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Monte Carlo integration

\
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Applications

Described procedure can be used not only to calculate integrals of one-dimensional functions,
it is much more general... How to calculate volume of a given shape?

Standard procedure: Monte Carlo integration:

scan all dimensions using dense point grid and Generate random points in the considered
sum cells with centers inside the volume space and count points inside the volume
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Monte Carlo integration 5

General case

Examples presented considered the special case: input random variables had uniform
distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a function h(x) of random
variable vector x described by f(x) pdf:

un = Ef[h(x)] = /dx h(x) f(x)

Monte Carlo determination of pj, assumes we can generate random variables according to
f(x). We can then calculate:

| — h(x;
Hmc moN _ (xi)
1
where x;, i =1,..., N are random (input) variables generated from f(x)
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Monte Carlo integration 5

Importance sampling

When h(x) varies strongly in the considered variable range, statistical precision on the mean
can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused” on the areas where
h(x) is large. Optimal choice turns out to be

g(x) ~ h(x)f(x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be now calculated as:

s = LZ”(X")' f(xi)

g(xi)

where the second term corrects for the modified pdf.
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Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N — NW:ZW;
i

Variance of the sum of weights:

V(Ny) = Z w?

Statistical power of the weighted Monte Carlo sample is equivalent to:
Ney = NG, _ (i wi)?
V(Nyw) ;w?
For Poisson distributed random number V(N) = N
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Parameter estimation

Weighted mean

(1,...,1)T
What about averaging measurements which are not independent?

In the most general case, variance of the weighted mean is given by

02 = alCxa — 2\ (al—1)

Minimizing mean variance we compare partial derivatives to zero and get
Cxka = A1
where A can be constrained from the boundary condition a™l = 1.
This is a linear set of equations, which can be solved:
_CG'I
St
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Maximum Likelihood Method >

Maximum Likelihood Method

L= 9N

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set A we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL =) Inf(xU;x)
j=1

we can look for maximum value of £ or minimum of —2¢ = —2InL
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Statistical analysis of experimental data > .

Parameter Inference

@ Maximum Likelihood Method
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Maximum Likelihood Method >

Mean estimate modified from lecture 05

Let us consider NV independent measurements of variable X with given (uniform) uncertainty.
Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

N

N | 1 1(xi — p)?
L = iHlG(x;,M,U) = HU\/geXp <_2a2)

i=1

Log-likelihood:
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Maximum Likelihood Method o

Variance estimate

The same method can be also used to estimate the variance of the Gaussian distribution.
Consider partial derivative with respect to o2 (we can not neglect normalization now):

_ 1 oy N 2
t = @Z(X, 1) 3 In(2mo”)
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Maximum Likelihood Method o

Variance estimate

The same method can be also used to estimate the variance of the Gaussian distribution.
Consider partial derivative with respect to o2 (we can not neglect normalization now):

_ 1 ! 2 N 2

t = ~552 Z(x, 1) 5 In(2mo”)
ot 1 . N
507 = a8 20w = 55
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Maximum Likelihood Method >

Variance estimate

The same method can be also used to estimate the variance of the Gaussian distribution.
Consider partial derivative with respect to o2 (we can not neglect normalization now):

_ 1 § . 2 N 2
5 = —@ (X, /,L) E |n(27TO' )
ot 1 , N
do2  20% Z(X' - 202 0

1
2 _ 2
= 00 = 4 E (xi — 1)
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Maximum Likelihood Method >

Variance estimate

The same method can be also used to estimate the variance of the Gaussian distribution.
Consider partial derivative with respect to o2 (we can not neglect normalization now):

_ 1 § . 2 N 2
5 = —@ (X, /,L) E |n(27TO' )
ot 1 , N
do2  20% Z(X' - 202 0

1
2 RY
= 0= g E (xi — 1)
If we extract both ; and o from the same set of measurements:

o? = %Z(X,’*)_()z

= ML variance estimator is biased!

