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Statistical analysis of experimental data > .

Least-squares method

© 2 distribution
© Hypothesis Testing
e Linear Regression

@ Homework

A.Kalinowski Statictical analysis 08 November 30, 2023 2/50



Maximum Likelihood Method >

Maximum Likelihood Method

L= 9N

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set A we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL =) Inf(xU;x)
j=1

we can look for maximum value of £ or minimum of —2¢ = —2InL
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Maximum Likelihood Method >

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

N N
A=(A1... ) L=T]fD:0)  £=> Inf(x");x)
j=1

j=1
Best estimate of A, for given set of experimental results xU), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:
o )
aA" i=1l..p
The Likelihood Principle G. Bohm and G. Zech

=0

Given a p.d.f. f(x; A) containing an unknown parameters of interest A and observations x),
all information relevant for the estimation of the parameters A is contained in the likelihood
function L(X;x) = [T £(x); A).
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Maximum Likelihood Method -

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates X are
given by the measured variable values x.

Unlike parameters X, parameter estimates A are random variables (functions of x) and so we

~

can consider covariance matrix for X:

20 \ 7
b=0G0 = (_8)\,- aAj)

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.
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Confidence intervals ’im

Normal distribution

Meaning of o is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value within + N o:

f(x; 1,0)
11—«
+10 = 68.27 %
+20 = 9545 %
+30 — 99.73 % o
+40 = 99.9937 %
+50 = 99.999943 % o/2 o/2
! ! ! !
-3 -2 - 0 1 2 3
(x—W/oc

There is a non-zero chance for deviation grater than 50, but it is extremely small
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Confidence intervals -%

Frequentist confidence intervals

General procedure @ calculate limits of probability intervals

_— for x, x1(0) and x2(), for different
IS values of

@ calculated intervals define the

™ x5(6). 0,(x) “accepted region” in (6, x)

@ confidence interval for 6 is defined by
drawing line x = x,,; in the accepted
region

x1(8), 8,(x)

parameter 0

= limit on 6 for given xm,, 01(xm),

corresponds to limit on x for given 6:
Possible experimental values x Xm = X1(91)-

50) %0

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page

A.Kalinowski Statictical analysis 08 November 30, 2023 7/50


https://pdg.lbl.gov/

Bayesian limits o

Example procedure

Bayes theorem can be applied to the case of counting experiment (without background):

P(nm; 1)
Pu; = - P
(i 1m) Jdu’ P(nm; ) (")
Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat “prior distribution” for y (no earlier constraints) we get:

pe
Pluin) = —
Upper limit on the expected number of events can be then calculated as:

Hul
/ du P(p;inm) = 1—«
0

Surprisingly, the numerical result is the same as for Frequentist approach...
A.Kalinowski
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Unified approach > .

Solution

We still want to start from constructing the probability intervals in random variable x (or n)
for given hypothesis p.

Let ppest(x) be the parameter value best describing measurement x (maximum likelihood).

How consistent is the considered parameter value p with our measurement (described by
[tpest) can be described by likelihood ratio:

R(x; 1) P(x; fipest (X))

We can now create the probability interval for x, [xi, x2|, by selecting values with highest R,
up to given CL:

<1

x2
/ dx P(x;p) = 1—a and Vg . R(X) < R(x1) = R(x)

1
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Unified approach > .

Solution

We still want to start from constructing the probability intervals in random variable x (or n)
for given hypothesis p.

Let ppest(x) be the parameter value best describing measurement x (maximum likelihood).

How consistent is the considered parameter value p with our measurement (described by
[tpest) can be described by likelihood ratio:

R(n; ) P(n; tipest(x))

We can now create the probability interval for n, [n1, np], by selecting values with highest R,
up to given CL:

<1

ny
> P(mp) = 1—a and Vagiany R(n) < R(m) N R(n) < R(n)

n=ni
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Unified approach

N
\
\\;\\ )

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for counting experiment (Poisson variable)
in the presence of known mean background i, = 3.0

Central 90% CL intervals Unified 90% CL intervals
Confidence intervals Confidence intervals
2 f 3T
c 14 c 14
g r s I
g 12 £ 12
(0] L (0] L
2 10f 2 10f
(= [=
8f 8
6F 6
4r 4
2k 2
0: . VI EETE N AR B A 0 NI TN STRTEEN R
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Measured n Measured n
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Statistical analysis of experimental data > .

