Independence

Two events A and B are said to be statistically independent if and only if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Two important properties follow:

- mutually exclusive (nonempty) events cannot be independent
- if A is subset of $B, A \subset B$, they cannot be independent, unless $B=\Omega$

Conditional Probability

When two events are not independent, we can consider probability of event A given that another event B is observed:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { or } 0 \text { if } P(B)=0
$$

Bayes' Theorem

Total Probability Theorem

Given partition A_{i} of the sampling space, for any event B we can write

$$
P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)
$$

Total probability of B can be calculated as a sum over probabilities in separate sub-spaces.

Bayes' Theorem

Total Probability Theorem

Given partition A_{i} of the sampling space, for any event B we can write

$$
P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)
$$

Total probability of B can be calculated as a sum over probabilities in separate sub-spaces.

Bayes' Theorem

For events A and B the two conditional probabilities are related:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

This can be also written in a more general form:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{n} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

where A_{i} is the partition of the sampling space.

Bayes' Theorem

Bayesian approach

Bayes theorem can be also used to generalize the concept of probability.
In particular, one can consider "probability" of given hypothesis H (theoretical model or model parameter, eg. Hubble constant) when taking into known outcome D (data) of the experiment

$$
P(H \mid D)=\frac{P(D \mid H)}{P(D)} \cdot P(H)
$$

Bayes' Theorem

Bayesian approach

Bayes theorem can be also used to generalize the concept of probability.
In particular, one can consider "probability" of given hypothesis H (theoretical model or model parameter, eg. Hubble constant) when taking into known outcome D (data) of the experiment

$$
P(H \mid D)=\frac{P(D \mid H)}{P(D)} \cdot P(H)
$$

There are two problems with this approach:

- H can not be considered an event, sampling space not defined (no experiment to repeat)
- we need to make a subjective assumption about the "prior" $P(H)$ describing our initial belief in hypothesis H

Bayes' Theorem

Bayesian approach

Bayes theorem can be also used to generalize the concept of probability.
In particular, one can consider "probability" of given hypothesis H (theoretical model or model parameter, eg. Hubble constant) when taking into known outcome D (data) of the experiment

$$
P(H \mid D)=\frac{P(D \mid H)}{P(D)} \cdot P(H)
$$

There are two problems with this approach:

- H can not be considered an event, sampling space not defined (no experiment to repeat)
- we need to make a subjective assumption about the "prior" $P(H)$ describing our initial belief in hypothesis H

For these reasons I rather use term "degree of belief" for the result of the Bayesian procedure applied to non random events...

Statistical analysis of experimental data

Probability distributions and their properties

(1) Random variables
2) Probability distributions
(3) Basic probability distributions

- Binomial distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Gamma distribution
- Gaussian distribution
(4) Homework

Random variables

Experiments

So far, we have considered probability as a very general concept.
We only assumed that an experiment delivers data which are a subject to fluctuations. But we did not look at the details of the obtained data.

The outcome of the experiment can be of different nature:

- observation (or non-observation) of given event (true/false)
- observation of an event from given category (classification)
- number of the occurrences of given event (counting)
- value of given observable (measurement)

Random variables

Experiments

So far, we have considered probability as a very general concept.
We only assumed that an experiment delivers data which are a subject to fluctuations. But we did not look at the details of the obtained data.

The outcome of the experiment can be of different nature:

- observation (or non-observation) of given event (true/false)
- observation of an event from given category (classification)
- number of the occurrences of given event (counting)
- value of given observable (measurement)

We usually present the outcome of the experiment (measurement) in a numerical form. Two general types of variables can be considered:

- discrete (logical, classification and counting)
- continuous (measurement)

Random variables

Experiments

When repeating the experiment many times, numerical results fluctuate, reflecting fluctuations of the measurement (see lecture 01).

The numerical result of a repeated experiment (measurement) can not be predicted, it is only known when the experiment is made
\Rightarrow that is why we call it a random variable
The true value of the considered physical parameter is usually unknown or known with limited precision only.

By repeating the measurement many times we typically want to increases our knowledge of this parameter.

We can also try to understand better the measurement process itself and find the proper description of the observed fluctuations

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 100 rolls, $1^{\text {st }}$ try

Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, $2^{\text {nd }}$ try
Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 100 rolls, $3^{\text {rd }}$ try

Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 100 rolls, $4^{\text {th }}$ try

Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, $5^{\text {th }}$ try
Dice Roll experiment

Significant fluctuations observed between results

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 1000 rolls

Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 10000 rolls

Dice Roll experiment

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 100000 rolls

Dice Roll experiment

Relative fluctuations decrease with experiment count

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event. Example of dice roll experiment: 100000 rolls (zoom)

Dice Roll experiment

Relative fluctuations decrease with experiment count

Random variables

Distributions

It is very practical to present results of a repeated experiment in a form of a distribution of the considered random variable.