Bessel's correction missing - lecture 04.
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Maximum Likelihood Method >

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

N N
A=(A1...Xp) L:Hf(x(j);)\) gzsz(x(j);)\)
J=1 j=1
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Maximum Likelihood Method oX

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

N N
A=(A1...Xp) L:Hf(x(j);)\) gzsz(x(j);)\)
J=1 j=1

Best estimate of A, for given set of experimental results xU), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:
ol
=0
o\

ili=1..p
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Maximum Likelihood Method >

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:
N ' N '
A=(A1...2p) L:Hf(x(l);)\) gzsz(x(]);)\)
J=1 j=1

Best estimate of A, for given set of experimental results xU), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:

ol
O

The Likelihood Principle G. Bohm and G. Zech

=0

ili=1..p

Given a p.d.f. f(x; \) containing an unknown parameters of interest A and observations xU),
all information relevant for the estimation of the parameters A is contained in the likelihood
function L(X;x) = [T f(xU); \).
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Maximum Likelihood Method >

Multivariate Normal Distribution

Consider experiment resulting in a measurement x = (x1,..., Xp).

If we assume each variable follows Gaussian p.d.f, the most general form of the joint
probability distribution is:

1
f(x;A) = Aexp |:—2(X —A)TB(x—A)
where X is parameter vector and B is an n X n matrix.

Since p.d.f. is symmetric about the point x = A:
E(x—A) = /dx(x—)\) f(x;A) =0

= Ex) = A
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Maximum Likelihood Method >

Multivariate Normal Distribution

We should note that the derivative of the probability distribution:

of
ONi

= [(x=A)TB]; - f(x;A)
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Maximum Likelihood Method >

Multivariate Normal Distribution

We should note that the derivative of the probability distribution:

of
ONi
We can now differentiate the formula for E(x — A) with respect to A:

aa)\/dx(x—)\)f(x;)\) :/dx [(x=A)(x=XA)TB-1I]-f(x;A) = 0

= [(x=A)TB]; - f(x;A)
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Maximum Likelihood Method >

Multivariate Normal Distribution

We should note that the derivative of the probability distribution:
of

ONi
We can now differentiate the formula for E(x — A) with respect to A:

aa)\/dx(x—)\)f(x;)\) :/dx [(x=A)(x=XA)TB-1I]-f(x;A) = 0

and realizing that B and I are constant we get

[/dx(x—)\)(x—)\)T-f(x;)\) B =1

= [(x=A)TB]; - f(x;A)
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Maximum Likelihood Method >

Multivariate Normal Distribution

We should note that the derivative of the probability distribution:
of

ONi
We can now differentiate the formula for E(x — A) with respect to A:

aa)\/dx(x—)\)f(x;)\) :/dx [(x=A)(x=XA)TB-1I]-f(x;A) = 0

and realizing that B and I are constant we get

[/dx(x—)\)(x—)\)T-f(x;)\) B =1

= [(x=A)TB]; - f(x;A)

= CyB =1 = Cy = B!
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Maximum Likelihood Method >

Multivariate Normal Distribution

We can now write the joint probability distribution as:
1
fx;A) = Aexp [—2(x —A)TCt(x— A)}

where C is the covariance matrix of variables x.
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Maximum Likelihood Method >

Multivariate Normal Distribution

We can now write the joint probability distribution as:
1
fx;A) = Aexp [—2(x —A)TCt(x— A)}

where C is the covariance matrix of variables x. Log-likelihood:

(Ax) = —%(x ~A)TC 1 (x—A) + const
ol 1 . R
Vi [(x —A)TC ]I. similar to p.d.f. derivative
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Maximum Likelihood Method >

Multivariate Normal Distribution

We can now write the joint probability distribution as:
1
fx;A) = Aexp [—2(x —A)TCt(x— A)}

where C is the covariance matrix of variables x. Log-likelihood:
1

(Ax) = —E(x ~A)TC 1 (x—A) + const
aaf = [(x=A)T (C_l}l. similar to p.d.f. derivative
020 . 020 \ 7
onoN S <_8A; 6Aj>
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Maximum Likelihood Method -
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Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates X are
given by the measured variable values x (single measurement!)

Unlike parameters A, parameter estimates X are random variables (functions of x in general)

and so we can consider covariance matrix for A:

20 \ 7
Ge=00 = (_8)\,- aAj)
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Maximum Likelihood Method -

F.

\,
Y
W

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates X are
given by the measured variable values x (single measurement!)

Unlike parameters A, parameter estimates A are random variables (functions of x in general)
and so we can consider covariance matrix for A:

20 \ 7
be=0G0 = (_8)\,- aAj)

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!
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Maximum Likelihood Method -

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates X are
given by the measured variable values x (single measurement!)

