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Monte Carlo integration

Applications
Described procedure can be used not only to calculate integrals of one-dimensional functions,
it is much more general... How to calculate volume of a given shape?

Standard procedure:
scan all dimensions using dense point grid and
sum cells with centers inside the volume

Monte Carlo integration:
Generate random points in the considered
space and count points inside the volume

A.F.Żarnecki Statictical analysis 06 November 16, 2023 3 / 53



Monte Carlo integration

General case
Examples presented considered the special case: input random variables had uniform
distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a function h(x) of random
variable vector x described by f (x) pdf:

µh ≡ Ef [h(x)] =

∫
dx h(x) f (x)

Monte Carlo determination of µh assumes we can generate random variables according to
f (x). We can then calculate:

µMC = lim
N→∞

1

N

∑
i

h(xi )

where xi , i = 1, . . . ,N are random (input) variables generated from f (x)
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Monte Carlo integration

Importance sampling
When h(x) varies strongly in the considered variable range, statistical precision on the mean
can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused” on the areas where
h(x) is large. Optimal choice turns out to be

g(x) ∼ h(x) f (x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be now calculated as:

µIS =
1

N

∑
i

h(xi ) ·
f (xi )

g(xi )

where the second term corrects for the modified pdf.
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Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to:

Neq =
N2
w

V(Nw )
=

(
∑

i wi )
2∑

i w
2
i

For Poisson distributed random number V(N) = N
A.F.Żarnecki Statictical analysis 06 November 16, 2023 6 / 53



Parameter estimation

Weighted mean I = (1, . . . , 1)ᵀ

What about averaging measurements which are not independent?

In the most general case, variance of the weighted mean is given by

σ2
x̄ = aᵀ Cx a − 2 λ (aᵀI− 1)

Minimizing mean variance we compare partial derivatives to zero and get

Cx a = λ · I

where λ can be constrained from the boundary condition aᵀI = 1.

This is a linear set of equations, which can be solved:

a =
C−1

x I
IᵀC−1

x I
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Maximum Likelihood Method

Maximum Likelihood Method

The product:

L =
N∏
j=1

f (x(j);λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set λ we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

` = ln L =
N∑
j=1

ln f (x(j);λ)

we can look for maximum value of ` or minimum of −2 ` = −2 ln L
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A.F.Żarnecki Statictical analysis 06 November 16, 2023 9 / 53



Maximum Likelihood Method

Mean estimate modified from lecture 05

Let us consider N independent measurements of variable X with given (uniform) uncertainty.
Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (xi ;µ, σ) =
N∏
i=1

1

σ
√

2π
exp

(
−1

2

(xi − µ)2

σ2

)
Log-likelihood:

` = − 1

2σ2

∑
(xi − µ)2 + const

∂`

∂µ
=

1

σ2

∑
(xi − µ) = 0

⇒ µ =
1

N

∑
xi
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Maximum Likelihood Method

Variance estimate

The same method can be also used to estimate the variance of the Gaussian distribution.
Consider partial derivative with respect to σ2 (we can not neglect normalization now):

` = − 1

2σ2

∑
(xi − µ)2 − N

2
ln(2πσ2)

∂`

∂σ2
=

1

2σ4

∑
(xi − µ)2 − N

2σ2
= 0

⇒ σ2 =
1

N

∑
(xi − µ)2

If we extract both µ and σ2 from the same set of measurements:

σ2 =
1

N

∑
(xi − x̄)2

⇒ ML variance estimator is biased! Bessel’s correction missing - lecture 04.
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Maximum Likelihood Method

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

λ = (λ1 . . . λp) L =
N∏
j=1

f (x(j);λ) ` =
N∑
j=1

ln f (x(j);λ)

Best estimate of λ, for given set of experimental results x(j), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:

∂`

∂λi

∣∣∣∣
i=1...p

= 0

The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f (x;λ) containing an unknown parameters of interest λ and observations x(j),
all information relevant for the estimation of the parameters λ is contained in the likelihood
function L(λ; x) =

∏
f (x(j);λ).
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A.F.Żarnecki Statictical analysis 06 November 16, 2023 12 / 53

https://bib-pubdb1.desy.de/record/389738


Maximum Likelihood Method

Multivariate Normal Distribution

Consider experiment resulting in a measurement x = (x1, . . . , xn).
If we assume each variable follows Gaussian p.d.f, the most general form of the joint
probability distribution is:

f (x;λ) = A exp

[
−1

2
(x− λ)ᵀ B (x− λ)

]
where λ is parameter vector and B is an n × n matrix.

