Statistical analysis of experimental data
 Least-squares method

Artur Kalinowski
\section*{FACULTY OF

--浶 HYSICS UNIVERSITY}

Lecture 08

November 30, 2023

Statistical analysis of experimental data

Least-squares method

(1) χ^{2} distribution
(2) Hypothesis Testing
(3) Linear Regression
4) Homework

Maximum Likelihood Method

Maximum Likelihood Method

The product:

$$
L=\prod_{j=1}^{N} f\left(\mathbf{x}^{(j)} ; \boldsymbol{\lambda}\right)
$$

is called a likelihood function.
The most commonly used approach to parameter estimation is the maximum likelihood approach: as the best estimate of the parameter set $\boldsymbol{\lambda}$ we choose the parameter values for which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

$$
\ell=\ln L=\sum_{j=1}^{N} \ln f\left(\mathbf{x}^{(j)} ; \boldsymbol{\lambda}\right)
$$

we can look for maximum value of ℓ or minimum of $-2 \ell=-2 \ln L$

Maximum Likelihood Method

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

$$
\boldsymbol{\lambda}=\left(\lambda_{1} \ldots \lambda_{p}\right) \quad L=\prod_{j=1}^{N} f\left(\mathbf{x}^{(j)} ; \boldsymbol{\lambda}\right) \quad \ell=\sum_{j=1}^{N} \ln f\left(\mathbf{x}^{(j)} ; \boldsymbol{\lambda}\right)
$$

Best estimate of $\boldsymbol{\lambda}$, for given set of experimental results $\mathbf{x}^{(j)}$, corresponds to maximum of the likelihood function, which can be found by solving a system of equations:

$$
\left.\frac{\partial \ell}{\partial \lambda_{i}}\right|_{i=1 \ldots p}=0
$$

The Likelihood Principle

Given a p.d.f. $f(\mathbf{x} ; \boldsymbol{\lambda})$ containing an unknown parameters of interest $\boldsymbol{\lambda}$ and observations $\mathbf{x}^{(j)}$, all information relevant for the estimation of the parameters $\boldsymbol{\lambda}$ is contained in the likelihood function $L(\boldsymbol{\lambda} ; \mathbf{x})=\prod f\left(\mathbf{x}^{(j)} ; \boldsymbol{\lambda}\right)$.

Maximum Likelihood Method

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates $\hat{\boldsymbol{\lambda}}$ are given by the measured variable values \mathbf{x}.

Unlike parameters $\boldsymbol{\lambda}$, parameter estimates $\hat{\boldsymbol{\lambda}}$ are random variables (functions of \mathbf{x}) and so we can consider covariance matrix for $\hat{\lambda}$:

$$
\mathbb{C}_{\mathrm{x}}=\mathbb{C}_{\hat{\lambda}}=\left(-\frac{\partial^{2} \ell}{\partial \lambda_{i} \partial \lambda_{j}}\right)^{-1}
$$

Knowing the likelihood function, we can not only estimate parameter values, but also extract uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty

G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.

Confidence intervals

Normal distribution

Meaning of σ is well defined for Gaussian distribution.
Probability for the experimental result to be consistent with the true value within $\pm N \sigma$:

	$1-\alpha$	
$\pm 1 \sigma \Rightarrow$	68.27	$\%$
$\pm 2 \sigma$	95.45	$\%$
$\pm 3 \sigma \Rightarrow$	99.73	$\%$
$\pm 4 \sigma \Rightarrow$	99.9937	$\%$
$\pm 5 \sigma$	99.999943	$\%$

There is a non-zero chance for deviation grater than 5σ, but it is extremely small

Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x

- calculate limits of probability intervals for $x, x_{1}(\theta)$ and $x_{2}(\theta)$, for different values of θ
- calculated intervals define the "accepted region" in (θ, x)
- confidence interval for θ is defined by drawing line $x=x_{m}$ in the accepted region
\Rightarrow limit on θ for given $x_{m}, \theta_{1}\left(x_{m}\right)$, corresponds to limit on x for given θ : $x_{m}=x_{1}\left(\theta_{1}\right)$.
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, $083 C 01$ (2022), PDG web page

Bayesian limits

Example procedure

Bayes theorem can be applied to the case of counting experiment (without background):

$$
\mathcal{P}\left(\mu ; n_{m}\right)=\frac{P\left(n_{m} ; \mu\right)}{\int d \mu^{\prime} P\left(n_{m} ; \mu^{\prime}\right)} \cdot \mathcal{P}(\mu)
$$

Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat "prior distribution" for μ (no earlier constraints) we get:

$$
\mathcal{P}(\mu ; n)=\frac{\mu^{n} e^{-\mu}}{n!}
$$

Upper limit on the expected number of events can be then calculated as:

$$
\int_{0}^{\mu_{u l}} d \mu \mathcal{P}\left(\mu ; n_{m}\right)=1-\alpha
$$

Surprisingly, the numerical result is the same as for Frequentist approach...

Unified approach

Solution

We still want to start from constructing the probability intervals in random variable x (or n) for given hypothesis μ.

Let $\mu_{\text {best }}(x)$ be the parameter value best describing measurement x (maximum likelihood). How consistent is the considered parameter value μ with our measurement (described by
$\mu_{\text {best }}$) can be described by likelihood ratio:

$$
R(x ; \mu)=\frac{P(x ; \mu)}{P\left(x ; \mu_{\text {best }}(x)\right)} \leq 1
$$

We can now create the probability interval for $x,\left[x_{1}, x_{2}\right]$, by selecting values with highest R, up to given CL:

$$
\int_{x_{1}}^{x_{2}} d x P(x ; \mu)=1-\alpha \quad \text { and } \quad \forall_{x \notin\left[x_{1}, x_{2}\right]} R(x)<R\left(x_{1}\right)=R\left(x_{2}\right)
$$

Unified approach

Solution

We still want to start from constructing the probability intervals in random variable x (or n) for given hypothesis μ.