We can plot also plot the result as the relative fraction.
Example of dice roll experiment: 1000000 rolls
Dice Roll experiment

Random variables

Probability distribution function

In the limit of the infinite number of experiments, the relative fraction is given by a probability distribution function (PDF).

For discrete variables, probability distribution function is the probability that a given value of the random variable occurs in a single experiment.

Dice Roll experiment

Probability distribution function: $f(n)=P(n)=\frac{1}{6}=$ const

Random variables

Histograms

Graphical presentation becomes more difficult for continuous variable.
With high readout precision, probability of obtaining the same numerical result twice is negligible.

The method of plotting the count number for each result does not work!
Example of decay time measurement: $\quad \tau=2.2 \mu s, 100$ decays

Random variables

Histograms

Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value range and count events when variable value is in given bin.
Then we can plot the count number for each bin
Example of decay time measurement: $\quad \tau=2.2 \mu s, 100$ decays

Random variables

Histograms

Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value range and count events when variable value is in given bin.
Then we can plot the count number for each bin
Example of decay time measurement: $\quad \tau=2.2 \mu s, 1000$ decays

Random variables

Histograms

Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value range and count events when variable value is in given bin.
Then we can plot the count number for each bin
Example of decay time measurement: $\quad \tau=2.2 \mu s, 10000$ decays

Random variables

Histograms

Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value range and count events when variable value is in given bin.
Then we can plot the count number for each bin
Example of decay time measurement: $\tau=2.2 \mu s, 10000$ decays

Random variables

Probability distribution function

We can calculate the relative fraction of events in each bin.

Example of decay time measurement: $\quad \tau=2.2 \mu s, 10000$ decays

Random variables

Probability distribution function

We can calculate the relative fraction of events in each bin.
In the limit of the infinite number of experiments (and very narrow bins), the relative fraction is given by a probability distribution function (PDF) of the variable multiplied by the bin width.

Example of decay time measurement: $\quad \tau=2.2 \mu s, 10000$ decays

Statistical analysis of experimental data

Probability distributions and their properties

(1) Random variables
(2) Probability distributions
(3) Basic probability distributions

- Binomial distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Gamma distribution
- Gaussian distribution

4 Homework

Probability distributions

Probability distribution function (PDF)
 also called "Probability density function" in some books

For given random variable X, probability distribution function, $f(x)$, describes the probability to obtain given numerical result x (in single experiment). For infinitesimal interval $d x$:

$$
P(x<X<x+d x)=f(x) d x
$$

Probability distributions

Probability distribution function (PDF)

also called "Probability density function" in some books
For given random variable X, probability distribution function, $f(x)$, describes the probability to obtain given numerical result x (in single experiment). For infinitesimal interval $d x$:

$$
P(x<X<x+d x)=f(x) d x
$$

For arbitrary interval $\left[x_{1}, x_{2}\right]$:

$$
P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} d x f(x)
$$

This can be considered an alternative definition of $f(x)$

Probability distributions

Cumulative distribution function

We can also define cumulative distribution function $F(x)$, which is the probability that an experiment will result in a value not grater than x :

$$
F(x)=P(X<x)
$$

Probability distributions

Cumulative distribution function

We can also define cumulative distribution function $F(x)$, which is the probability that an experiment will result in a value not grater than x :

$$
F(x)=P(X<x)
$$

Probability distribution function can be then written as the derivative:

$$
f(x)=\frac{d F(x)}{d x}
$$

Probability distributions

Cumulative distribution function

We can also define cumulative distribution function $F(x)$, which is the probability that an experiment will result in a value not grater than x :

$$
F(x)=P(X<x)
$$

Probability distribution function can be then written as the derivative:

$$
f(x)=\frac{d F(x)}{d x}
$$

Probability that the X value observed is in the range from x_{1} to x_{2} :

$$
P\left(x_{1}<X<x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} d x f(x)
$$

Probability distributions

General properties of distribution functions

From the properties of probability

$$
f(x) \geq 0 \quad \int_{-\infty}^{+\infty} d x f(x)=1
$$

Probability distributions

General properties of distribution functions

From the properties of probability

$$
f(x) \geq 0 \quad \int_{-\infty}^{+\infty} d x f(x)=1
$$

For cumulative distribution:

$$
\begin{array}{r}
F(x)=\int_{-\infty}^{x} d x^{\prime} f\left(x^{\prime}\right) \\
\Rightarrow \lim _{x \rightarrow-\infty} F(x)=0 \quad \lim _{x \rightarrow+\infty} F(x)=1
\end{array}
$$

Probability distributions

Moments of distribution functions

Expectation value of an arbitrary function $g(x)$ of the random variable X can be defined as

$$
\mathbb{E}(g(x))=\langle g(x)\rangle=\int_{-\infty}^{+\infty} d x g(x) f(x)
$$

where $f(x)$ is the probability distribution function for X.