Least-squares method

@ 2 distribution
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x? distribution

Maximum Likelihood Method see lectures 05 and 06

Let us consider N independent measurements of variable Y. Assuming measurement
fluctuations are described by Gaussian pdf, the likelihood function is:

L = |N| G(yi; i 07) = |N| L exp <_1(y,- _Mi)2>
- I 1B 1 - 2
Pl o2 2 o

i=1

Log-likelihood: assuming o; are known

1 (vi — wi)?
{ = _EZT + const

i
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x? distribution

Maximum Likelihood Method see lectures 05 and 06

Let us consider N independent measurements of variable Y. Assuming measurement
fluctuations are described by Gaussian pdf, the likelihood function is:

L = |N| G(yi; i 07) = |N| L exp <_1(y,- _Mi)2>
- I 1B 1 - 2
paley oV 2T 2 o

i=1

Log-likelihood: ] (i — i) assuming o; are known
l = —5 Z T + const
We can define N ,
X2 = -20=-2Il = Z(y; 0.2M)

i=1 !

Maximum of (log-)likelihood function corresponds to minimum of y?
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x? distribution -

N=2

Let us introduce ‘“shift” variables:
Yi — Hi
o

zZj =

which are (by construction) described by Gaussian pdf with =0, o = 1.
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x? distribution -

N=2

Let us introduce ‘“shift” variables:
Yi — Hi
o

zZj =
which are (by construction) described by Gaussian pdf with 4 =0, 0 = 1. For N =2
independent variables we can write:

1 1
o) = o o33 +2)
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x? distribution -

N=2

Let us introduce ‘“shift” variables:
Yi — Hi
o

zZj =

which are (by construction) described by Gaussian pdf with 4 =0, 0 = 1. For N =2
independent variables we can write:

1 1
o) = o o33 +2)
and then change variables to polar coordinates see lectu

1 1
f(rz,02) = o ry exp (—2rz2>

re 04
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x? distribution -

N=2

Integrating over ¢, and changing variable to r?

1 1
f(fzz) = 2exp<—2r22>

Distribution is exponential, corresponds to decay time distribution for 7 = 2...
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x? distribution -

N=2

Integrating over ¢, and changing variable to r? = 2

1 1
f(x*) = 5 P <—2X2>

Distribution is exponential, corresponds to decay time distribution for 7 = 2...
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x? distribution e

N=2
Integrating over ¢, and changing variable to r?
1 1
f 2 I T2
(x%) 5 exr>< S X >
Distribution is exponential, corresponds to decay time distribution for 7 = 2...

Even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma

distribution with k = n=N/2, A\=1/7 =1/2 lecture 03

14 /50
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x? distribution e

N=2
Integrating over ¢, and changing variable to r?
1 1
f 2 I T2
(x%) 5 exr>< S X >
Distribution is exponential, corresponds to decay time distribution for 7 = 2...

Even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma
distribution with k = n=N/2, A\=1/7 =1/2 lecture 03

F() = I_(1@/) (;)2 (Xz)%fl o X?/2

The formula (as one can expect) works also for odd N...

A.Kalinowski Statictical analysis 08 November 30, 2023 14 /50




\
N /’/
. ;\\\ F 4

X~ distribution

N=1 Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z?= \?%:
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x? distribution -

N=1 Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z?= \?%:

+00 ’
Mi(t) = E(e™) = / dz f(z) e®

— 00
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x? distribution -

N=1 Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z?= \?%:

M (t)

E(et) = / R f(z) e

— 00

+oo
b / dz e =’z 1)
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x? distribution -

N=1 Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z?= \?%:

+00 ’
Mi(t) = E(e™) = / dz f(z) e®

—00
+
_ L[ dz e =’z 1)
V21 J
—+00 /
2 _ 22(1 - t) - 1 dZ e_zl2
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x? distribution -

N=1 Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z?= \?%:

+00 ’
Mi(t) = E(e™) = / dz f(z) e®

—00
+
= 1 /OOdZe 2(3-1)
27 J
S A B S e
2 21 J - l—t
2
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x? distribution P

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N N/2
) = T - ()
i=1
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+oo 1
MG(t) = E(etx) = /0 dx r(k)xk—l AK @™ Ax otx

X /+°dexk—1 o x(A—1)
(k) Jo
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+o0 1
MG(t) = E(etx) = / dx k=1 \k g=Ax gtx
0

10)

)\k 400 dX/ X/kfl ,

! _ )\ o t — / —X
X =xA ) [y ok ©
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+o0 1
MG(t) = E(etx) = /0 dx r(k)Xk—l \K e Ax otx