Let $\mu_{\text {best }}(x)$ be the parameter value best describing measurement x (maximum likelihood). How consistent is the considered parameter value μ with our measurement (described by
$\mu_{\text {best }}$) can be described by likelihood ratio:

$$
R(n ; \mu)=\frac{P(n ; \mu)}{P\left(n ; \mu_{\text {best }}(x)\right)} \leq 1
$$

We can now create the probability interval for $n,\left[n_{1}, n_{2}\right]$, by selecting values with highest R, up to given CL:

$$
\sum_{n=n_{1}}^{n_{2}} P(n ; \mu) \geq 1-\alpha \text { and } \forall_{n \notin\left[n_{1}, n_{2}\right]} R(n)<R\left(n_{1}\right) \cap R(n)<R\left(n_{2}\right)
$$

Unified approach

Example

Calculations of 90% CL interval for counting experiment (Poisson variable) in the presence of known mean background $\mu_{\mathrm{bg}}=3.0$

Central 90% CL intervals
Confidence intervals

Unified 90\% CL intervals Confidence intervals

Statistical analysis of experimental data

Least-squares method

(1) χ^{2} distribution
(2) Hypothesis Testing
(3) Linear Regression

4 Homework

χ^{2} distribution

Maximum Likelihood Method

Let us consider N independent measurements of variable Y. Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

$$
L=\prod_{i=1}^{N} G\left(y_{i} ; \mu_{i}, \sigma_{i}\right)=\prod_{i=1}^{N} \frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

Log-likelihood:

$$
\ell=-\frac{1}{2} \sum \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}+\text { const }
$$

χ^{2} distribution

Maximum Likelihood Method

Let us consider N independent measurements of variable Y. Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

$$
L=\prod_{i=1}^{N} G\left(y_{i} ; \mu_{i}, \sigma_{i}\right)=\prod_{i=1}^{N} \frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

Log-likelihood:

$$
\ell=-\frac{1}{2} \sum \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}+\text { const }
$$

assuming σ_{i} are known

We can define

$$
\chi^{2}=-2 \ell=-2 \ln L=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

Maximum of (log-)likelihood function corresponds to minimum of χ^{2}

χ^{2} distribution

$\mathrm{N}=2$

Let us introduce "shift" variables:

$$
z_{i}=\frac{y_{i}-\mu_{i}}{\sigma_{i}}
$$

which are (by construction) described by Gaussian pdf with $\mu=0, \sigma=1$.

χ^{2} distribution

$\mathrm{N}=2$

Let us introduce "shift" variables:

$$
z_{i}=\frac{y_{i}-\mu_{i}}{\sigma_{i}}
$$

which are (by construction) described by Gaussian pdf with $\mu=0, \sigma=1$. For $N=2$ independent variables we can write:

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right)
$$

χ^{2} distribution

$\mathrm{N}=2$

Let us introduce "shift" variables:

$$
z_{i}=\frac{y_{i}-\mu_{i}}{\sigma_{i}}
$$

which are (by construction) described by Gaussian pdf with $\mu=0, \sigma=1$. For $N=2$ independent variables we can write:

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right)
$$

and then change variables to polar coordinates

$$
f\left(r_{z}, \phi_{z}\right)=\frac{1}{2 \pi} r_{z} \exp \left(-\frac{1}{2} r_{z}^{2}\right)
$$

χ^{2} distribution

$\mathrm{N}=2$

Integrating over ϕ_{z} and changing variable to r_{z}^{2}

$$
f\left(r_{z}^{2}\right)=\frac{1}{2} \exp \left(-\frac{1}{2} r_{z}^{2}\right)
$$

Distribution is exponential, corresponds to decay time distribution for $\tau=2 \ldots$

χ^{2} distribution

$\mathrm{N}=2$

Integrating over ϕ_{z} and changing variable to $r_{z}^{2}=\chi^{2}$

$$
f\left(\chi^{2}\right)=\frac{1}{2} \exp \left(-\frac{1}{2} \chi^{2}\right)
$$

Distribution is exponential, corresponds to decay time distribution for $\tau=2 \ldots$

χ^{2} distribution

$\mathrm{N}=2$

Integrating over ϕ_{z} and changing variable to r_{z}^{2}

$$
f\left(\chi^{2}\right)=\frac{1}{2} \exp \left(-\frac{1}{2} \chi^{2}\right)
$$

Distribution is exponential, corresponds to decay time distribution for $\tau=2 \ldots$.

Even N case

Sum of $n=N / 2$ numbers from exponential distribution, is distributed according to Gamma distribution with $k=n=N / 2, \lambda=1 / \tau=1 / 2$

$$
f\left(\chi^{2}\right)=\frac{1}{\Gamma(k)}\left(\chi^{2}\right)^{k-1} \lambda^{k} e^{-\lambda \chi^{2}}
$$

χ^{2} distribution

$\mathrm{N}=2$

Integrating over ϕ_{z} and changing variable to r_{z}^{2}

$$
f\left(\chi^{2}\right)=\frac{1}{2} \exp \left(-\frac{1}{2} \chi^{2}\right)
$$

Distribution is exponential, corresponds to decay time distribution for $\tau=2 \ldots$

Even N case

Sum of $n=N / 2$ numbers from exponential distribution, is distributed according to Gamma distribution with $k=n=N / 2, \lambda=1 / \tau=1 / 2$

$$
f\left(\chi^{2}\right)=\frac{1}{\Gamma\left(\frac{N}{2}\right)}\left(\frac{1}{2}\right)^{\frac{N}{2}}\left(\chi^{2}\right)^{\frac{N}{2}-1} e^{-\chi^{2} / 2}
$$