Probability distributions

Moments of distribution functions

Expectation value of an arbitrary function $g(x)$ of the random variable X can be defined as

$$
\mathbb{E}(g(x))=\langle g(x)\rangle=\int_{-\infty}^{+\infty} d x g(x) f(x)
$$

where $f(x)$ is the probability distribution function for X.
The expectation value of a random variable itself or the mean:

$$
\mu=\mathbb{E}(X)=\langle x\rangle=\bar{x}=\int_{-\infty}^{+\infty} d x x f(x)
$$

Probability distributions

Moments of distribution functions

Expectation value of an arbitrary function $g(x)$ of the random variable X can be defined as

$$
\mathbb{E}(g(x))=\langle g(x)\rangle=\int_{-\infty}^{+\infty} d x g(x) f(x) \quad=\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right)
$$

where $f(x)$ is the probability distribution function for X.
The expectation value of a random variable itself or the mean:

$$
\mu=\mathbb{E}(X)=\langle x\rangle=\bar{x}=\int_{-\infty}^{+\infty} d x x f(x)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

For discrete random variables mean is given by the sum of all possible values x_{i} of X multiplied by their corresponding probabilities.

Probability distributions

Moment of order n ($n^{\text {th }}$ moment) is defined as

$$
\mu_{n}=\mathbb{E}\left(X^{n}\right)=\left\langle x^{n}\right\rangle=\int_{-\infty}^{+\infty} d x x^{n} f(x) \quad=\sum_{i} x_{i}^{n} f\left(x_{i}\right)
$$

Mean value is, by definition, the first $(n=1)$ moment of the probability distribution, $\mu \equiv \mu_{1}$.

Probability distributions

Moment of order n ($n^{\text {th }}$ moment) is defined as

$$
\mu_{n}=\mathbb{E}\left(X^{n}\right)=\left\langle x^{n}\right\rangle=\int_{-\infty}^{+\infty} d x x^{n} f(x) \quad=\sum_{i} x_{i}^{n} f\left(x_{i}\right)
$$

Mean value is, by definition, the first $(n=1)$ moment of the probability distribution, $\mu \equiv \mu_{1}$.
Central moment of order n is defined as

$$
\begin{aligned}
m_{n}=\mathbb{E}\left((X-\mu)^{n}\right)=\left\langle(x-\mu)^{n}\right\rangle & =\int_{-\infty}^{+\infty} d x(x-\mu)^{n} f(x) \\
& =\sum_{i}\left(x_{i}-\mu\right)^{n} f\left(x_{i}\right)
\end{aligned}
$$

By calculating moments of the (unknown or known with limited precision) probability distribution we can extract information about its shape.

Probability distributions

Moments of distribution functions

For the lowest order moments we have:

$$
\begin{array}{lll}
\mu_{0} \equiv 1 & m_{0} \equiv 1 & \text { normalization of } f(x) \\
\mu_{1} \equiv \mu & m_{1} \equiv 0 & \text { definition of mean value of } f(x)
\end{array}
$$

Probability distributions

Moments of distribution functions

For the lowest order moments we have:

$$
\begin{array}{lll}
\mu_{0} \equiv 1 & m_{0} \equiv 1 & \text { normalization of } f(x) \\
\mu_{1} \equiv \mu & m_{1} \equiv 0 & \text { definition of mean value of } f(x)
\end{array}
$$

The first moment which gives us information about the shape of $f(x)$ is Variance, which is the second central moment:

$$
\begin{aligned}
\mathbb{V}(X)=m_{2}=\left\langle(x-\mu)^{2}\right\rangle & =\int_{-\infty}^{+\infty} d x(x-\mu)^{2} f(x) \\
& =\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
\end{aligned}
$$

Probability distributions

Moments of distribution functions

For the lowest order moments we have:

$$
\begin{array}{lll}
\mu_{0} \equiv 1 & m_{0} \equiv 1 & \text { normalization of } f(x) \\
\mu_{1} \equiv \mu & m_{1} \equiv 0 & \text { definition of mean value of } f(x)
\end{array}
$$

The first moment which gives us information about the shape of $f(x)$ is Variance, which is the second central moment:

$$
\begin{aligned}
\sigma^{2}=\mathbb{V}(X)=m_{2}=\left\langle(x-\mu)^{2}\right\rangle & =\int_{-\infty}^{+\infty} d x(x-\mu)^{2} f(x) \\
& =\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
\end{aligned}
$$

The square root of the variance is referred to as the standard deviation σ. Describes the average difference between measurements x_{i} and their mean μ.