K 00yl k=1 , 1 k
xX'=x(\—t) = / e X = <>
F(k) Jo (A=) - %
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x? distribution -

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
kZE and Azi
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x? distribution -

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
k = E and )\ = 5
Properties of the x? distribution (see lecture 03)
k
2
= — = N
(X 3
k
V(Xz) = 2 = 2N
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x? distribution P

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
k = E and )\ = 5
Properties of the x? distribution (see lecture 03)
k
2
= — = N
(X 3
k
V(Xz) = 2 = 2N

V(x?) = 0. = V2N

For small N, value of x? is a subject to large fluctuations...
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X~ distribution

x? distribution 08_chi2.ipynb

Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N = 2 Mean 2.002
StdDev  1.998
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Exponential distribution %2 value
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https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/08_Least-squares_method/08_chi2.ipynb
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N = 2 Mean 2.002
) StdDev  1.998
E
E 10—1 E ‘I‘.I"---_‘I|1I|
g g \H“’m‘
> 107 S
i) i
8 107 2
S E
a E Ml
10 ofl,
0O 2 4 6 8 10 12 14 16 18 20
%2 value

Exponential distribution
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distribution o
x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N =1 Mean  0.9934
v 18 Std Dev  1.403
S
=16
S 14
g 12
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3 o8
@
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02
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Sharply peaked at zero, but with long tail x? value
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distribution o
x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

¥2 distribution for N =1 Mean  0.9934
© Std Dev  1.403
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N = 3 Mean 2.998
© 025 StdDev  2.451
E :
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Very asymmetric, most events below average value... x* value
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N =4 Mean 4.002
© F .
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Very asymmetric, most events below average value... x* value
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N=5 Mean 5.004
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Very asymmetric, most events below average value... x* value
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N = 6 Mean 5.976
UEJ 0.14 Std Dev  3.456
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It is interesting to note that maximum position, x7,.,, = N —2 (!!l)  X*vaue
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distribution o
x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
¥2 distribution for N = 8 Mean 7.995
© n StdDev  3.977
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N = 10 Mean 10
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N = 15 Mean 15
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N = 20 Mean 19.97
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N = 25 Mean 25.02
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X~ distribution

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
%2 distribution for N = 50 Mean 50.08
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distribution im
x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)
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Results of the Monte Carlo sample generation (compared with predictions)
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x? distribution

Reduced y?

When discussing consistency of large data samples it is often convenient to use value of

“reduced y?": )

g =
red N

Distribution of Xfed is again described by the Gamma pdf with

N N
k:§ and )\25
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x? distribution -

Reduced y?
When discussing consistency of large data samples it is often convenient to use value of
“reduced y?": )
2 _ X
Xred =

Distribution of Xfed is again described by the Gamma pdf with

N N
k = 5 and \ = 5
Properties of the distribution:
2
<Xged> =1 V(X%ed) = Uf(%ed = N
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X2 distribution o3

Number of degrees of freedom

So far, we have only considered an ideal case, where both the expected values p and
measurement uncertainties o are known.

However, it is quite a common situation, when the expected value is extracted from the data:

where we assume uniform uncertainties for simplicity.

What is the expected distribution for {2 ?

=<
N

IN

>
)

Mean value corresponds to maximum likelihood =

A.Kalinowski Statictical analysis 08 November 30, 2023 20 /50



x? distribution e

Number of degrees of freedom
We already know (lecture 04) that unbiased variance estimate for N measurements is

so one can conclude:
() = N-1

but this does not give us full information about the distribution...

November 30, 2023 21 /50
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x? distribution -

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

so one can conclude:
() = N-1

but this does not give us full information about the distribution...

Simple variable transformation can be used: (Brandt)

1
X = ———(i .y —
K k(k+1)(y1 Yk — Yk+1
XN = \/Ny

One can verify that this is an orthogonal transformation...

Statictical analysis 08

) k=1..N-1
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X2 distribution o3

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
=1 i=1

A.Kalinowski Statictical analysis 08 November 30, 2023



x? distribution o

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
i=1 i=1

We can now rewrite the formula for ¥2 in the new basis:

N

N N
o P = Y i =Y v -2 v+ NP
i=1 i=1

i=1

N
= ZyIZ - N}_/Z
i=1

A.Kalinowski Statictical analysis 08 November 30, 2023 22 /50



x? distribution -

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
=1 i=1

We can now rewrite the formula for ¥2 in the new basis:

N

N N
2 = D i) =D -2 yi+ NP
i=1 i=1 i=1
N—1

N N
2 =2 2 2 2
= DN =Y = Do
i=1 i=1 j

= distribution of ¥? corresponds to that of x? for Ngr = N — 1 variables...