Unlike parameters A, parameter estimates A are random variables (functions of x in general)
and so we can consider covariance matrix for A:

20 \ 7
be=0G0 = (_8)\,- aAj)

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

826 -1/2
- ()
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Maximum Likelihood Method hp
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Parameter covariance matrix

Considered example was based on the Gaussian distribution.

Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
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Maximum Likelihood Method >

Parameter covariance matrix

Considered example was based on the Gaussian distribution.

Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

E(S\+U;X) = Inf(x;x4+0) = (A x)— =
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Maximum Likelihood Method >

Parameter covariance matrix

Considered example was based on the Gaussian distribution.

Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

E(S\—I—Qa;x) = Inf(x;x+20) = U\ x)— =
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Maximum Likelihood Method >

Parameter covariance matrix

Considered example was based on the Gaussian distribution.

Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

For 1-D case we have:

((A+30;x) = Inf(x;x+30) = £(X;x) —
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Maximum Likelihood Method >

Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?
Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Maximum Likelihood Method

Multiple parameter estimate
Example log-likelihood function contours
Up, o f1,6)

for a sample of 10 events from normal
distribution, with extracted parameter
values i =1 and 6 = 2.

Figure from:

G. Bohm and G. Zech, Introduction to
Statistics and Data Analysis for Physicsts,
Verlag Deutsches Elektronen-Synchrotron,
3rd edition
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Maximum Likelihood Method >

Multiple parameter estimate

For the set x of N measurements we can write;

Y i—m)? = > 0F —2mx + )

= N(() — 2u(x) +42)
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Maximum Likelihood Method >

Multiple parameter estimate

For the set x of N measurements we can write;
Slo—n = 322+ 12)
= N () = 2u(x) + 1)

= N (6% 402 —2up+ 1) 8% = (x*) — (x)?
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Maximum Likelihood Method >

Multiple parameter estimate

For the set x of N measurements we can write;
Slo—n = 322+ 12)
= N () = 2u(x) + 1)
= N (8%+p*—2up+ 11°) 82 = (%) = (x)?

Log-likelihood function for the example is then:

A A N
E(,u,a;,u, U) = 20_2 Z Y In(27rJ )

A.F.Zarnecki Statictical analysis 06 November 16, 2023 19 /53



Maximum Likelihood Method >

Multiple parameter estimate

For the set x of N measurements we can write;
Slo—n = 322+ 12)
= N () = 2u(x) + 1)

= N (6% 402 —2up+ 1) 8% = (x*) — (x)?

Log-likelihood function for the example is then:

A . . N
U0 f1,6) = =55 (6% + (n=p)?) = 5 In(270?)
This corresponds to the Gaussian shape for u, but very asymmetric for o...

Also, the two parameters are not independent!
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Maximum Likelihood Method >

Multiple parameter estimate 06_mIm_func.ipynb

Example log-likelihood function contours for a sample of 10 events from normal distribution,

with extracted parameter values i =1 and & = 2.
Log-likelihood contours for example measurement

P N
ST )
(&) )
NI G Y

Result from G. Bohm and G. Zech is nicely reproduced...
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Maximum Likelihood Method >

Multiple parameter estimate

As mentioned before, fi and 6 (extracted from measurements x) are random variables! We can
calculate their joint probability distribution:

k—1
o N (- )2\ [ N6 N5
f 2, = A — . —A—5—
(1,64 p,0) exp ( 5 2 2 exp 2

where ’\L—(”;Z is distributed according to the Gamma distribution with k = (N —1)/2 and

A = 1/2 (particular case referred to as x? distribution; we will discuss it at the next lectures).
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Maximum Likelihood Method >

Multiple parameter estimate

As mentioned before, fi and 6 (extracted from measurements x) are random variables! We can
calculate their joint probability distribution:

k—1
o N (- )2\ [ N6 N5
f 2, = A — . —A—5—
(1,64 p,0) exp ( 5 2 2 exp 2

N2

where ~5- is distributed according to the Gamma distribution with k = (N —1)/2 and
A = 1/2 (particular case referred to as x? distribution; we will discuss it at the next lectures).

The two variables, [i and &, are independent!

PDF for & is asymmetric, but much less than the likelihood function !!!