Since p.d.f. is symmetric about the point x = λ:

E(x− λ) =

∫
dx (x− λ) f (x;λ) = 0

⇒ E(x) = λ
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Maximum Likelihood Method

Multivariate Normal Distribution

We should note that the derivative of the probability distribution:

∂f

∂λi
= [(x− λ)ᵀ B]i · f (x;λ)

We can now differentiate the formula for E(x− λ) with respect to λ:

∂

∂λ

∫
dx (x− λ) f (x;λ) =

∫
dx [(x− λ) (x− λ)ᵀ B− I] · f (x;λ) = 0

and realizing that B and I are constant we get[∫
dx (x− λ) (x− λ)ᵀ · f (x;λ)

]
B = I

⇒ Cx B = I ⇒ Cx = B−1
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Maximum Likelihood Method

Multivariate Normal Distribution

We can now write the joint probability distribution as:

f (x;λ) = A exp

[
−1

2
(x− λ)ᵀ C−1 (x− λ)

]
where C is the covariance matrix of variables x.

Log-likelihood:

`(λ; x) = −1

2
(x− λ)ᵀ C−1 (x− λ) + const

∂`

∂λi
=

[
(x− λ)ᵀ C−1

]
i

similar to p.d.f. derivative

∂2`

∂λi ∂λj
= −

[
C−1

]
i j

⇒ C =

(
− ∂2`

∂λi ∂λj

)−1
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Maximum Likelihood Method

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates λ̂ are
given by the measured variable values x (single measurement!)

Unlike parameters λ, parameter estimates λ̂ are random variables (functions of x in general)
and so we can consider covariance matrix for λ̂:

Cx = Cλ̂ =

(
− ∂2`

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

σλ̂i
=

(
− ∂

2`

∂λ2
i

)−1/2
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Maximum Likelihood Method

Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
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σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

`(λ̂+ σ; x) = ln f (x ; x + σ) = `(λ̂; x)− 1

2
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Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

`(λ̂+ 2σ; x) = ln f (x ; x + 2σ) = `(λ̂; x)− 4
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Maximum Likelihood Method

Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

`(λ̂+ 3σ; x) = ln f (x ; x + 3σ) = `(λ̂; x)− 9

2
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Maximum Likelihood Method

Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Maximum Likelihood Method

Multiple parameter estimate

Example log-likelihood function contours

`(µ, σ; µ̂, σ̂)

for a sample of 10 events from normal
distribution, with extracted parameter
values µ̂ = 1 and σ̂ = 2.

Figure from:
G. Bohm and G. Zech, Introduction to
Statistics and Data Analysis for Physicsts,
Verlag Deutsches Elektronen-Synchrotron,
3rd edition

Do we understand the shape of `?

1 2 3 4 5

-1

0

1

2

3

-2 -4.5-0.50
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Maximum Likelihood Method

Multiple parameter estimate

For the set x of N measurements we can write:∑
(xi − µ)2 =

∑
(x2

i − 2µxi + µ2)

= N
(
〈x2〉 − 2µ〈x〉+ µ2

)

= N
(
σ̂2 + µ̂2 − 2µµ̂+ µ2

)
σ̂2 = 〈x2〉 − 〈x〉2

Log-likelihood function for the example is then:

`(µ, σ; µ̂, σ̂) = −N

2
ln(2πσ2)

This corresponds to the Gaussian shape for µ, but very asymmetric for σ...

Also, the two parameters are not independent!
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Log-likelihood function for the example is then:

`(µ, σ; µ̂, σ̂) = − N

2σ2

(
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)
− N

2
ln(2πσ2)

This corresponds to the Gaussian shape for µ, but very asymmetric for σ...

Also, the two parameters are not independent!
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Maximum Likelihood Method

Multiple parameter estimate 06 mlm func.ipynb

Example log-likelihood function contours for a sample of 10 events from normal distribution,
with extracted parameter values µ̂ = 1 and σ̂ = 2.