The formula (as one can expect) works also for odd N...
$\mathrm{N}=1$
Bonamente
One can consider moment generating function (see lecture 04) for distribution of $u=z^{2}=\chi^{2}$:

χ^{2} distribution

$\mathrm{N}=1$
One can consider moment generating function (see lecture 04) for distribution of $u=z^{2}=\chi^{2}$:

$$
M_{1}(t)=\mathbb{E}\left(e^{t u}\right)=\int_{-\infty}^{+\infty} d z f(z) e^{t z^{2}}
$$

χ^{2} distribution

$\mathrm{N}=1$
One can consider moment generating function (see lecture 04) for distribution of $u=z^{2}=\chi^{2}$:

$$
\begin{aligned}
M_{1}(t) & =\mathbb{E}\left(e^{t u}\right)=\int_{-\infty}^{+\infty} d z f(z) e^{t z^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d z e^{-z^{2}\left(\frac{1}{2}-t\right)}
\end{aligned}
$$

χ^{2} distribution

$\mathrm{N}=1$
One can consider moment generating function (see lecture 04) for distribution of $u=z^{2}=\chi^{2}$:

$$
\begin{aligned}
M_{1}(t) & =\mathbb{E}\left(e^{t u}\right)=\int_{-\infty}^{+\infty} d z f(z) e^{t z^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d z e^{-z^{2}\left(\frac{1}{2}-t\right)} \\
z^{\prime 2}=z^{2}\left(\frac{1}{2}-t\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{d z^{\prime}}{\sqrt{\frac{1}{2}-t}} e^{-z^{\prime 2}}
\end{aligned}
$$

χ^{2} distribution

$\mathrm{N}=1$
One can consider moment generating function (see lecture 04) for distribution of $u=z^{2}=\chi^{2}$:

$$
\begin{aligned}
M_{1}(t) & =\mathbb{E}\left(e^{t u}\right)=\int_{-\infty}^{+\infty} d z f(z) e^{t z^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d z e^{-z^{2}\left(\frac{1}{2}-t\right)} \\
z^{\prime 2}=z^{2}\left(\frac{1}{2}-t\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{d z^{\prime}}{\sqrt{\frac{1}{2}-t}} e^{-z^{\prime 2}} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\frac{1}{2}-t}} \sqrt{\pi}=\frac{1}{\sqrt{1-2 t}} \\
& \text { Statictical analysis 08 }
\end{aligned}
$$

Arbitrary N

Considered random variables z_{i} are independent, and $\chi^{2}=\sum z_{i}^{2}$. Moment generating function for χ^{2} distribution is thus given by:

$$
M_{N}(t)=\prod_{i=1}^{N} M_{1}(t)=\left(\frac{1}{1-2 t}\right)^{N / 2}
$$

χ^{2} distribution

Arbitrary N

Considered random variables z_{i} are independent, and $\chi^{2}=\sum z_{i}^{2}$. Moment generating function for χ^{2} distribution is thus given by:

$$
M_{N}(t)=\prod_{i=1}^{N} M_{1}(t)=\left(\frac{1}{1-2 t}\right)^{N / 2}
$$

We can compare it with the moment generating functions for Gamma pdf

$$
\begin{aligned}
M_{G}(t)=\mathbb{E}\left(e^{t x}\right) & =\int_{0}^{+\infty} d x \frac{1}{\Gamma(k)} x^{k-1} \lambda^{k} e^{-\lambda x} e^{t x} \\
& =\frac{\lambda^{k}}{\Gamma(k)} \int_{0}^{+\infty} d x x^{k-1} e^{-x(\lambda-t)}
\end{aligned}
$$

χ^{2} distribution

Arbitrary N

Considered random variables z_{i} are independent, and $\chi^{2}=\sum z_{i}^{2}$. Moment generating function for χ^{2} distribution is thus given by:

$$
M_{N}(t)=\prod_{i=1}^{N} M_{1}(t)=\left(\frac{1}{1-2 t}\right)^{N / 2}
$$

We can compare it with the moment generating functions for Gamma pdf

$$
\begin{aligned}
& M_{G}(t)=\mathbb{E}\left(e^{t x}\right)=\int_{0}^{+\infty} d x \frac{1}{\Gamma(k)} x^{k-1} \lambda^{k} e^{-\lambda x} e^{t x} \\
& x^{\prime}=x(\lambda-t)=\frac{\lambda^{k}}{\Gamma(k)} \int_{0}^{+\infty} \frac{d x^{\prime} x^{\prime k-1}}{(\lambda-t)^{k}} e^{-x^{\prime}}
\end{aligned}
$$

χ^{2} distribution

Arbitrary N

Considered random variables z_{i} are independent, and $\chi^{2}=\sum z_{i}^{2}$. Moment generating function for χ^{2} distribution is thus given by:

$$
M_{N}(t)=\prod_{i=1}^{N} M_{1}(t)=\left(\frac{1}{1-2 t}\right)^{N / 2}
$$

We can compare it with the moment generating functions for Gamma pdf

$$
\begin{aligned}
& M_{G}(t)=\mathbb{E}\left(e^{t x}\right)=\int_{0}^{+\infty} d x \frac{1}{\Gamma(k)} x^{k-1} \lambda^{k} e^{-\lambda x} e^{t x} \\
& x^{\prime}=x(\lambda-t)=\frac{\lambda^{k}}{\Gamma(k)} \int_{0}^{+\infty} \frac{d x^{\prime} x^{\prime k-1}}{(\lambda-t)^{k}} e^{-x^{\prime}}=\left(\frac{1}{1-\frac{t}{\lambda}}\right)^{k}
\end{aligned}
$$

χ^{2} distribution

We conclude that distribution of χ^{2} is described by Gamma pdf with:

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{1}{2}
$$

χ^{2} distribution

χ^{2} distribution

We conclude that distribution of χ^{2} is described by Gamma pdf with:

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{1}{2}
$$

Properties of the χ^{2} distribution (see lecture 03)

$$
\begin{aligned}
\left\langle\chi^{2}\right\rangle & =\frac{k}{\lambda}=N \\
\mathbb{V}\left(\chi^{2}\right) & =\frac{k}{\lambda^{2}}=2 N
\end{aligned}
$$

χ^{2} distribution

χ^{2} distribution

We conclude that distribution of χ^{2} is described by Gamma pdf with:

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{1}{2}
$$

Properties of the χ^{2} distribution (see lecture 03)

$$
\begin{aligned}
\left\langle\chi^{2}\right\rangle & =\frac{k}{\lambda}=N \\
\mathbb{V}\left(\chi^{2}\right) & =\frac{k}{\lambda^{2}}=2 N \\
\sqrt{\mathbb{V}\left(\chi^{2}\right)}=\sigma_{\chi^{2}} & =\sqrt{2 N}
\end{aligned}
$$

For small N , value of χ^{2} is a subject to large fluctuations...

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Sharply peaked at zero, but with long tail

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Sharply peaked at zero, but with long tail

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Very asymmetric, most events below average value...

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Very asymmetric, most events below average value...

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Very asymmetric, most events below average value...

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, $\chi_{\max }^{2}=N-2(!!!) \quad \chi^{2}$ value

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, $\chi_{\max }^{2}=N-2$ (!!!) $\quad \chi^{2}$ value

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, $\chi_{\max }^{2}=N-2$ (!!!) $\quad \chi^{2}$ value

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

Asymmetry in tails remains even for large N...

χ^{2} distribution

Reduced χ^{2}

When discussing consistency of large data samples it is often convenient to use value of "reduced $\chi^{2 "}$:

$$
\chi_{r e d}^{2}=\frac{\chi^{2}}{N}
$$

Distribution of $\chi_{\text {red }}^{2}$ is again described by the Gamma pdf with

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{N}{2}
$$

χ^{2} distribution

Reduced χ^{2}

When discussing consistency of large data samples it is often convenient to use value of "reduced $\chi^{2 "}$:

$$
\chi_{r e d}^{2}=\frac{\chi^{2}}{N}
$$

Distribution of $\chi_{\text {red }}^{2}$ is again described by the Gamma pdf with

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{N}{2}
$$

Properties of the distribution:

$$
\left\langle\chi_{\text {red }}^{2}\right\rangle=1 \quad \mathbb{V}\left(\chi_{\text {red }}^{2}\right)=\sigma_{\chi_{\text {red }}^{2}}^{2}=\frac{2}{N}
$$

χ^{2} distribution

Number of degrees of freedom

So far, we have only considered an ideal case, where both the expected values $\boldsymbol{\mu}$ and measurement uncertainties σ are known.

However, it is quite a common situation, when the expected value is extracted from the data:

$$
\tilde{\chi}^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\bar{y}\right)^{2}}{\sigma^{2}}
$$

where we assume uniform uncertainties for simplicity.
What is the expected distribution for $\tilde{\chi}^{2}$?
Mean value corresponds to maximum likelihood $\quad \Rightarrow \quad \tilde{\chi}^{2} \leq \chi^{2}$

χ^{2} distribution

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

$$
s^{2}=\frac{1}{N-1} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

so one can conclude:

$$
\left\langle\tilde{\chi}^{2}\right\rangle=N-1
$$

but this does not give us full information about the distribution...

χ^{2} distribution

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

$$
s^{2}=\frac{1}{N-1} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

so one can conclude:

$$
\left\langle\tilde{\chi}^{2}\right\rangle=N-1
$$

but this does not give us full information about the distribution...
Simple variable transformation can be used:

$$
\begin{aligned}
x_{k} & =\frac{1}{\sqrt{k(k+1)}}\left(y_{1}+\ldots+y_{k}-y_{k+1}\right) \quad k=1 \ldots N-1 \\
x_{N} & =\sqrt{N} \cdot \bar{y}
\end{aligned}
$$

One can verify that this is an orthogonal transformation...

χ^{2} distribution

Number of degrees of freedom

If y_{i} are independent random variables with Gaussian pdf, so are x_{i}. Also:

$$
\sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}
$$

χ^{2} distribution

Number of degrees of freedom

If y_{i} are independent random variables with Gaussian pdf, so are x_{i}. Also:

$$
\sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}
$$

We can now rewrite the formula for $\tilde{\chi}^{2}$ in the new basis:

$$
\begin{aligned}
\sigma^{2} \cdot \tilde{\chi}^{2} & =\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{N} y_{i}^{2}-2 \bar{y} \sum_{i=1}^{N} y_{i}+N \bar{y}^{2} \\
& =\sum_{i=1}^{N} y_{i}^{2}-N \bar{y}^{2}
\end{aligned}
$$

χ^{2} distribution

Number of degrees of freedom

If y_{i} are independent random variables with Gaussian pdf, so are x_{i}. Also:

$$
\sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}
$$

We can now rewrite the formula for $\tilde{\chi}^{2}$ in the new basis:

$$
\begin{aligned}
\sigma^{2} \cdot \tilde{\chi}^{2} & =\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{N} y_{i}^{2}-2 \bar{y} \sum_{i=1}^{N} y_{i}+N \bar{y}^{2} \\
& =\sum_{i=1}^{N} y_{i}^{2}-N \bar{y}^{2}=\sum_{i=1}^{N} x_{i}^{2}-x_{N}^{2}=\sum_{i=1}^{N-1} x_{i}^{2}
\end{aligned}
$$

\Rightarrow distribution of $\tilde{\chi}^{2}$ corresponds to that of χ^{2} for $N_{d f}=N-1$ variables...