A.F.Zarnecki Statictical analysis 06 November 16, 2023 21/53



\,
\
\E\\ )

Maximum Likelihood Method

Multiple parameter estimate 06-mIm_func2.ipynb

One needs to stress that likelihood function for p.d.f. parameters are not equivalent to
probability distribution of parameter estimators!

~

Contours of the joint probability distribution function f(fi,6; u,0)  for p=1and o =2

Log-likelihood contours for example measurement

14:

sF —

2 //"__\
FE))

o A\

_1f \“‘—"/

’20: 05 1 15 2 25 3 35 4 45 5

G

Contours corresponding to log f decrease by 0.5, 2 and 4.5 from maximum...

A.F.Zarnecki Statictical analysis 06 November 16, 2023 22 /53


https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/06_Parameter_Inference/06_mlm_func2.ipynb

NN
W iy

Maximum Likelihood Method

Multiple parameter estimate 06_mIm_mc_2d.ipynb

One needs to stress that likelihood function for p.d.f. parameters are not equivalent to
probability distribution of parameter estimators!

Results of Monte Carlo simulation (contours from 1 000 000 experiments)

Distribution of estimated mean vs sigma

14:
3f —
2 //’_'\“
F D
&)
o~
’20: 05 1 15 2 25 3 35 4 45 5

In each experiment, mean and sigma are calculated from 10 generated numbers
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Statistical analysis of experimental data > .

Parameter Inference

© Confidence intervals
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Confidence intervals ’im

Presenting measurement results

When doing the measurement, we usually quote the final result as numerical value (with units)
and estimated uncertainty:

X * oy
We can often calculate the uncertainty from the data itself (eg. when result is obtained by

averaging a large number of independent measurements) or from the variation of the
log-likelihood function.

Attributing proper uncertainty to the result is crucial!

But what does it tell as after all?!
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Confidence intervals ’im

Normal distribution

Meaning of o is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value within + N o:

f(x; 1,0)
11—«
+10 = 68.27 %
+20 = 9545 %
+30 — 99.73 % o
+40 = 99.9937 %
+50 = 99.999943 % o/2 o/2
! ! ! !
-3 -2 - 0 1 2 3
(x—W/oc

There is a non-zero chance for deviation grater than 50, but it is extremely small

A.F.Zarnecki Statictical analysis 06 November 16, 2023 26 /53



Confidence intervals - %

Normal distribution

Meaning of o is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value by more than No:

+lo =
+20 =
+30 =
+4o0 =
+50 =

«

31.73 %
4.55 %
0.27 %
0.0063 %

0.000057 %

flx; n,0)
1-a
o/2 o/2
| | |
-3 -2 0 1 3
(x—W/oc

Fluctuations up and down are observed with equal probability...

November 16, 2023
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Confidence intervals ’im

Normal distribution 06_interval.ipynb
Down fluctuations:

Results of the Monte Carlo test < —lo p=0.15864225

(n=0, c =1, 100 000 000 generations) < =20 p=0.0227686

< —30  p=0.00134872

< —40 p = 3.204E-05

<

Probability distribution from MC

A P ~50  p=3.2E07
[} F " b
2 100k £ i Fluctuations up:
5 w0 | { h >1lo p = 0.15861607
8 1o | i >20 p = 0.02275479
R ; >30 p = 0.00135162
ool f ! >40  p=3.263E05
N £ ! >50 b = 2.8E-07
10 E ..“.‘.‘...“....."I
-10 -8 -6 -4 -2 0 2 4 & 8 10 Good agreement with expectations
variable
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Confidence intervals ’im

Poisson distribution 06_interval_2.ipynb

Down fluctuations:
Results of the Monte Carlo test < —-lo p=01301325
(1 = 10, 100 000 000 generations) < =20 p=001033324
< =30 p=4.55E-05
Probability distribution from MC < —40 p=20
.%‘ 10-! *”,. ,,'“' < =50 p=20
T 0% e *e Fluctuations up:
% 10° éf’ e >1lo p = 0.13553469
8 10+ L . >20 p = 0.02702754
S ’ - >30 p = 0.00344483
. *. >40 p = 0.00029364
O F | >50 p = 1.774e-05
B e RN — 0 Much longer tail of positive fluctuations!
variable
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Confidence intervals ’im