Result from G. Bohm and G. Zech is nicely reproduced...
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Maximum Likelihood Method

Multiple parameter estimate

As mentioned before, µ̂ and σ̂ (extracted from measurements x) are random variables! We can
calculate their joint probability distribution:

f (µ̂, σ̂2;µ, σ) = A · exp

(
−N (µ̂− µ)2

2 σ2

)
·
(
Nσ̂2

σ2

)k−1

exp

(
−λNσ̂

2

σ2

)
where Nσ̂2

σ2 is distributed according to the Gamma distribution with k = (N − 1)/2 and
λ = 1/2 (particular case referred to as χ2 distribution; we will discuss it at the next lectures).

The two variables, µ̂ and σ̂, are independent!

PDF for σ̂ is asymmetric, but much less than the likelihood function !!!
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calculate their joint probability distribution:

f (µ̂, σ̂2;µ, σ) = A · exp

(
−N (µ̂− µ)2

2 σ2

)
·
(
Nσ̂2

σ2

)k−1

exp

(
−λNσ̂

2

σ2

)
where Nσ̂2

σ2 is distributed according to the Gamma distribution with k = (N − 1)/2 and
λ = 1/2 (particular case referred to as χ2 distribution; we will discuss it at the next lectures).

The two variables, µ̂ and σ̂, are independent!
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Maximum Likelihood Method

Multiple parameter estimate 06 mlm func2.ipynb

One needs to stress that likelihood function for p.d.f. parameters are not equivalent to
probability distribution of parameter estimators!

Contours of the joint probability distribution function f (µ̂, σ̂;µ, σ) for µ = 1 and σ = 2

Contours corresponding to log f decrease by 0.5, 2 and 4.5 from maximum...
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Maximum Likelihood Method

Multiple parameter estimate 06 mlm mc 2d.ipynb

One needs to stress that likelihood function for p.d.f. parameters are not equivalent to
probability distribution of parameter estimators!

Results of Monte Carlo simulation (contours from 1 000 000 experiments)

In each experiment, mean and sigma are calculated from 10 generated numbers
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Statistical analysis of experimental data

Parameter Inference

1 Maximum Likelihood Method

2 Confidence intervals

3 Real life example

4 Homework
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Confidence intervals

Presenting measurement results

When doing the measurement, we usually quote the final result as numerical value (with units)
and estimated uncertainty:

x ± σx

We can often calculate the uncertainty from the data itself (eg. when result is obtained by
averaging a large number of independent measurements) or from the variation of the
log-likelihood function.

Attributing proper uncertainty to the result is crucial!

But what does it tell as after all?!
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Confidence intervals

Normal distribution

Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value within ±N σ:

1− α
± 1 σ ⇒ 68.27 %
± 2 σ ⇒ 95.45 %
± 3 σ ⇒ 99.73 %
± 4 σ ⇒ 99.9937 %
± 5 σ ⇒ 99.999943 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

There is a non-zero chance for deviation grater than 5σ, but it is extremely small
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Confidence intervals

Normal distribution

Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value by more than Nσ:

α
± 1 σ ⇒ 31.73 %
± 2 σ ⇒ 4.55 %
± 3 σ ⇒ 0.27 %
± 4 σ ⇒ 0.0063 %
± 5 σ ⇒ 0.000057 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Fluctuations up and down are observed with equal probability...
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Confidence intervals

Normal distribution 06 interval.ipynb

Results of the Monte Carlo test
(µ = 0, σ = 1, 100 000 000 generations)

Down fluctuations:
< −1 σ p = 0.15864225
< −2 σ p = 0.0227686
< −3 σ p = 0.00134872
< −4 σ p = 3.204E-05
< −5 σ p = 3.2E-07

Fluctuations up:
> 1 σ p = 0.15861607
> 2 σ p = 0.02275479
> 3 σ p = 0.00135162
> 4 σ p = 3.263E-05
> 5 σ p = 2.8E-07

Good agreement with expectations
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Confidence intervals

Poisson distribution 06 interval 2.ipynb

Results of the Monte Carlo test
(µ = 10, 100 000 000 generations)

Down fluctuations:
< −1 σ p = 0.1301325
< −2 σ p = 0.01033324
< −3 σ p = 4.55E-05
< −4 σ p = 0
< −5 σ p = 0

Fluctuations up:
> 1 σ p = 0.13553469
> 2 σ p = 0.02702754
> 3 σ p = 0.00344483
> 4 σ p = 0.00029364
> 5 σ p = 1.774e-05

Much longer tail of positive fluctuations!
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Confidence intervals