A.Kalinowski Statictical analysis 08 November 30, 2023 22 /50



Statistical analysis of experimental data > .

Least-squares method

© Hypothesis Testing

A.Kalinowski Statictical analysis 08 November 30, 2023 23 /50



Hypothesis Testing SR

Data consistency test

Value of x? (or Xfed) can be used to verify the consistency of the given data set y
(with uncertainties o) with the model predictions given by p

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or
check the consistency of the experimental procedure...

If the model does not describe the data, higher x? values are expected.

How to quantify the level of agreement?

A.Kalinowski Statictical analysis 08 November 30, 2023 24 /50



Hypothesis Testing SR

Data consistency test

Value of x? (or Xfed) can be used to verify the consistency of the given data set y
(with uncertainties o) with the model predictions given by p

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or
check the consistency of the experimental procedure...

If the model does not describe the data, higher x? values are expected.
How to quantify the level of agreement?

We can calculate the probability of obtaining given value of x? or lower:

2

P(x*) = /OX dx® f(x*)

given by the cumulative probability distribution. 1 — P(x?) is sometimes referred to as p-value

A.Kalinowski Statictical analysis 08 November 30, 2023 24 /50
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Hypothesis Testing >

Data consistency test

1.000
Plot of p-values '3 (PDG)
as a function of y? 0.500¢ ]
for different Nyr “ 0.200\ i
4 n=1 2 34 68 15 \ 25\ 40
%8 0.100— —
88 E 10 20130 \ 50 7
:§§ 0.0505 E
52
=E 0.020- .
% &
&8 0.010— |
g = 3
c; 0.0051 ]
0.002- B
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X2

A.Kalinowski Statictical analysis 08 November 30, 2023 25 /50


https://pdg.lbl.gov/

Hypothesis Testing

Critical \?

The other approach is to define, for given probability P (confidence level) the critical value of
x?, corresponding the the frequentist upper limit:

Xt +o0
/ dx* f(x*) = P d’f(x*) =1-P =1-a
0

2
Xerit

A.Kalinowski
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Hypothesis Testing

Critical \?

The other approach is to define, for given probability P (confidence level) the critical value of

x?, corresponding the the frequentist upper limit:

Xri +oo
/ dx* f(x*) = P d’f(x*) =1-P =1-a
0 Xgrit
If the x? value obtained in the actual measurement is higher than the selected xin-t, then we

should reject the hypothesis of data consistency with the model (can still be due to the data,
not the wrong model).
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Hypothesis Testing

Critical \?

The other approach is to define, for given probability P (confidence level) the critical value of

x?, corresponding the the frequentist upper limit:

Xt +o0
/ dx* f(x*) = P d’f(x*) =1-P =1-a
0

Xgrit
If the x? value obtained in the actual measurement is higher than the selected xin-t, then we

should reject the hypothesis of data consistency with the model (can still be due to the data,
not the wrong model).

Very low P values (P < 1) are also not expected (not likely)!
If x2 < N (except for very small V), this usually indicates a problem:

@ overestimated uncertainties of measurements (or correlations not properly included)

@ hidden correlations between measurements (which we treat as independent variables)
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Hypothesis Testing SR

Critical \?
Table of critical x? values (Brand) 3
p=["raipar
P
f 0.900 0.950 0.990 0.995 0.999
1 2.706 3.841 6.635 7.879  10.828
2 4.605 5.991 9.210 10.597 13.816
3 6.251 7.815 11.345 12.838 16.266
4 7.779 9.488 13.277 14.860 18.467
5 9.236 11.070 15.086 16.750  20.515
6| 10.645 12592 16.812 18.548 22.458
7| 12.017 14.067 18475 20.278 24.322
8| 13.362 15.507 20.090 21.955 26.124
9| 14.684 16919 21.666 23.589 27.877
10| 15987 18307 23209 25.188  29.588
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Hypothesis Testing ;

Critical x? 08_critical.ipynb
Plot of critical values c;'ica'xzcuwe? O
for reduced 2 ~ F \ \ N T
W E B el N
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Critical \?

Plot of critical values

for reduced 2
(indicated is p=1— P)

(PDG) n
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Hypothesis Testing SR

Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at
the shift parameter for the mean %1

Ox
where mean value X is the best estimate of p assuming Gaussian pdf.

Z g

A.Kalinowski
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Hypothesis Testing >
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Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at

the shift parameter for the mean %1
Ox
where mean value X is the best estimate of p assuming Gaussian pdf.