Gamma distribution 06_interval_3.ipynb

Down fluctuations:
Results of the Monte Carlo test < —lo p=0.1533757
(u = o2 =10, 10 000 000 generations) < =20 p = 00046445
< 30 p=20
Probability distribution from MC < —4o p = 0
%‘10717 Jrrr‘ff—_‘"‘a.& < —=bo p:O
> 10 I'J N Fluctuations up:
£ ~, >1o p = 0.1554444
gk ~ >20  p=0.0368358
= My >30 p = 0.0067406
o N >40  p=0.0010105
10 EJ >bo p = 0.0001305
0 5 10 15 20 25 30 35 40 Even longer, 5¢ fluctuations not excluded

variable
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Confidence intervals ’im

Normal distribution in N-D

It is also important to notice that the fractions presented previously
(eg. 68% within 1) refer to one-dimensional normal distribution only!

If we consider 2-D distribution Fractions within No contours:
Deviation Dimension
X, 1 2 3 4
lo 0.683 0.393 0.199 0.090
20 0.954 0.865 0.739 0.594
% 3o 0.997 0.989 0.971 0.939
1 4 0 1. 1. 0.999 0.997

1o fraction above 50% only for N=1 !

Less than 40% is contained inside 1o contour... G. Bohm and G. Zech
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Interpreting results

As demonstrated above, quoting numerical result with uncertainties gives only partial
information on the measurement...

It is sufficient, if we can assume normal distribution of the variable.

Also, we need to assume that the width of the distribution does not depend on the measured
parameter. Only then the likelihood function will be Gaussian as well...
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Confidence intervals - %

Interpreting results

As demonstrated above, quoting numerical result with uncertainties gives only partial
information on the measurement...

It is sufficient, if we can assume normal distribution of the variable.

Also, we need to assume that the width of the distribution does not depend on the measured
parameter. Only then the likelihood function will be Gaussian as well...

In the general case, parameter uncertainty does not give us full information on the shape (in
particular the tails) of the distribution...

How should we present results of the experiment, if we are more concerned about the
probability of (large) result fluctuations?...

A.F.Zarnecki Statictical analysis 06 November 16, 2023 32/53



Confidence intervals ’im

Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given probability
distribution, f(x; X), when the parameter values A are known.
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Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given probability
distribution, f(x; X), when the parameter values A are known.

The actual situation is usually different: for given set of measurements x we extract estimates
of the parameter values A.

Uncertainties estimated from log-likelihood variation indicate the expected level of agreement
(in Gaussian approximation) between our estimate A and the true parameter values .

Can we present measurement results in a way which gives us more precise information about
the possible fluctuations in the estimate A7
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Interpreting results

There is also another problem, which has to be noticed!

So far we have only considered distribution of experimental results for given probability
distribution, f(x; X), when the parameter values A are known.

The actual situation is usually different: for given set of measurements x we extract estimates
of the parameter values A.

Uncertainties estimated from log-likelihood variation indicate the expected level of agreement
(in Gaussian approximation) between our estimate A and the true parameter values .

Can we present measurement results in a way which gives us more precise information about
the possible fluctuations in the estimate A7

Yes, but we need to define the problem differently... We should not consider probability of A...
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Confidence intervals ’im

Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to the probability
distribution of the experimental results, f(x; A).

For given outcome of the experiment x,,, 1 — « confidence level (C.L.) interval
for parameter A\ is [A1, \z], if for all values X € [A1, A2], our result x,, is inside the
corresponding 1 — o probability interval for f(x; \').
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Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to the probability
distribution of the experimental results, f(x; A).

For given outcome of the experiment x,,, 1 — « confidence level (C.L.) interval
for parameter A\ is [A1, \z], if for all values X € [A1, A2], our result x,, is inside the
corresponding 1 — o probability interval for f(x; \').

This definition clearly depends on the way we define probability intervals for f(x; \') - it is
rather a concept, more assumptions are needed.