Gamma distribution 06 interval 3.ipynb

Results of the Monte Carlo test
(µ = σ2 = 10, 10 000 000 generations)

Down fluctuations:
< −1 σ p = 0.1533757
< −2 σ p = 0.0046445
< −3 σ p = 0
< −4 σ p = 0
< −5 σ p = 0

Fluctuations up:
> 1 σ p = 0.1554444
> 2 σ p = 0.0368358
> 3 σ p = 0.0067406
> 4 σ p = 0.0010105
> 5 σ p = 0.0001305

Even longer, 5σ fluctuations not excluded
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Confidence intervals

Normal distribution in N-D

It is also important to notice that the fractions presented previously
(eg. 68% within ±1σ) refer to one-dimensional normal distribution only!

If we consider 2-D distribution

Less than 40% is contained inside 1σ contour...

Fractions within Nσ contours:

1σ fraction above 50% only for N=1 !

G. Bohm and G. Zech
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Confidence intervals

Interpreting results

As demonstrated above, quoting numerical result with uncertainties gives only partial
information on the measurement...

It is sufficient, if we can assume normal distribution of the variable.

Also, we need to assume that the width of the distribution does not depend on the measured
parameter. Only then the likelihood function will be Gaussian as well...

In the general case, parameter uncertainty does not give us full information on the shape (in
particular the tails) of the distribution...

How should we present results of the experiment, if we are more concerned about the
probability of (large) result fluctuations?...
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Confidence intervals

Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given probability
distribution, f (x;λ), when the parameter values λ are known.

The actual situation is usually different: for given set of measurements x we extract estimates
of the parameter values λ̂.

Uncertainties estimated from log-likelihood variation indicate the expected level of agreement
(in Gaussian approximation) between our estimate λ̂ and the true parameter values λ.

Can we present measurement results in a way which gives us more precise information about
the possible fluctuations in the estimate λ̂?

Yes, but we need to define the problem differently... We should not consider probability of λ̂...
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Confidence intervals

Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to the probability
distribution of the experimental results, f (x;λ).

For given outcome of the experiment xm, 1− α confidence level (C.L.) interval
for parameter λ is [λ1, λ2], if for all values λ′ ∈ [λ1, λ2], our result xm is inside the
corresponding 1− α probability interval for f (x ;λ′).

This definition clearly depends on the way we define probability intervals for f (x ;λ′) - it is
rather a concept, more assumptions are needed.

We always refer to probability distribution for x!
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Confidence intervals

Frequentist confidence intervals

It is interesting to note that the modern
concept of confidence intervals was
proposed by Polish statistician Jerzy
Neyman only in 1937

Jerzy Neyman obtained his PhD (1924)
and habilitation (1928) at UW

J.Neyman, Phil. Trans. Royal Soc. London,
Series A, 236 333-80 (1937).
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Confidence intervals

Frequentist confidence intervals
As mentioned above, to define confidence interval for parameter, we need to define how the
probability interval for our measurement is defined.
There are three “natural” choices:

We constrain the measurement from above:∫ +∞

xul

dx f (x ;λ) = α

We constrain the measurement from below:∫ xll

−∞
dx f (x ;λ) = α

We use central probability interval: as presented for Gaussian pdf∫ x1

−∞
dx f (x ;λ) = α/2 and

∫ +∞

x2

dx f (x ;λ) = α/2
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Confidence intervals

Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

f (x ;λ, σ) =
1

σ
√

2π
exp

(
−1

2

(x − λ)2

σ2

)
assuming σ is known (and fixed). What is the central 90% C.L. interval for λ?

From the Gaussian pdf properties we can directly obtain:

x1 = λ− 1.64σ x2 = λ+ 1.64σ

Definition of the confidence interval for λ is based on the condition: we measure x = xm

x1 < xm < x2

Which is fulfilled for all λ in range:

λ1 = xm − 1.64σ < λ < xm + 1.64σ = λ2

So the central 90% C.L. interval for λ is [xm − 1.64σ, xm + 1.64σ]...
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Confidence intervals

Frequentist confidence intervals

Graphical presentation of the procedure for σ = 1
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G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Confidence intervals