Statistical analysis of experimental data

Probability distributions and their properties

(1) Random variables
(2) Probability distributions
(3) Basic probability distributions

- Binomial distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Gamma distribution
- Gaussian distribution

Basic probability distributions

Resources

Possible places to look for numerical tools:

- basic distributions are just available in NumPy:
https://numpy.org/doc/stable/reference/random/generator.html\#distributions
- for more complete list of possible probability distributions you can look at SciPy: https://docs.scipy.org/doc/scipy/reference/stats.html\#probability-distributions

Binomial distribution

Consider an experiments with only two possible outcomes (binary experiment): $\Omega=\{$ 'success', 'failure' $\}$

$$
\text { (or } \Omega=\{\text { 'true', 'false'\}) }
$$

This is also the case, when we look for particular event A in wider sampling space.

Binomial distribution

Consider an experiments with only two possible outcomes (binary experiment): $\Omega=\{$ 'success', 'failure' $\}$

$$
\text { (or } \Omega=\{\text { 'true', 'false'\}) }
$$

This is also the case, when we look for particular event A in wider sampling space.
Assume that the success probability p is known. What is the probability of having n successes in N tries?
We are not interested in the order in which the successes take place.

Binomial distribution

Consider an experiments with only two possible outcomes (binary experiment): $\Omega=\{$ 'success', 'failure' $\}$

$$
\text { (or } \Omega=\{\text { 'true', 'false'\}) }
$$

This is also the case, when we look for particular event A in wider sampling space.
Assume that the success probability p is known.
What is the probability of having n successes in N tries?
We are not interested in the order in which the successes take place.

Example

What is the probability to get three 'six' when rolling the dice five times?

$$
p=\frac{1}{6} \quad n=3 \quad N=5
$$

Binomial distribution

Consider an experiments with only two possible outcomes (binary experiment): $\Omega=\{$ 'success', 'failure' $\}$

$$
\text { (or } \Omega=\{\text { 'true', 'false'\}) }
$$

This is also the case, when we look for particular event A in wider sampling space.
Assume that the success probability p is known.
What is the probability of having n successes in N tries?
We are not interested in the order in which the successes take place.

Example

What is the probability to get three 'six' when rolling the dice five times?

$$
p=\frac{1}{6} \quad n=3 \quad N=5
$$

It is important to notice that we ask for a probability for an event from a different, extended sampling space, $\Omega^{\prime}=\Omega^{N}$!

Binomial distribution

Binomial distribution

Describes probability of having n successes in N tries, assuming success probability p in single trial and failure probability $q=1-p$

$$
P(n)=\binom{N}{n} p^{n} q^{N-n}=\frac{N!}{n!(N-n)!} p^{n} q^{N-n}
$$

The Newton symbol $\binom{N}{n}$ gives the number of possible sequences of N tries giving n successes (regardless of order) and $p^{n} q^{N-n}$ describes the probability for single such sequence (elementary event).

Binomial distribution

Binomial distribution

Describes probability of having n successes in N tries, assuming success probability p in single trial and failure probability $q=1-p$

$$
P(n)=\binom{N}{n} p^{n} q^{N-n}=\frac{N!}{n!(N-n)!} p^{n} q^{N-n}
$$

The Newton symbol $\binom{N}{n}$ gives the number of possible sequences of N tries giving n successes (regardless of order) and $p^{n} q^{N-n}$ describes the probability for single such sequence (elementary event).

Mean (expected value) of the binomial distribution

$$
\langle n\rangle=\bar{n}=p N
$$

Variance of the distribution
important for efficiency uncertainty

$$
\sigma^{2}=p(1-p) N
$$

For given N , distribution is widest for $p=0.5$

Binomial distribution

Example (1)

What is the probability to get three 'six' when rolling the dice five times?

$$
p=\frac{1}{6} \quad n=3 \quad N=5
$$

Binomial distribution

Example (1)

What is the probability to get three 'six' when rolling the dice five times?

$$
p=\frac{1}{6} \quad n=3 \quad N=5
$$

By putting the numbers directly in the formula we get

$$
P(n)=\frac{N!}{n!(N-n)!} p^{n} q^{N-n}=\frac{5!}{3!2!} \frac{1}{6^{3}} \frac{5^{2}}{6^{2}}=\frac{120 \cdot 1 \cdot 25}{6 \cdot 2 \cdot 216 \cdot 36} \approx 0.032
$$

Binomial distribution

Example (1)

What is the probability to get three 'six' when rolling the dice five times?

$$
p=\frac{1}{6} \quad n=3 \quad N=5
$$

By putting the numbers directly in the formula we get

$$
P(n)=\frac{N!}{n!(N-n)!} p^{n} q^{N-n}=\frac{5!}{3!2!} \frac{1}{6^{3}} \frac{5^{2}}{6^{2}}=\frac{120 \cdot 1 \cdot 25}{6 \cdot 2 \cdot 216 \cdot 36} \approx 0.032
$$

Binomial distribution

Example (2)

Lecture room has 20 seats and 22 students enrolled for the course. But students attend 90% of lectures only. Is the room large enough?