Z g

But this works only, if we know the uncertainty, oz = o/V/ .
We need to know measurement uncertainties to calculate x2 I...
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Hypothesis Testing >
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Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at

the shift parameter for the mean %1
Ox

where mean value X is the best estimate of p assuming Gaussian pdf.

Z g

But this works only, if we know the uncertainty, oz = o/V/ .
We need to know measurement uncertainties to calculate x2 I...

If the measurement uncertainties are unknown, or not reliable, we can estimate the variance of
the sample from the data itself (lecture 04)

1 -

= s
1

s? distribution corresponds to x? distribution for N — 1 degrees of freedom

A.Kalinowski Statictical analysis 08 November 30, 2023 30/50



Hypothesis Testing SR

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by

X—p

s/\/N

but the distribution of t is no longer Gaussian (due to s being a random variable as well).
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Hypothesis Testing =3

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by

X—p

s/\/N

but the distribution of t is no longer Gaussian (due to s being a random variable as well).
It can still be calculated analytically:

I r(el) 2 —o
fEn) = 70 T (”n)

where n is the number of degrees of freedom, n = N — 1.

A.Kalinowski
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Hypothesis Testing SR

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by

X—p
s/\/N

but the distribution of t is no longer Gaussian (due to s being a random variable as well).
It can still be calculated analytically:

oy LT 2\
fEn) = 7% T (”n)

where n is the number of degrees of freedom, n = N — 1.

Distribution is symmetric and has a mean of zero, but larger tails than the Gaussian
distribution, for small N in particular.

A.Kalinowski Statictical analysis 08 November 30, 2023 31/50



\,
\
\E\\ )

Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 2 Mean  0.001454
uEJ I - - T sdpev  1623| Shape of the t distribution
= 04 5 5 for different numbers of
et -
S 035F measurements
g 0.3 ;_ .....
30255_ ..... Ndf:N_]':l
‘B E
8 0.2 5
o 0.5
R =
0.05 -
= . ; T
Y =errrrare i S IS NS P DU SR DO Mo
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 4 Mean  —0.003984
uEJ - : : Tsuoev  133| Shape of the t distribution
= 04 5 : for different numbers of
:E, 0.35 i— measurements
g 0.3 ;_ .........
30255_ ......... Ndf:N—1:3
§ 0.2 E_ ...........
S 015
R =
0.05 z_ .....
-5 -4 -3 -2 - 0 3 4 5
tvalue
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N =6 Mean  0.001031
uEJ I - - T sdpev  1225| Shape of the t distribution
= 04 5 : for different numbers of
:E, 0.35 i— ----- measurements
g 0.3 ;_ .....
30255_ ..... Ndf:N_1:5
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S o015 fF
R = :

0.05 f 5
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N =8 Mean  0.0002528
uEJ I - - Tsuoev 1158 Shape of the t distribution
= 04 5 5 for different numbers of
:E, 0.35 i— ----- measurements
g 0.3 ;_ .....
30255_ ..... Ndf:N_]‘:7
§ 0.2 E_ .....
S 015
R =

0.05 z_ .....
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb

t distribution for N =8 Mean  0.0002528
spev 1158 | Shape of the t distribution

for different numbers of
measurements

Nyg=N-1=7

tails are clearly non-Gaussian...

Probability per unit time

4 5
tvalue
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Hypothesis Testing

Student’s t Distribution

Mean  —0.00705

t distribution for N = 2

Probability per unit time

i| Std Dev 1619

04
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08_t-dist.ipynb

Shape of the t distribution
compared with Gaussian
distribution

Nys=N—1=1
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution forN = 4 Mean  0.0006665
uEJ - : : Tsoev 1343 Shape of the t distribution
= 04F 5 5 compared with Gaussian
S 035 = distribution
§ 03[
> 025 Ngr=N—-1=3
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N =6 Mean  0.002253

uEJ - : : T sdpev  1218) Shape of the t distribution
= 04F 5 5 compared with Gaussian
S 035 = distribution
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distributionfor N = 8 Mean  0.001729
uEJ - : : T sdpev 1163 Shape of the t distribution
= 04F 5 5 compared with Gaussian
S 035 = distribution
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb

t distribution for N =8 Mean  0.001729
sdbev 1183 | Shape of the t distribution

compared with Gaussian
distribution

Nyg=N-1=7

Probability per unit time

4 5
tvalue
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Hypothesis Testing