Frequentist confidence intervals

Graphical presentation of the general procedure
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G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
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A.F.Żarnecki Statictical analysis 06 November 16, 2023 39 / 53

https://arxiv.org/abs/physics/9711021


Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x
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θ
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calculate limits of probability intervals
for x , x1(θ) and x2(θ), for different
values of θ

calculated intervals define the
“accepted region” in (θ, x)

confidence interval for θ is defined by
drawing line x = xm in the accepted
region

⇒ limit on θ for given xm, θ1(xm),
corresponds to limit on x for given θ:
xm = x1(θ1).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page
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Confidence intervals

Frequentist confidence intervals
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Confidence intervals

Frequentist limits

The procedure is more unique, if we want to constrain the parameter from above or below.
We first define an upper or lower limit for the measured value x , for given λ (at 1− α CL):∫ +∞

xul (λ)
dx f (x ;λ) = α or

∫ xll (λ)

−∞
dx f (x ;λ) = α

Assuming that 〈x〉 increases with λ, and the measurement resulted in value xm:

Upper limit on parameter λ can be defined by the condition: xll(λul) = xm

For λ > λul , the probability that the experiment result is not larger than xm is less than α.
⇒We state that values λ > λul are excluded at (1− α) confidence level (CL)

Lower limit on parameter λ can be defined by the condition: xul(λll) = xm
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Frequentist limits on the quark radius
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Introduction

HERA electron(positron)-proton collider at DESY
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Introduction

Deep Inelastic e±p Scattering Main process studied by H1 and ZEUS
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Introduction

SM predictions vs measurements from HERA
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NC and CC DIS cross sections comparable for the highest
Q2 values

Q2 ∼ M2
Z , M

2
W

Combined QCD+EW analysis shows good agreement with
SM predictions

Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628

High precision data could also be used to look for possible BSM effects...
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Quark radius limits

Quark form factor
“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is expected to decrease at high
momentum transfer:

e

q
R

q

Z / γ
dσ

dQ2
=

dσSM

dQ2
·

[
1−

R2
q

6
Q2

]2

·
[

1− R2
e

6
Q2

]2

where Rq is the root mean-square radius of the electroweak charge distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for e+p and e−p !
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Quark radius limits

Data model
Model description extended to take into account the possible BSM contributions

−2 ` (p, s, η) =
∑
i

[
mi (p, η) +

∑
j sjγ

i
jm

i (p, η)− µi0
]2(

δ2
i ,stat + δ2

i ,uncor

)
(µi0)2

+
∑
j

s2
j

p and s are vectors of PDF parameters pk (describe proton structure) and systematic shifts sj ,
η is the parameter describing BSM contribution (here: η = R2

q)

⇒ we look for global likelihood maximum for the combined HERA data

R2 Data
q = −0.2 · 10−33 cm2

This one number summarizes the results of all our measurements...
µi

0 and mi (p, η) are measured and predicted (SM+BSM) cross sections,
γ ij , δi,stat and δi,uncor are the relative correlated systematic, relative statistical and relative uncorrelated
systematic uncertainties of the input data point i
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Quark radius limits

Limit setting
Limits derived using the technique of “MC replicas” (a must for frequentist approach).

Replicas are generated sets of cross-section values that are calculated for given R2 True
q and

varied randomly according to the statistical and systematic uncertainties (including
correlations) of the input data.

Each replica is then used as an input to
SM+BSM fit ⇒ R2 Fit

q

Many replicas for each considered
R2 True
q value ⇒ distribution of R2 Fit

q

R2 Data
q R2 True

q

R2 True
q is tested by comparing R2 Fit

q distribution with the value of R2 Data
q
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Quark radius limits

Limit setting

The probability of obtaining a R2 Fit
q value

smaller than that obtained for the actual data

Prob(R2 Fit
q < R2 Data

q )

is studied as a function of R2 True
q

R2 True
q values corresponding to the probability

smaller than 5% are excluded at the 95% C.L.
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Quark radius limits

Results
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Statistical analysis of experimental data

Parameter Inference

1 Maximum Likelihood Method

2 Confidence intervals

3 Real life example

4 Homework
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Homework

Homework Solutions to be uploaded by November 30.

Consider the example discussed today:
sample of 10 measurements from the normal distributions G (µ, σ).

Assuming that the measured variance of the sample is σ̂ = 2:

calculate the 95% CL upper limit on the true variance of the distribution, σ,
based on the properties of the Gamma distribution (SciPy library).

verify the result by the means of the Monte Carlo simulation.
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