Binomial distribution

Example (2)

Lecture room has 20 seats and 22 students enrolled for the course. But students attend 90% of lectures only. Is the room large enough?

Simple answer: $\bar{n}=p N=0.9 \cdot 22=19.8<20 \Rightarrow$ should be OK...

Binomial distribution

Example (2)

Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?
Simple answer: $\bar{n}=p N=0.9 \cdot 22=19.8<20 \Rightarrow$ should be OK...
Probability that students will NOT fit in the room:

$$
P^{\text {ovfl }}=P(22)+P(21)=0.9^{22}+22 \cdot 0.9^{21} \cdot 0.1 \approx 0.098+0.241=0.339
$$

Binomial distribution

Example (2)

Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?
Simple answer: $\bar{n}=p N=0.9 \cdot 22=19.8<20 \Rightarrow$ should be OK...
Probability that students will NOT fit in the room:

$$
P^{\text {oufl }}=P(22)+P(21)=0.9^{22}+22 \cdot 0.9^{21} \cdot 0.1 \approx 0.098+0.241=0.339
$$

Binomial probability distribution

Binomial distribution

Example (2)

Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?
Simple answer: $\bar{n}=p N=0.9 \cdot 22=19.8<20 \Rightarrow$ should be OK...
Probability that students will NOT fit in the room:

$$
P^{\text {ovfl }}=P(22)+P(21)=0.9^{22}+22 \cdot 0.9^{21} \cdot 0.1 \approx 0.098+0.241=0.339
$$

There is 66% chance that the room will be large enough for all students.
But this probability applies to single lecture only!
Probability that they will fit in the room for 14 lectures is

$$
P^{\text {OK }}=\left(1-P^{\text {ovfl }}\right)^{14} \approx 0.003
$$

\Rightarrow we can hardly count on luck in this case, we need larger room!

Uniform distribution

Uniform probability distribution

Is often used as a model for a "complete randomness" of measurement result in given range. If variable x is restricted to interval $[a, b]$:

$$
f(x)= \begin{cases}0 & \text { for } x<a \\ \frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { for } x>b\end{cases}
$$

Uniform distribution

Uniform probability distribution

Is often used as a model for a "complete randomness" of measurement result in given range. If variable x is restricted to interval $[a, b]$:

$$
f(x)= \begin{cases}0 & \text { for } x<a \\ \frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { for } x>b\end{cases}
$$

Mean (expected value) of the uniform distribution

$$
\bar{x}=\langle x\rangle=\frac{a+b}{2}
$$

Uniform distribution

Uniform probability distribution

Is often used as a model for a "complete randomness" of measurement result in given range. If variable x is restricted to interval $[a, b]$:

$$
f(x)= \begin{cases}0 & \text { for } x<a \\ \frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { for } x>b\end{cases}
$$

Mean (expected value) of the uniform distribution

$$
\bar{x}=\langle x\rangle=\frac{a+b}{2}
$$

Variance of the uniform distribution

$$
\mathbb{V}(x)=\sigma^{2}=\frac{(b-a)^{2}}{12}
$$

Exponential distribution

Exponential probability distribution

Describes the probability of waiting time t, when we wait for event A and the probability of A in a small time interval $d t$ is constant: $d p=d t / \tau$.
This is the case for particle and nuclear decays, but also for other phenomena τ is the only parameter

Exponential distribution

Exponential probability distribution

Describes the probability of waiting time t, when we wait for event A and the probability of A in a small time interval $d t$ is constant: $d p=d t / \tau$.
This is the case for particle and nuclear decays, but also for other phenomena τ is the only parameter This problem is easily solved when we consider cumulative distribution:

$$
F(t+d t)=F(t)+(1-F(t)) \cdot \frac{d t}{\tau}
$$

Exponential distribution

Exponential probability distribution

Describes the probability of waiting time t, when we wait for event A and the probability of A in a small time interval $d t$ is constant: $d p=d t / \tau$.
This is the case for particle and nuclear decays, but also for other phenomena τ is the only parameter This problem is easily solved when we consider cumulative distribution:

$$
\begin{aligned}
F(t+d t) & =F(t)+(1-F(t)) \cdot \frac{d t}{\tau} \\
\frac{d}{d t} F(t) & =\frac{1}{\tau} \cdot(1-F(t)) \\
\frac{d}{d t}(1-F(t)) & =-\frac{1}{\tau} \cdot(1-F(t))
\end{aligned}
$$