Statistical analysis of experimental data

Least-squares method

(2) Hypothesis Testing
(3) Linear Regression

4 Homework

Hypothesis Testing

Data consistency test

Value of χ^{2} (or $\chi_{\text {red }}^{2}$) can be used to verify the consistency of the given data set \mathbf{y} (with uncertainties σ) with the model predictions given by $\boldsymbol{\mu}$

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or check the consistency of the experimental procedure...

If the model does not describe the data, higher χ^{2} values are expected.
How to quantify the level of agreement?

Hypothesis Testing

Data consistency test

Value of χ^{2} (or $\chi_{\text {red }}^{2}$) can be used to verify the consistency of the given data set \mathbf{y} (with uncertainties σ) with the model predictions given by $\boldsymbol{\mu}$

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or check the consistency of the experimental procedure...

If the model does not describe the data, higher χ^{2} values are expected.
How to quantify the level of agreement?
We can calculate the probability of obtaining given value of χ^{2} or lower:

$$
P\left(\chi^{2}\right)=\int_{0}^{\chi^{2}} d \chi^{2 \prime} f\left(\chi^{2 \prime}\right)
$$

given by the cumulative probability distribution. $1-P\left(\chi^{2}\right)$ is sometimes referred to as p-value

Hypothesis Testing

Data consistency test

Plot of p-values as a function of χ^{2} for different $N_{d f}$

Hypothesis Testing

Critical χ^{2}

The other approach is to define, for given probability P (confidence level) the critical value of χ^{2}, corresponding the the frequentist upper limit:

$$
\int_{0}^{\chi_{\text {crit }}^{2}} d \chi^{2} f\left(\chi^{2}\right)=P \quad \int_{\chi_{\text {crit }}^{2}}^{+\infty} d \chi^{2} f\left(\chi^{2}\right)=1-P=1-\alpha
$$

Hypothesis Testing

Critical χ^{2}

The other approach is to define, for given probability P (confidence level) the critical value of χ^{2}, corresponding the the frequentist upper limit:

$$
\int_{0}^{\chi_{\text {crit }}^{2}} d \chi^{2} f\left(\chi^{2}\right)=P \quad \int_{\chi_{\text {crit }}^{2}}^{+\infty} d \chi^{2} f\left(\chi^{2}\right)=1-P=1-\alpha
$$

If the χ^{2} value obtained in the actual measurement is higher than the selected $\chi_{\text {crit }}^{2}$, then we should reject the hypothesis of data consistency with the model (can still be due to the data, not the wrong model).

Hypothesis Testing

Critical χ^{2}

The other approach is to define, for given probability P (confidence level) the critical value of χ^{2}, corresponding the the frequentist upper limit:

$$
\int_{0}^{\chi_{\text {crit }}^{2}} d \chi^{2} f\left(\chi^{2}\right)=P \quad \int_{\chi_{\text {crit }}^{2}}^{+\infty} d \chi^{2} f\left(\chi^{2}\right)=1-P=1-\alpha
$$

If the χ^{2} value obtained in the actual measurement is higher than the selected $\chi_{\text {crit }}^{2}$, then we should reject the hypothesis of data consistency with the model (can still be due to the data, not the wrong model).

Very low P values ($P \ll 1$) are also not expected (not likely)! If $\chi^{2} \ll N$ (except for very small N), this usually indicates a problem:

- overestimated uncertainties of measurements (or correlations not properly included)
- hidden correlations between measurements (which we treat as independent variables)

Hypothesis Testing

Critical χ^{2}

Table of critical χ^{2} values (Brand)

$P=\int_{0}^{\chi_{P}^{2}} f\left(\chi^{2} ; f\right) \mathrm{d} \chi^{2}$					
	0.900	0.950	0.990	0.995	0.999
1	2.706	3.841	6.635	7.879	10.828
2	4.605	5.991	9.210	10.597	13.816
3	6.251	7.815	11.345	12.838	16.266
4	7.779	9.488	13.277	14.860	18.467
5	9.236	11.070	15.086	16.750	20.515
6	10.645	12.592	16.812	18.548	22.458
7	12.017	14.067	18.475	20.278	24.322
8	13.362	15.507	20.090	21.955	26.124
9	14.684	16.919	21.666	23.589	27.877
10	15.987	18.307	23.209	25.188	29.588

Hypothesis Testing

Critical χ^{2}

Plot of critical values for reduced χ^{2}

Hypothesis Testing

Critical χ^{2}
Plot of critical values
for reduced χ^{2}
(indicated is $p=1-P$)

Hypothesis Testing

Student's t Distribution

We can verify consistency of the series of measurements \mathbf{x} with the true value μ by looking at the shift parameter for the mean

$$
z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}
$$

where mean value \bar{x} is the best estimate of μ assuming Gaussian pdf.

Hypothesis Testing

Student's t Distribution

We can verify consistency of the series of measurements \mathbf{x} with the true value μ by looking at the shift parameter for the mean

$$
z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}
$$

where mean value \bar{x} is the best estimate of μ assuming Gaussian pdf.
But this works only, if we know the uncertainty, $\sigma_{\bar{x}}=\sigma / \sqrt{N}$. We need to know measurement uncertainties to calculate χ^{2} !...

Hypothesis Testing

Student's t Distribution

We can verify consistency of the series of measurements \mathbf{x} with the true value μ by looking at the shift parameter for the mean

$$
z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}
$$

where mean value \bar{x} is the best estimate of μ assuming Gaussian pdf.
But this works only, if we know the uncertainty, $\sigma_{\bar{x}}=\sigma / \sqrt{N}$. We need to know measurement uncertainties to calculate χ^{2} !...

If the measurement uncertainties are unknown, or not reliable, we can estimate the variance of the sample from the data itself

$$
s^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

s^{2} distribution corresponds to χ^{2} distribution for $N-1$ degrees of freedom

Hypothesis Testing

Student's t Distribution

Consistency of our measurements \mathbf{x} with the true value μ can be now described by

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

but the distribution of t is no longer Gaussian (due to s being a random variable as well).