We always refer to probability distribution for x!
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Confidence intervals

Frequentist confidence intervals

X—Outline of a Theory of Statistical Estimation Based on the
It is interesting to note that the modern SR Sy aldinobaniy
concept of confidence intervals was ] chafi:
proposed by Polish statistician Jerzy ' RSER S, (oo Gl latin
Neyman only in 1937

(Communicated by H. JerFreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937)

CoONTENTS
Page
A S e T S P S T S SR D 333
H H (a) General Remarks, Notation, and Definitions . . . . . . . . . . .. ... 333
Je rzy N eym an Obta In ed h IS P h D ( 1 924) (b) Review of the Solutions of the Problem of Estimation Advanced Hereto . . . 343
il H (¢) Estimation by Unique Estimate and by Interval . . . . . . . . .. . .. 346
and habllltatlon (1928) at UW B CONPIDENGE INTERVAES .« o o ol foro e o oo aie v s s wis o aiis o aia s o 347
(@)iSEateraantiof the Problem - - < -/« s o = o o a0 eis o snia s as s 347
(b) Solution of the Problem of Confidence Intervals . . . . . . . . . . . .. 3§0
e LU iy A A R RO RO R hﬁ
s e o e R e SO U :4(3..7
(¢) Family of Similar Regions Based on a Sufficient System of Statistics!? . &b K 364
367

R O BRI e ) v o ) sth b (085 & o Oyies s v i
J.Neyman, Phil. Trans. Royal Soc. London,
Series A, 236 333-80 (1937).
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Confidence intervals ’im

Frequentist confidence intervals
As mentioned above, to define confidence interval for parameter, we need to define how the

probability interval for our measurement is defined.
There are three “natural” choices:
@ We constrain the measurement from above:

+oo
/ dx f(x;\) = «

ul

@ We constrain the measurement from below:

Xl
/ dx f(x;\) = «

as presented for Gaussian pdf

@ We use central probability interval:

X1 +oo
/ dx f(x;\) = «/2 and / dx f(x;\) = «a/2
—0o0 X

November 16, 2023 36 /53
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Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

fxro) = —o exp<—1(X_)\)2>

2 g2

assuming o is known (and fixed). What is the central 90% C.L. interval for A?

oV 2
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Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

1 1(x— )2
f(x;\ o) = . 27reXP<—2( 02)>

assuming o is known (and fixed). What is the central 90% C.L. interval for A?

From the Gaussian pdf properties we can directly obtain:

x1 =\—1.640 X = A+ 1.640
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Confidence intervals ’im

Frequentist confidence intervals
Let us consider the simplest possible example, Gaussian pdf:

1 1(x— )2
f(x;\ o) = . 27reXP<—2( 02)>

assuming o is known (and fixed). What is the central 90% C.L. interval for A?

From the Gaussian pdf properties we can directly obtain:
x1 =\—1.640 X = A+ 1.640
Definition of the confidence interval for A is based on the condition: we measure X = X,
X1 < Xm < X2
Which is fulfilled for all A in range:
AM = xXm—1640 < A < xp+1.640 = X

So the central 90% C.L. interval for X is [x,, — 1.640, X, + 1.640]...
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Confidence intervals

Frequentist confidence intervals

Graphical presentation of the procedure for o =1

Mean p
w
T T T T T T

=)
O rTTTT

a0 1 2

3

IS

Measured Mean x
G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Confidence intervals

Frequentist confidence intervals

Graphical presentation of the general procedure

7

4

6

A R T P T
3 4 5 6
X

o
(S}
N

G.J.Feldman, R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021
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Frequentist confidence intervals

General procedure @ calculate limits of probability intervals

; for x, x1(0) and x2(0), for different
Spe= values of

parameter 0
=
i
=
D
=
D
—
8

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page
A.F.Zarnecki
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November 16, 2023 40/53


https://pdg.lbl.gov/

Confidence intervals -%

\,
\
\E V]

Frequentist confidence intervals

General procedure @ calculate limits of probability intervals

; for x, x1(0) and x2(0), for different
IS values of ¢

@ calculated intervals define the

= 2,(6), 8,(x) “accepted region” in (6, x)

x1(8), 8,(x)

parameter 0

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page
A.F.Zarnecki

Statictical analysis 06

November 16, 2023 40/53


https://pdg.lbl.gov/

Confidence intervals -%

\,
\
\E V]

Frequentist confidence intervals

General procedure @ calculate limits of probability intervals

; for x, x1(0) and x2(0), for different
IS values of ¢

@ calculated intervals define the
. : ™ x1,(6), 8,(x) “accepted region” in (6, x)

2,(0). 8,0) @ confidence interval for 6 is defined by
drawing line x = x,,; in the accepted

region

parameter 0

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page
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Frequentist confidence intervals

General procedure

E D)=

. 12,(6), 0,(x)

x1(8), 8,(x)

parameter 0

50) %0

Possible experimental values x

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys.