Student’s t Distribution

t distribution for N = 10

Probability per unit time

Mean —0.004272

¢'| Std Dev 1124
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Shape of the t distribution
compared with Gaussian
distribution

Probability of large fluctuations
still significantly enhanced!
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 20 Mean  0.0001408

uEJ " : : Tsoev 105 | Shape of the t distribution
= i L compared with Gaussian
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c F distribution
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Hypothesis Testing
Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 50 Mean —0.001321
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Hypothesis Testing

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 100 Mean -0.004766
uEJ " : : : 7| std Dew 101| Shape of the t distribution
= i L compared with Gaussian
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c F distribution
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Hypothesis Testing

Student’s t Distribution (Brandt)

“Critical values” of t for small

tp
P= [ s
numbers of degrees of freedom f s
P
0.9000 0.9500 0.9750 0.9900 0.9950 0.9990 0.9995
3.078 6314 127706 31.821 63.657 318.309 636.619
1.886 2920 4303 6.965 9.925 22327 31.599
1.638 2.353 3,182 4541 5841 10215 12.924
1.533 2132 2776 3.7747 4.604 7.173 8.610
1476 2015 2571 3365 4.032 5.893 6.869
1.440 1943 2447 3.143 3.707 5.208 5.959
1415 1.895 2365 2998 3.499 4.785 5.408
1.397 1.860 2.306 2.896 3.355 4.501 5.041
1.383 1.833 2262 2821 3.250 4.297 4.781
10| 1.372 1.812 2228 2764 3.169 4.144 4.587
11} 1363 1.796 2201 2718 3.106 4.025 4.437
12| 1.356 1.782 2.179 2.681 3.055 3.930 4318
13| 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14| 1345 1.761 2.145 2.624 2977 3.787 4.140
A.Kalinowski Statictical analysis 08 November 30, 2023 34 /50

O 0NN A WN =S




8 g
\E\'//

Hypothesis Testing 7

Student’s t Distribution 08_t-limit.ipynb

Plot of critical values for t Critical t curves
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Statistical analysis of experimental data > .

Least-squares method

e Linear Regression
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Linear Regression %

General case

We introduced 2 in a very general form:

2

> (vi — i)
=) o2
1

i=1

where different u; and o; are possible for each of N measurement y;
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Linear Regression %

\,
\
\E V]

General case

We introduced x? in a very general form:

2

> (vi — i)
=) o2
1

i=1

where different u; and o; are possible for each of N measurement y;

It is quite often the case that values of u; depend on some controlled variables x; and a
smaller set of model parameters:

pi = p(xi;a)

we can then use the least-squares method to extract the best estimates of parameters a from
the collected set of data points (x;, y;)

We can look for minimum of x? using different numerical algorithms...
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Linear Regression ’im

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

M
p(xia) = Y ax fix)
k=1

where f(x) is a set of functions with arbitrary analytical form.
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Linear Regression ’im

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

M
p(xia) = Y ax fix)
k=1

where f(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:
M
fil(x) = xk = u(x;a) = Zak xk=1
k=1

but any set of functions can be used, if they are not linearly dependent.
Functions ortogonal for a given set of points x; should work best...
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Linear Regression %

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)
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Linear Regression ’im

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

e o i(y,-—zzilak fk(X)>2

I
o

83/ a 83, 1 Oj
=
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Linear Regression ’im

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

2
n? 8% yi = M a ()
83/ N 83, gj

i=1

N
()

) g
i=1 !
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Linear Regression ’im

Parameter fit Bonamente

We obtain a set of M equations for M parameters a;:

" fi(x) M
)3 2 yi—Y aflx)| =0 I=1...M
k=1

i=1 i
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Linear Regression ’im

Parameter fit Bonamente

We obtain a set of M equations for M parameters a;:

N f(x) M
Z 02 <y,-Zakfk(x)> =0 I=1...M
=1 ! k=1
which can be rewritten as:
(K () fi(x) K i) v
> o2 w = ) P
k=1 i=1 ! i=1 !
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Linear Regression ’im
Bonamente

Parameter fit
We obtain a set of M equations for M parameters a;:

" fi(xi) M
Z 5 yifzakfk(X) =0 I=1...M
k=1

: o
i=1 !

which can be rewritten as:

k=1 \i=1 ! i=1
or in the matrix form: A-a = b
N N
fi i f) i fi i) Yi
where Ay = Z 1) 2k(x) and by = Z I(X2)y
o o
i i=1 i

November 30, 2023 40 /50
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Parameter fit