Hypothesis Testing

Student's t Distribution

Consistency of our measurements \mathbf{x} with the true value μ can be now described by

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

but the distribution of t is no longer Gaussian (due to s being a random variable as well). It can still be calculated analytically:

$$
f(t ; n)=\frac{1}{\sqrt{n \pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}}
$$

where n is the number of degrees of freedom, $n=N-1$.

Hypothesis Testing

Student's t Distribution

Consistency of our measurements \mathbf{x} with the true value μ can be now described by

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

but the distribution of t is no longer Gaussian (due to s being a random variable as well). It can still be calculated analytically:

$$
f(t ; n)=\frac{1}{\sqrt{n \pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}}
$$

where n is the number of degrees of freedom, $n=N-1$.
Distribution is symmetric and has a mean of zero, but larger tails than the Gaussian distribution, for small N in particular.

Student's t Distribution

Student's t Distribution

Student's t Distribution

Shape of the t distribution for different numbers of measurements

$$
N_{d f}=N-1=5
$$

Student's t Distribution

Hypothesis Testing

Student's t Distribution

Shape of the t distribution for different numbers of measurements
$N_{d f}=N-1=7$
tails are clearly non-Gaussian...

Student's t Distribution

Student's t Distribution

Student's t Distribution

Student's t Distribution

Hypothesis Testing

Student's t Distribution

Hypothesis Testing

Student's t Distribution

Shape of the t distribution compared with Gaussian distribution

Probability of large fluctuations still significantly enhanced!

Hypothesis Testing

Student's t Distribution

Hypothesis Testing

Student's t Distribution

Shape of the t distribution compared with Gaussian distribution

Student's t Distribution

Shape of the t distribution compared with Gaussian distribution

Converges to the Gaussian distribution for large N

Hypothesis Testing

Student's t Distribution
"Critical values" of t for small numbers of degrees of freedom f

$P=\int_{-\infty}^{t P} f(t ; f) \mathrm{d} t$							
	P						
f	0.9000	0.9500	0.9750	0.9900	0.9950	0.9990	0.9995
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140

Hypothesis Testing

Student's t Distribution
08_t-limit.ipynb
ce Open in Colab

Plot of critical values for t

Large deviations much more probable for small N

Critical t curves

Statistical analysis of experimental data

Least-squares method

(2) Hypothesis Testing
(3) Linear Regression

4 Homework

Linear Regression

General case

We introduced χ^{2} in a very general form:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where different μ_{i} and σ_{i} are possible for each of N measurement y_{i}

Linear Regression

General case

We introduced χ^{2} in a very general form:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where different μ_{i} and σ_{i} are possible for each of N measurement y_{i}
It is quite often the case that values of μ_{i} depend on some controlled variables x_{i} and a smaller set of model parameters:

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

we can then use the least-squares method to extract the best estimates of parameters a from the collected set of data points $\left(x_{i}, y_{i}\right)$

We can look for minimum of χ^{2} using different numerical algorithms...

Linear Regression

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

$$
\mu(x ; \mathbf{a})=\sum_{k=1}^{M} a_{k} f_{k}(x)
$$

where $f_{k}(x)$ is a set of functions with arbitrary analytical form.

Linear Regression

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

$$
\mu(x ; \mathbf{a})=\sum_{k=1}^{M} a_{k} f_{k}(x)
$$

where $f_{k}(x)$ is a set of functions with arbitrary analytical form.
One of the examples is the polynomial series:

$$
f_{k}(x)=x^{k} \quad \Rightarrow \quad \mu(x ; \mathbf{a})=\sum_{k=1}^{M} a_{k} x^{k-1}
$$

but any set of functions can be used, if they are not linearly dependent. Functions ortogonal for a given set of points x_{i} should work best...

Linear Regression

Parameter fit

Least-squares method is the special case of the maximum likelihood approach, when we can assume Gaussian pdf for measurements y_{i}.

As the best estimate of the parameter set a we choose the parameter values which correspond to the (global) χ^{2} minimum (\Rightarrow maximum of log-likelihood)

Linear Regression

Parameter fit

Least-squares method is the special case of the maximum likelihood approach, when we can assume Gaussian pdf for measurements y_{i}.

As the best estimate of the parameter set a we choose the parameter values which correspond to the (global) χ^{2} minimum (\Rightarrow maximum of log-likelihood)

To look for χ^{2} maximum, we consider partial derivatives:

$$
\frac{\partial \chi^{2}}{\partial a_{\jmath}}=\frac{\partial}{\partial a_{l}} \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)}{\sigma_{i}}\right)^{2}=0
$$

Linear Regression

Parameter fit

Least-squares method is the special case of the maximum likelihood approach, when we can assume Gaussian pdf for measurements y_{i}.

As the best estimate of the parameter set a we choose the parameter values which correspond to the (global) χ^{2} minimum (\Rightarrow maximum of log-likelihood)

To look for χ^{2} maximum, we consider partial derivatives:

$$
\begin{aligned}
\frac{\partial \chi^{2}}{\partial a_{l}} & =\frac{\partial}{\partial a_{l}} \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)}{\sigma_{i}}\right)^{2} \\
& =-2 \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)}{\sigma_{i}^{2}}\right) f_{l}\left(x_{i}\right)
\end{aligned}
$$

Linear Regression

Parameter fit

We obtain a set of M equations for M parameters a_{i} :

$$
\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right)}{\sigma_{i}^{2}}\left(y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)\right)=0 \quad I=1 \ldots M
$$

Linear Regression

Parameter fit

We obtain a set of M equations for M parameters a_{i} :

$$
\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right)}{\sigma_{i}^{2}}\left(y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)\right)=0 \quad I=1 \ldots M
$$

which can be rewritten as:

$$
\sum_{k=1}^{M}\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right) a_{k}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
$$