A.F.Zarnecki

\,
\
\E\\ )

calculate limits of probability intervals
for x, x1(0) and x2(), for different
values of 6

calculated intervals define the
“accepted region” in (6, x)
confidence interval for 6 is defined by
drawing line x = x,,; in the accepted
region

limit on 6 for given xp,, 01(xm),
corresponds to limit on x for given 6:
Xm = X1(01).

2022, 083C01 (2022), PDG web page

Statictical analysis 06
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Frequentist limits

The procedure is more unique, if we want to constrain the parameter from above or below.
We first define an upper or lower limit for the measured value x, for given A (at 1 — o CL):

+00 xi(A)
/ dx f(x;\) = a or / dx f(x;\) = «
XuI(A)

—0o0
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Confidence intervals > .

Frequentist limits

The procedure is more unique, if we want to constrain the parameter from above or below.
We first define an upper or lower limit for the measured value x, for given A (at 1 — o CL):

+00 xi(A)
/ dx f(x;\) = a or / dx f(x;\) = «
Xu/(A)

—0o0
Assuming that (x) increases with A, and the measurement resulted in value xp,:

@ Upper limit on parameter A can be defined by the condition: xj(Ay) = xm

For A > A/, the probability that the experiment result is not larger than x,, is less than «.
= We state that values A > )\, are excluded at (1 — «) confidence level (CL)

A.F.Zarnecki
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Frequentist limits

The procedure is more unique, if we want to constrain the parameter from above or below.
We first define an upper or lower limit for the measured value x, for given A (at 1 — o CL):

+00 xi(A)
/ dx f(x;\) = a or / dx f(x;\) = «
Xu/(A)

—0o0
Assuming that (x) increases with A, and the measurement resulted in value xp,:

@ Upper limit on parameter A can be defined by the condition: xj(Ay) = xm

For A > A/, the probability that the experiment result is not larger than x,, is less than «.
= We state that values A > )\, are excluded at (1 — «) confidence level (CL)

@ Lower limit on parameter A can be defined by the condition: x,/(Aj) = xm

A.F.Zarnecki

Statictical analysis 06
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Statistical analysis of experimental data > .

Parameter Inference

e Real life example
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Frequentist limits on the quark radius

Physics Letters B 757 (2016) 468-472

Contents lists available at ScienceDirect
PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

Limits on the effective quark radius from inclusive ep scattering @Cmsm
at HERA

ZEUS Collaboration

H. Abramowicz?>', I. Abt®, L. Adamczyk", M. Adamus®°, S. Antonelli®, V. Aushev 9,
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Introduction

HERA eIectron(positron)—proton collider at DESY

etle™ B 200 Status: 1-July-2007
27.5 GeV 820 GeV 300
920 GeV

HERA | 1994-2000 200
about 100pb~! collected per experiment

. + -
mainly e™ p data, unpolarised 100

H1 Integrated Luminosity / pb™

HERA Il 2002-2007 | :
about 400pb~! per experiment 0 500 1000 1500

. . ays of runnin;
similar amount of e~ p and e p data . ¢
with longitudinal polarization of e* beams (30-40%)

and small samples collected at reduced proton beam energy
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Introduction

Deep Inelastic e*p Scattering

I Rup 126145 Event 69500 Date 19/06/1998

NC DIS CC DIS

L

clity

Kinematic variables:
Q*=—(k—FK)’ |virtuality| of the exchanged boson

e(k) e, V(K
; . Q’ fraction of proton momenta carried by stuck quark
WA r= s
2P - (k— k)
q.q P(k—F) fraction of lepton energy transfered in the proton rest
p remnant Y="p frame

November 16, 2023 45/53
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Introduction

SM predictions vs measurements from HERA

H1 and ZEUS
& FTTTTT T T Ty . .
5 1050, o mrancesnans | NC and CC DIS cross sections comparable for the highest
= § o O HERANCe'p 05! § 2
?‘} E : B4 —HERArm'z.npNCe'p = Q Values
Ng 10_15 Bg a s HERAPDF20NC ¢'p 1
4 E 3 2 2 2
'g iy : .C: a ] Q ~ Mz, MW
E e e 3
3L <0 4 . . .
W e ¢ Combined QCD+EW analysis shows good agreement with
3 o T SM predictions
L ® HERACCEPO4M B
10 E = HERACCCpOSH 3
[ === HERAPDF20CCep \'¢] Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628
E  mms= HERAPDF2.0 CCe'p RE!
107l P P
10°
Q*/ GeV?