Solution of this set of equations can be obtained by inverting matrix A

a = Al.b
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Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Al.b

This also gives us the estimate of parameter covariance matrix:

2 -1 2.2 \ 1
C, = _ﬁ — laix — A1
Oa; Day 2 0a; Dak
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Linear Regression ’im

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Al.b

This also gives us the estimate of parameter covariance matrix:

2 -1 2.2 \ 1
C, = _ﬁ — laix — A1
Oa; Day 2 0a; Dak

Ca = (N fi(xi) fk(Xi)>_1

2
1 i

One can write

Expected uncertainties of the extracted parameter values depend on the choice of
measurement points x; but, surprisingly, do not depend on the actual results y;
= very useful when planning the experiment...
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Linear fit example 08_fit1.ipynb
Pseudo data
Fitting Fourier series to 3<§ 056 : T
example data set - 1 t
o A N
0.2 : T 1L i L T
example model = 0 E
-0.2 | \\ I/{T
-06 S R
-1 -05 0 0.5 1
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Linear Regression

Linear fit example

Fitting Fourier series to
example data set

Linear fit

>
el
>

0.6 |

04

0.2

0

-0.2

-0.4

-0.6

NN
W iy

08 fitl.ipynb

Npar=3 #2=1222/16

: it

5 A1 TN

B 1 I

e

-1 -05 0 0.5 1
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Linear fit example 08_fit1.ipynb
Linear fit Npar=5 %2=10.63/14

0.6 |

Fitting Fourier series to 3<§
example data set -

1t
FEEY
:0:4' -1/
06k Y

-1 -0.5 0 0.5 1
M X

y(x) = ao+ Z axp—1sin(nx) + azpcos(nx) M =2

n=1

—i—

T
—
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Linear Regression im
Linear fit example 08_fit1.ipynb
Linear fit Npar=7 %2=87/12
Fitting Fourier series to 3<§ 056 : T
example data set - ,LT
04 F )
0.2 - T 14_ m T
2F 1 [N
Probably optimal choice 0 -
-0.2 | L
—oaF . L/{T
0.4 [~ IW T
-05 & ey
-1 -05 0 05 1
M X
y(x) = ao+ Z axp—1sin(nx) + aspcos(nx) M =3

n=1
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Linear Regression im
Linear fit example 08_fit1.ipynb
Linear fit Npar=9 %2=4.57/10
Fitting Fourier series to 3<§ 056 : T
example data set - /+'-
04 |
0.2 - T L4 N\L T
“Overtraining” o ’/M ‘*
-0.2 | /i(/y
-05 & ey
-1 -05 0 05 1
M X
y(x) = ao+ Z axp—1sin(nx) + azpcos(nx) M =
n=1
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Linear fit example 08_fit1.ipynb
Linear fit Npar=11 %2=3.88/8

Fitting Fourier series to =

06 | T
example data set 0a f A
02 [ ! V( NJ !
| A o

“Overtraining” 0
-02

04 I M/f
-06 k& T L

-1 -0.5 0 0.5 1
M X

y(x) = ao+ Z azp—1sin(nx) + agpcos(nx) M =

n=1
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Linear fit example 08_fit1.ipynb
Linear fit Npar=15 %2=0.33/4
Fitting Fourier series to < 06 - "
example data set - X\
04 | .
0.2 - TIJ m T
“F T i 1*
“Overtraining” =
-0.2 | ]
: N
-04 ¢ Npptt
—06 & ey
-1 -05 0 05 1
M X
y(x) = ap+ Z azp—1sin(nx) + agpcos(nx) M =6
n=1
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Linear Regression > .

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
@ Parameters become highly correlated
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Linear Regression > »

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)

@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions

o Additional parameters are consistent with zero
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
@ Parameters become highly correlated
@ Values and errors of the individual parameters increase
differences of large contributions
o Additional parameters are consistent with zero
o Fit starts to follow fluctuations of the measurement results
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Best fit choice? 08_fit3.ipynb

Example of fit with too high polynomial order

Linear fit Npar=8 2=4.76/11

L oaf
035 | O o
03 F ‘{ [ "\f\"T T
025 % Y\

0.05

e

02 0.4 0.6 0.8 1

o]
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Best fit choice? 08_fit3.ipynb

Example of fit with proper polynomial order

Linear fit Npar=3 %2=10.21/16

p—
i—'
-

5.