Linear Regression

Parameter fit

We obtain a set of M equations for M parameters a_{i} :

$$
\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right)}{\sigma_{i}^{2}}\left(y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)\right)=0 \quad I=1 \ldots M
$$

which can be rewritten as:

$$
\sum_{k=1}^{M}\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right) a_{k}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
$$

or in the matrix form:

$$
\mathbb{A} \cdot \mathbf{a}=\mathbf{b}
$$

$$
\text { where } \quad \mathbb{A}_{l k}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad \text { and } \quad b_{l}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
$$

Linear Regression

Parameter fit

Solution of this set of equations can be obtained by inverting matrix \mathbb{A}

$$
\mathbf{a}=\mathbb{A}^{-1} \cdot \mathbf{b}
$$

Linear Regression

Parameter fit

Solution of this set of equations can be obtained by inverting matrix \mathbb{A}

$$
\mathbf{a}=\mathbb{A}^{-1} \cdot \mathbf{b}
$$

This also gives us the estimate of parameter covariance matrix:

$$
\mathbb{C}_{\mathbf{a}}=\left(-\frac{\partial^{2} \ell}{\partial a_{l} \partial a_{k}}\right)^{-1}=\left(\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{l} \partial a_{k}}\right)^{-1}=\mathbb{A}^{-1}
$$

Linear Regression

Parameter fit

Solution of this set of equations can be obtained by inverting matrix \mathbb{A}

$$
\mathbf{a}=\mathbb{A}^{-1} \cdot \mathbf{b}
$$

This also gives us the estimate of parameter covariance matrix:

$$
\mathbb{C}_{\mathbf{a}}=\left(-\frac{\partial^{2} \ell}{\partial a_{l} \partial a_{k}}\right)^{-1}=\left(\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{l} \partial a_{k}}\right)^{-1}=\mathbb{A}^{-1}
$$

One can write

$$
\mathbb{C}_{\mathbf{a}}=\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right)^{-1}
$$

Expected uncertainties of the extracted parameter values depend on the choice of measurement points x_{i} but, surprisingly, do not depend on the actual results y_{i} \Rightarrow very useful when planning the experiment...

Linear Regression

Linear fit example

Pseudo data

Fitting Fourier series to example data set
example model \Rightarrow

Linear Regression

Linear fit example

Fitting Fourier series to example data set

Linear fit Npar $=3 \quad \chi^{2}=12.22 / 16$

$$
y(x)=a_{0}+a_{1} \sin (x)+a_{2} \cos (x)
$$

Linear Regression

Linear fit example

Fitting Fourier series to example data set

Linear fit Npar $=5 \quad \chi^{2}=10.63 / 14$

Linear Regression

Linear fit example

Fitting Fourier series to example data set

Probably optimal choice

Linear fit Npar $=7 \quad \chi^{2}=8.7 / 12$

Linear Regression

Linear fit example

Fitting Fourier series to example data set
"Overtraining"
Linear fit Npar $=9 \quad \chi^{2}=4.57 / 10$

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin (n x)+a_{2 n} \cos (n x) \quad M^{\mathrm{x}}=4
$$

Linear Regression

Linear fit example

Fitting Fourier series to example data set
"Overtraining"

Linear fit Npar $=11 \quad \chi^{2}=3.88 / 8$

$y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin (n x)+a_{2 n} \cos (n x) \quad \begin{gathered}\mathrm{X} \\ =5\end{gathered}$

Linear Regression

Linear fit example

Fitting Fourier series to example data set
"Overtraining"

$$
\text { Linear fit Npar }=15 \quad \chi^{2}=0.33 / 4
$$

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin (n x)+a_{2 n} \cos (n x) \quad \begin{gathered}
\mathrm{x} \\
=6
\end{gathered}
$$

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

- Adding new parameter results in only moderate χ^{2} decrease, $\mathcal{O}(1)$

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

- Adding new parameter results in only moderate χ^{2} decrease, $\mathcal{O}(1)$
- Parameters become highly correlated

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

- Adding new parameter results in only moderate χ^{2} decrease, $\mathcal{O}(1)$
- Parameters become highly correlated
- Values and errors of the individual parameters increase differences of large contributions

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

- Adding new parameter results in only moderate χ^{2} decrease, $\mathcal{O}(1)$
- Parameters become highly correlated
- Values and errors of the individual parameters increase differences of large contributions
- Additional parameters are consistent with zero

Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a polynomial or function series. When should we stop?

How can we recognize that we have too many parameters? Beside looking at the P value corresponding to the obtained χ^{2}

- Adding new parameter results in only moderate χ^{2} decrease, $\mathcal{O}(1)$
- Parameters become highly correlated
- Values and errors of the individual parameters increase differences of large contributions
- Additional parameters are consistent with zero
- Fit starts to follow fluctuations of the measurement results

Linear Regression

Best fit choice?

Example of fit with too high polynomial order

$$
\text { Linear fit } \mathrm{Npar}=8 \quad \chi^{2}=4.76 / 11
$$

Linear Regression

Best fit choice?

Example of fit with proper polynomial order

$$
\text { Linear fit Npar }=3 \quad \chi^{2}=10.21 / 16
$$

Linear Regression

Learning on errors

Linear fit Npar $=3 \quad \chi^{2}=15.04 / 16$

When "wrong" set of functions (highly correlated) is selected...

$$
y(x)=a_{0}+a_{1} \sin (x)+a_{2} \cos (x)
$$

Linear Regression

Learning on errors

When "wrong" set of functions (highly correlated) is selected...

$$
\text { Linear fit Npar }=5 \quad \chi^{2}=25.75 / 14
$$

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin ^{n}(x)+a_{2 n} \cos ^{n}(x) \quad M=2
$$

Linear Regression

Learning on errors

When "wrong" set of functions (highly correlated) is selected...

$$
\text { Linear fit Npar }=7 \quad \chi^{2}=24.39 / 12
$$

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin ^{n}(x)+a_{2 n} \cos ^{n}(x) \quad \begin{gathered}
\mathrm{x} \\
=3
\end{gathered}
$$

Linear Regression

Learning on errors

Linear fit Npar $=9 \quad \chi^{2}=41.39 / 10$

When "wrong" set of functions (highly correlated) is selected...