High precision data could also be used to look for possible BSM effects...
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Quark radius limits ’im

Quark form factor
“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is expected to decrease at high
momentum transfer:

e sMm 2 2
Z/ly LZ = daiz' 1_&(?2 { Re Qﬂ
q dQ dQ 6

where R, is the root mean-square radius of the electroweak charge distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for e™p and e p !
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Quark radius limits ’im

Data model
Model description extended to take into account the possible BSM contributions

} —1—25

[mi(p,m) + 32 spim(p.m) —
_2£(p75777):z 2 i\2
i <5l stat + 51 uncor) (MO)
p and s are vectors of PDF parameters py (describe proton structure) and systematic shifts s;,
7 is the parameter describing BSM contribution (here: 7 = Rg)
= we look for global likelihood maximum for the combined HERA data

R2Data  _ _02.10733 cm?

This one number summarizes the results of all our measurements...

,u{) and m'(p,n) are measured and predicted (SM-+BSM) cross sections,
qj, i.stat aNd 0j uncor are the relative correlated systematic, relative statistical and relative uncorrelated

systematic uncertainties of the input data point /
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Quark radius limits

Limit setting
Limits derived using the technique of “MC replicas” (a must for frequentist approach).

Replicas are generated sets of cross-section values that are calculated for given Rg True and
varied randomly according to the statistical and systematic uncertainties (including
correlations) of the input data. 2 Dt g2 T
q q
? 240; T T T T ™
. . . f= = =
Each replica is then used as an input to E oop CPDFEYR, 3
SM+BSM fit = Rf, Fit (3 wmss e
140| i— Fraction of (R)"™ < (R)'™ : —z
120 1.84 % =
. . 100 -
Many replicas for each considered 80F- E
- . . . © H 60 =
Rz ¢ value = distribution of R2 ¥t a0t 3
b Fos
0 5 10 15 20 25
R/ GeV?

Rz ¢ is tested by comparing R; "' distribution with the value of R; P!
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Quark radius limits S35

Limit setting

' ZEUS
The probability of obtaining a RZ """ value § e e
. - L . PDF+RCl replicas |
smaller than that obtained for the actual data FI S ponnqmp 1
¥ r ‘\.\ R;-only replicas 7
: Y r AN Rg-only fit ,
Prob(Rg Fit < Rg Data) ‘:'&, ‘\,\ “““““ 95% C.L. limit

% 10— \'\ -
. . . X = C e ]
is studied as a function of R; 1™ ol *, ]
=1 ]
Rg True yalues corresponding to the probability I ‘*x\f |
smaller than 5% are excluded at the 95% C.L. s N 3
:\\\\‘\\\\‘\\\\‘\\%\‘\\\\‘\\\\i;

0 0.05 0.1 0.15 0.2 0.25

R: True ((10-16 cm)Z)

R, < 0.43-10"*cm
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Quark radius limits

Phys. Lett. B757 (2016) 468, arXiv:1604.01280
Results ZEUS

T
:a) 1.05 = HERANC e'p 0.5 b
_ e HERANC ep 0.4 b’

1

[ 095

10° 10*

6/Ggy

1 == - s

L
10° 10* @ (GeV?)

\ : ‘
rb) 1.0 Quark Radius B
r 1 — RZ= (0.4310"°cm)? E

o 2 -16 \2
-- =-(0.47-10" "cm)’
095 m Ra b

6/Ggy

L
10° 10 Q (GeV?)

—(0.47-10 *°cm)® < R7 < (0.43-10 '®cm)?
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Statistical analysis of experimental data > .

Parameter Inference

@ Homework
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Homework

Homework Solutions to be uploaded by November 30.

Consider the example discussed today:
sample of 10 measurements from the normal distributions G(u, o).

Assuming that the measured variance of the sample is ¢ = 2:

@ calculate the 95% CL upper limit on the true variance of the distribution, o,
based on the properties of the Gamma distribution (SciPy library).

o verify the result by the means of the Monte Carlo simulation.
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