0.05

(=]
—
(4]
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02 0.4 0.6 0.8 1
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Linear Regression

Learning on errors 08_fit4.ipynb
Linear fit Npar=3 ¥2=15.04/16

When “wrong” set of 5‘; 06 L "

functions (highly - ; L_t

. 04
correlated) is selected... E
02| \
C J. )

wEN A
—0.4E \h"- V{'/r i

r

e’

g ¥
-0.6 |- {:
-1 -05 0 05 1
X
y(x) = ao+ arsin(x)+ az cos(x)
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Learning on errors

When “wrong” set of
functions (highly
correlated) is selected...

Linear fit
X
=
04
0.2
0
-0.2
-0.4
-0.6 [
y(x) =

Npar=5 #2=25.75/14

08_fit4.ipynb

06|

N
!

7
e

-1 -05

M
ao + Z agp—1sin”(x) + agpcos’(x) M =

n=1

0

0.5

1
X

CO Open in Colab
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Learning on errors 08_fit4.ipynb
Linear fit Npar=7 %2=24.39/12

b 1 ‘;E“ B
When “wrong” set of S osk
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Linear Regression ’im

Learning on errors

When “wrong” set of
functions (highly
correlated) is selected...

Poor numerical precision
due to high correlations
between parameters.

Linear fit
X
=

04

0.2

0

-0.2

-0.4

-0.6

y(x) =

Npar=9 %2=41.39/10

08_fit4.ipynb
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Learning on errors 08_fit4.ipynb
Linear fit Npar=11 %2=33.77/8

When “wrong” set of z 05 [ r
functions (highly -

0.4 T h
correlated) is selected... T
0.2 It L N
L J
i

C \ 4
oF
Poor numerical precision o2k +\ /{1

. . =L b4 TT
due to high correlations - ;\i /i
& -0.4

between parameters. “E \FT
-06 F S
sin?(x) + cos?(x) =1 -1 -05 0 0.5 1
M X
y(x) = 30+Zazn—ﬁin"(x)—i-azncos”(x) M =
n=1
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Linear Regression 5

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to k, / =0... M
(for polynomial fit of order M, M + 1 parameters).

N I+k N
x,-( +) X,-I Yi
A/k = E 3 and b/ = E 5
. g _ (o
i=1 ! =1 1
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Linear Regression ’im

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to k, / =0... M
(for polynomial fit of order M, M + 1 parameters).

N X(H—k) N XI yi
A/k = E ’0_2 and b/ E 10-2’
i=1 i i=1 i
For uniform uncertainties it is then:
M
1 Xi . X Vi
2 M+1
A=) b ==
0% 4 : : 0% 4 :
=1 . . =1
X,M XiM+1 X,-2M M

quite simple to implement...
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—u(xa)T Ay — p(xa))

Its distribution should correspond to the x? distribution for Nyr = N — M
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—p(xa)T Ay - u(xa))
Its distribution should correspond to the x? distribution for Nyr = N — M

If uncertainty is the same for all measurements, the extracted parameter values are independent
onit (!).
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Linear Regression ’im

Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—p(xa)T Ay - u(xa))
Its distribution should correspond to the x? distribution for Nyr = N — M

If uncertainty is the same for all measurements, the extracted parameter values are independent
on it (). We can use the calculated value of ¥ to validate the model (test model hypothesis),
but also to “correct” our uncertainties, if we consider them unreliable (or they are unknown):

52 = U2>N(2
N-—-M

This is useful in particular when ¥? < Ng¢ (overestimated o)
For ¥? > Ny we need to consider the possibility that our model is wrong...
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Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

M M
u(x,z;a) = ZZak/ xk Z!

k=0 /=0
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Linear Regression >

Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

xza E Eak/xz

k=0 /=0

All we need to do is to order the pairs of indexes, so that vector a is properly defined.
Example for M =1 (2-D plane): a = (ago, 210, 201)

Y 1 x z L vy
A—;Z x x> xz b:;z Y x
i=1 2 i=1

zZ Xz z yz

where measurement indexes i = 1..

. N were skipped for variables x;, y; and z;
A.Kalinowski
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Statistical analysis of experimental data > .

Least-squares method

@ Homework
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Homework Solutions to be uploaded by December 14.

Download the set of data from the lecture home page.

Linear fit Npar=1 %2=7175.47/23

Use linear regression method to fit
polynomial dependence to the data.

y(x)

n

Calculate p-value for the 2nd order
polynomial (parabola) fit.

n

-y

Find the order of polynomial, which is '
adequate for the description of the data

and give arguments for your choice.

=
&

(=)
OII“II\\II\\I\III\II TTTT T
B

0.2 0.4 06 08 1 1.2
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