Poor numerical precision due to high correlations between parameters.

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin ^{n}(x)+a_{2 n} \cos ^{n}(x) \quad M=4
$$

Linear Regression

Learning on errors

When "wrong" set of functions (highly correlated) is selected...

Poor numerical precision due to high correlations between parameters.
$\sin ^{2}(x)+\cos ^{2}(x)=1$

$$
\text { Linear fit Npar }=11 \quad \chi^{2}=33.77 / 8
$$

$$
y(x)=a_{0}+\sum_{n=1}^{M} a_{2 n-1} \sin ^{n}(x)+a_{2 n} \cos ^{n}(x) \quad \begin{gathered}
\mathrm{x} \\
=5
\end{gathered}
$$

Linear Regression

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to $k, I=0 \ldots M$ (for polynomial fit of order $M, M+1$ parameters).

$$
\mathbb{A}_{l k}=\sum_{i=1}^{N} \frac{x_{i}^{(I+k)}}{\sigma_{i}^{2}} \quad \text { and } \quad b_{l}=\sum_{i=1}^{N} \frac{x_{i}^{\prime} y_{i}}{\sigma_{i}^{2}}
$$

Linear Regression

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to $k, I=0 \ldots M$ (for polynomial fit of order $M, M+1$ parameters).

$$
\mathbb{A}_{l k}=\sum_{i=1}^{N} \frac{x_{i}^{(I+k)}}{\sigma_{i}^{2}} \quad \text { and } \quad b_{l}=\sum_{i=1}^{N} \frac{x_{i}^{\prime} y_{i}}{\sigma_{i}^{2}}
$$

For uniform uncertainties it is then:

$$
\mathbb{A}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{cccc}
1 & x_{i} & \ldots & x_{i}^{M} \\
x_{i} & x_{i}^{2} & \ldots & x_{i}^{M+1} \\
\vdots & & & \vdots \\
x_{i}^{M} & x_{i}^{M+1} & \ldots & x_{i}^{2 M}
\end{array}\right) \quad \mathbf{b}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{c}
y_{i} \\
y_{i} x_{i} \\
\vdots \\
y_{i} x_{i}^{M}
\end{array}\right)
$$

quite simple to implement...

Linear Regression

Uncertainty estimate

The χ^{2} value at the minimum can be then calculated as:

$$
\tilde{\chi}^{2}=(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))^{\top} \mathbb{A}(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))
$$

Its distribution should correspond to the χ^{2} distribution for $N_{d f}=N-M$

Linear Regression

Uncertainty estimate

The χ^{2} value at the minimum can be then calculated as:

$$
\tilde{\chi}^{2}=(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))^{\top} \mathbb{A}(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))
$$

Its distribution should correspond to the χ^{2} distribution for $N_{d f}=N-M$
If uncertainty is the same for all measurements, the extracted parameter values are independent on it (!).

Linear Regression

Uncertainty estimate

The χ^{2} value at the minimum can be then calculated as:

$$
\tilde{\chi}^{2}=(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))^{\top} \mathbb{A}(\mathbf{y}-\mu(\mathbf{x} ; \mathbf{a}))
$$

Its distribution should correspond to the χ^{2} distribution for $N_{d f}=N-M$
If uncertainty is the same for all measurements, the extracted parameter values are independent on it (!). We can use the calculated value of $\tilde{\chi}^{2}$ to validate the model (test model hypothesis), but also to "correct" our uncertainties, if we consider them unreliable (or they are unknown):

$$
\tilde{\sigma}^{2}=\frac{\sigma^{2} \tilde{\chi}^{2}}{N-M}
$$

This is useful in particular when $\tilde{\chi}^{2} \ll N_{d f}$ (overestimated σ)
For $\tilde{\chi}^{2} \gg N_{d f}$ we need to consider the possibility that our model is wrong...

Linear Regression

Multiple independent variables

The described approach works also for multi-dimensional dependencies! For example, we can consider polynomial of order M in two coordinates:

$$
\mu(x, z ; \mathbf{a})=\sum_{k=0}^{M} \sum_{l=0}^{M} a_{k l} x^{k} z^{\prime}
$$

Linear Regression

Multiple independent variables

The described approach works also for multi-dimensional dependencies! For example, we can consider polynomial of order M in two coordinates:

$$
\mu(x, z ; \mathbf{a})=\sum_{k=0}^{M} \sum_{l=0}^{M} a_{k l} x^{k} z^{\prime}
$$

All we need to do is to order the pairs of indexes, so that vector a is properly defined. Example for $M=1$ (2-D plane): $\mathbf{a}=\left(a_{00}, a_{10}, a_{01}\right)$

$$
\mathbb{A}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{ccc}
1 & x & z \\
x & x^{2} & x z \\
z & x z & z^{2}
\end{array}\right) \quad \mathbf{b}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{c}
y \\
y x \\
y z
\end{array}\right)
$$

where measurement indexes $i=1 \ldots N$ were skipped for variables x_{i}, y_{i} and z_{i}

Statistical analysis of experimental data

Least-squares method

(1) χ^{2} distribution
(2) Hypothesis Testing
(3) Linear Regression
4) Homework

Homework

Homework

Download the set of data from the lecture home page.

Use linear regression method to fit polynomial dependence to the data.

Calculate p-value for the 2nd order polynomial (parabola) fit.

Find the order of polynomial, which is adequate for the description of the data and give arguments for your choice.

Linear fit Npar $=1 \quad \chi^{2}=7175.47 / 23$