Exponential distribution

Exponential probability distribution

Describes the probability of waiting time t, when we wait for event A and the probability of A in a small time interval $d t$ is constant: $d p=d t / \tau$.
This is the case for particle and nuclear decays, but also for other phenomena τ is the only parameter This problem is easily solved when we consider cumulative distribution:

$$
\begin{aligned}
F(t+d t) & =F(t)+(1-F(t)) \cdot \frac{d t}{\tau} \\
\frac{d}{d t} F(t) & =\frac{1}{\tau} \cdot(1-F(t)) \\
\frac{d}{d t}(1-F(t)) & =-\frac{1}{\tau} \cdot(1-F(t)) \\
(1-F(t)) & =C \cdot e^{-t / \tau} \\
F(t) & =1-e^{-t / \tau} \quad C=1 \text { from boundary conditions }
\end{aligned}
$$

Exponential distribution

Exponential probability distribution

Resulting formula for the probability distribution is:

$$
f(t)= \begin{cases}\frac{1}{\tau} \cdot e^{-t / \tau} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

indicated by the red dashed line:

Exponential distribution

Exponential probability distribution

Resulting formula for the probability distribution is:

$$
f(t)= \begin{cases}\frac{1}{\tau} \cdot e^{-t / \tau} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

Mean (expected value) of the exponential distribution

$$
\langle t\rangle=\int_{0}^{+\infty} d t t f(t)=\tau \quad \text { integrating by parts }
$$

For nuclear/particle decays, parameter τ is the mean lifetime...

Exponential distribution

Exponential probability distribution

Resulting formula for the probability distribution is:

$$
f(t)= \begin{cases}\frac{1}{\tau} \cdot e^{-t / \tau} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

Mean (expected value) of the exponential distribution

$$
\langle t\rangle=\int_{0}^{+\infty} d t t f(t)=\tau \quad \text { integrating by parts }
$$

For nuclear/particle decays, parameter τ is the mean lifetime...
Variance of the exponential distribution

$$
\mathbb{V}(t)=\sigma^{2}=\int_{0}^{+\infty} d t(t-\tau)^{2} f(t)=\tau^{2}
$$

Exponential distribution

Example

What is the probability that the particle does not decay within 10 lifetimes?

Exponential distribution

Example

What is the probability that the particle does not decay within 10 lifetimes?
We can just look at the cumulative distribution:

$$
\begin{aligned}
F(t) & =1-e^{-t / \tau} \\
1-F(t) & =e^{-t / \tau} \\
1-F(10 \tau) & =e^{-10} \approx 0.0000454
\end{aligned}
$$

Probability is very small, but not negligible...

Exponential distribution

Example

What is the probability that the particle does not decay within 10 lifetimes?
We can just look at the cumulative distribution:

$$
\begin{aligned}
F(t) & =1-e^{-t / \tau} \\
1-F(t) & =e^{-t / \tau} \\
1-F(10 \tau) & =e^{-10} \approx 0.0000454
\end{aligned}
$$

Probability is very small, but not negligible...

Half-life

Frequently used in nuclear physics, nuclear medicine etc.
Defined as a time needed for half of the nuclei to decay.

$$
\begin{aligned}
F\left(t_{1 / 2}\right) & =0.5 \\
\Rightarrow \quad t_{1 / 2} & =\ln 2 \cdot \tau
\end{aligned}
$$

Poisson distribution

Expected number of decays

Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 100 measurements $(100 \times 10$ s)

Poisson distribution

Expected number of decays

Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 1000 measurements

Poisson distribution

Expected number of decays

Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 10000 measurements

Poisson distribution

Expected number of decays

Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 10000 measurements

Poisson distribution

Expected number of decays

Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 1000000 measurements

Poisson distribution

Expected number of decays
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment counting decays in 10 s time window?
Example of decay count measurement: 1000000 measurements
Measured decay count

Poisson distribution

Poisson probability distribution

Formula for the Poisson probability distribution: red circles in the plot

$$
P(n)=\frac{\mu^{n} e^{-\mu}}{n!} \quad \text { for } n=0,1,2, \ldots
$$

where μ, the expected number of events (mean), is the only parameter (!) Measured decay count

Poisson distribution

Poisson probability distribution

Formula for the Poisson probability distribution:

$$
P(n)=\frac{\mu^{n} e^{-\mu}}{n!} \quad \text { for } n=0,1,2, \ldots
$$

where μ, the expected number of events (mean), is the only parameter (!)
Mean (expected) number of events

$$
\bar{n}=\langle n\rangle \equiv \mu
$$

Poisson distribution

Poisson probability distribution

Formula for the Poisson probability distribution:

$$
P(n)=\frac{\mu^{n} e^{-\mu}}{n!} \quad \text { for } n=0,1,2, \ldots
$$

where μ, the expected number of events (mean), is the only parameter (!)
Mean (expected) number of events

$$
\bar{n}=\langle n\rangle \equiv \mu
$$

Variance of the Poisson distribution

$$
\mathbb{V}(n)=\left\langle(n-\mu)^{2}\right\rangle=\sum_{n}(n-\mu)^{2} P(n)=\mu
$$

Often defines statistical uncertainty of the measurement...

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 1 decay, 1000 measurements
Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 2 decays, 1000 measurements
Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 3 decays, 1000 measurements
Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 5 decays, 1000 measurements Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 7 decays, 1000 measurements

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 10 decays, 1000 measurements
Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second (1 Bq).
What is the expected result of the experiment measuring time needed for N decays?
Example of sequence measurements: 5 decays, 100000 measurements
Measured decay sequence time

Gamma distribution

Expected time of decay sequence
Consider radioactive source with 1 decay per second（1 Bq）．
What is the expected result of the experiment measuring time needed for N decays？
Example of sequence measurements： 5 decays， 100000 measurements
Measured decay sequence time

Gamma distribution

Gamma distribution

Decay sequence time distribution is described by Gamma distribution:

$$
f(x)= \begin{cases}\frac{x^{k-1} \lambda^{k} e^{-\lambda x}}{\Gamma(k)} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

where $k \geq 0$ and $\lambda \geq 0$ are real parameters of the Gamma distribution. For decay sequence of n decays: $k=n$ and $\lambda=1 / \tau$

Gamma distribution

Gamma distribution

Decay sequence time distribution is described by Gamma distribution:

$$
f(x)= \begin{cases}\frac{x^{k-1} \lambda^{k} e^{-\lambda x}}{\Gamma(k)} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

where $k \geq 0$ and $\lambda \geq 0$ are real parameters of the Gamma distribution. For decay sequence of n decays: $k=n$ and $\lambda=1 / \tau$

Mean (expected value) of the Gamma distribution

$$
\bar{x}=\langle x\rangle=\frac{k}{\lambda}
$$

Gamma distribution

Gamma distribution

Decay sequence time distribution is described by Gamma distribution:

$$
f(x)= \begin{cases}\frac{x^{k-1} \lambda^{k} e^{-\lambda x}}{\Gamma(k)} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

where $k \geq 0$ and $\lambda \geq 0$ are real parameters of the Gamma distribution.
For decay sequence of n decays: $k=n$ and $\lambda=1 / \tau$
Mean (expected value) of the Gamma distribution

$$
\bar{x}=\langle x\rangle=\frac{k}{\lambda}
$$

Variance of the Gamma distribution

$$
\mathbb{V}(x)=\sigma^{2}=\frac{k}{\lambda^{2}}
$$

Gamma distribution

Gamma distribution

For $k>1(n>1)$ distribution has a maximum at

$$
x_{0}=\frac{k-1}{\lambda}
$$

5 decays, 100000 measurements
Measured decay sequence time

Gamma distribution

Gamma distribution

For $k>1(n>1)$ distribution has a maximum at

$$
x_{0}=\frac{k-1}{\lambda}
$$

7 decays, 100000 measurements
Measured decay sequence time

Gamma distribution

Gamma distribution

For $k>1(n>1)$ distribution has a maximum at

$$
x_{0}=\frac{k-1}{\lambda}
$$

10 decays, 100000 measurements

Gamma distribution

Gamma distribution

For $k>1(n>1)$ distribution has a maximum at

$$
x_{0}=\frac{k-1}{\lambda}
$$

Gamma distribution can also be written in equivalent form:

$$
f(x)=A \cdot \exp \left[-\left(\frac{x_{0}}{\sigma_{0}}\right)^{2}\left(\frac{x-x_{0}}{x_{0}}-\ln \frac{x}{x_{0}}\right)\right]
$$

where A is normalization factor and σ_{0} describes the width of the distribution around x_{0} :

$$
\sigma_{0}^{2}=\frac{k-1}{\lambda^{2}}
$$

Gamma distribution

Gamma distribution

For $k>1(n>1)$ distribution has a maximum at

$$
x_{0}=\frac{k-1}{\lambda}=\bar{x}\left(1-\frac{\sigma^{2}}{\bar{x}^{2}}\right)
$$

Gamma distribution can also be written in equivalent form:

$$
f(x)=A \cdot \exp \left[-\left(\frac{x_{0}}{\sigma_{0}}\right)^{2}\left(\frac{x-x_{0}}{x_{0}}-\ln \frac{x}{x_{0}}\right)\right]
$$

where A is normalization factor and σ_{0} describes the width of the distribution around x_{0} :

$$
\sigma_{0}^{2}=\frac{k-1}{\lambda^{2}}=\sigma^{2}\left(1-\frac{\sigma^{2}}{\bar{x}^{2}}\right)
$$

Gamma distribution

Gamma distribution

Gamma distribution is a "natural" choice for describing many physical processes. Its properties are very similar to those of the Gaussian distribution with one additional advantage: negative results are excluded by definition. One can think of the Gamma distribution as an analogue of the Gaussian one restricted to the non-negative results $\left(\mathbb{R}_{+}\right)$

Gamma distribution

Gamma distribution

Gamma distribution is a "natural" choice for describing many physical processes. Its properties are very similar to those of the Gaussian distribution with one additional advantage: negative results are excluded by definition. One can think of the Gamma distribution as an analogue of the Gaussian one restricted to the non-negative results $\left(\mathbb{R}_{+}\right)$

Sampling calorimeter response distribution

Gamma distribution

Gamma distribution

Gamma distribution is a "natural" choice for describing many physical processes. Its properties are very similar to those of the Gaussian distribution with one additional advantage: negative results are excluded by definition. One can think of the Gamma distribution as an analogue of the Gaussian one restricted to the non-negative results $\left(\mathbb{R}_{+}\right)$

Sampling calorimeter response distribution

Gaussian distribution

Gaussian (Normal) distribution

Is most frequently used to describe fluctuations of the measurements and resulting measurement uncertainties

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

where μ and σ are two real parameters of the distribution describing Mean (expected value) of the Gaussian distribution

$$
\mathbb{E}(x)=\langle x\rangle=\mu
$$

and Variance of the Gaussian distribution

$$
\mathbb{V}(x)=\left\langle(x-\mu)^{2}\right\rangle=\sigma^{2}
$$

Gaussian distribution

Combined distributions

Consider two independent random variables X and Y :

$$
f(x, y)=f_{x}(x) \cdot f_{y}(y)
$$

The sum of these variables, $z=x+y$, is also a random variable and

$$
\bar{z}=\mathbb{E}(Z)=\mathbb{E}(X)+\mathbb{E}(Y)=\bar{x}+\bar{y}
$$

Gaussian distribution

Combined distributions

Consider two independent random variables X and Y :

$$
f(x, y)=f_{x}(x) \cdot f_{y}(y)
$$

The sum of these variables, $z=x+y$, is also a random variable and

$$
\begin{aligned}
\bar{z} & =\mathbb{E}(Z) \\
\sigma_{z}^{2} & =\mathbb{E}(X)+\mathbb{E}(Y)=\bar{x}+\bar{y} \\
& =\mathbb{V}(X)+\mathbb{V}(Y)=\sigma_{x}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

Gaussian distribution

Combined distributions

Consider two independent random variables X and Y :

$$
f(x, y)=f_{x}(x) \cdot f_{y}(y)
$$

The sum of these variables, $z=x+y$, is also a random variable and

$$
\begin{aligned}
\bar{z} & =\mathbb{E}(Z) \\
\sigma_{z}^{2} & =\mathbb{E}(X)+\mathbb{E}(Y)=\bar{x}+\bar{y} \\
& =\mathbb{V}(X)+\mathbb{V}(Y)=\sigma_{x}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

If X and Y are described by Gaussian distribution function, then Z is also described by Gaussian probability distribution!
This is widely used when eg. describing measurement uncertainties.

Gaussian distribution

Combined distributions

Consider two independent random variables X and Y :

$$
f(x, y)=f_{x}(x) \cdot f_{y}(y)
$$

The sum of these variables, $z=x+y$, is also a random variable and

$$
\begin{aligned}
& \bar{z}=\mathbb{E}(Z) \\
& \sigma_{z}^{2}=\mathbb{E}(X)+\mathbb{E}(Y)=\bar{x}+\bar{y} \\
&=\mathbb{V}(X)+\mathbb{V}(Y)=\sigma_{x}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

If X and Y are described by Gaussian distribution function, then Z is also described by Gaussian probability distribution!
This is widely used when eg. describing measurement uncertainties.
However, this is also the case for the Gamma distribution !!!

Statistical analysis of experimental data

Probability distributions and their properties

(1) Random variables
(2) Probability distributions
(3) Basic probability distributions

- Binomial distribution
- Uniform distribution
- Exponential distribution
- Poisson distribution
- Gamma distribution
- Gaussian distribution

4 Homework

Homework

Model of radioactivity

Simple way to demonstrate properties of radioactive decay...
Assume you start with a set of $N_{0}=100$ dice.
(1) at each step you roll all dice you have (a step is our time unit)
(2) you then remove all dice which show 1 (they "decay") and go to next step

Homework

Model of radioactivity

Simple way to demonstrate properties of radioactive decay...
Assume you start with a set of $N_{0}=100$ dice.
(1) at each step you roll all dice you have (a step is our time unit)
(2) you then remove all dice which show 1 (they "decay") and go to next step

How many steps are needed for all dice to "decay"?
(1) Try to estimate it from the properties of the Gamma distribution
(2) Verify your estimate with numerical experiments

Solutions should be uploaded until November 9.

Homework

Model of radioactivity

