Statistical analysis of experimental data Least-squares method (2)

Aleksander Filip Żarnecki

FACULTY OF -惯HYSICS
 UNIVERSITY OF WARSAW

Lecture 09
December 7, 2023

Statistical analysis of experimental data

Least-squares method (2)
(1) Non-linear fit procedure
(2) F-test
(3) Constrained fit
4. Homework

χ^{2} distribution

Maximum Likelihood Method

Let us consider N independent measurements of variable Y. Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

$$
L=\prod_{i=1}^{N} G\left(y_{i} ; \mu_{i}, \sigma_{i}\right)=\prod_{i=1}^{N} \frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

Log-likelihood:

$$
\ell=-\frac{1}{2} \sum \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}+\text { const }
$$

assuming σ_{i} are known

We can define

$$
\chi^{2}=-2 \ell=-2 \ln L=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

Maximum of (log-)likelihood function corresponds to minimum of χ^{2}

χ^{2} distribution

χ^{2} distribution

We conclude that distribution of χ^{2} is described by Gamma pdf with:

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{1}{2}
$$

Properties of the χ^{2} distribution

$$
\begin{aligned}
\left\langle\chi^{2}\right\rangle & =\frac{k}{\lambda}=N \\
\mathbb{V}\left(\chi^{2}\right) & =\frac{k}{\lambda^{2}}=2 N \\
\sqrt{\mathbb{V}\left(\chi^{2}\right)}=\sigma_{\chi^{2}} & =\sqrt{2 N}
\end{aligned}
$$

For small N , value of χ^{2} is a subject to large fluctuations...

χ^{2} distribution

χ^{2} distribution

Results of the Monte Carlo sample generation (compared with predictions)

It is interesting to note that maximum position, $\chi_{\max }^{2}=N-2$ (!!!)

χ^{2} distribution

Reduced χ^{2}

When discussing consistency of large data samples it is often convenient to use reduced χ^{2} value:

$$
\chi_{\text {red }}^{2}=\frac{\chi^{2}}{N}
$$

Distribution of $\chi_{\text {red }}^{2}$ is again described by Gamma pdf with

$$
k=\frac{N}{2} \quad \text { and } \quad \lambda=\frac{N}{2}
$$

Properties of the distribution:

$$
\left\langle\chi_{\text {red }}^{2}\right\rangle=1 \quad \mathbb{V}\left(\chi_{\text {red }}^{2}\right)=\sigma_{\chi_{\text {red }}^{2}}^{2}=\frac{2}{N}
$$

Linear Regression

General case

We introduced χ^{2} in a very general form:

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where different μ_{i} and σ_{i} are possible for each of N measurement y_{i}
It is quite often the case that values of μ_{i} depend on some controlled variables x_{i} and a smaller set of model parameters:

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

we can then use the least-squares method to extract the best estimates of parameters a from the collected set of data points $\left(x_{i}, y_{i}\right)$

We can look for minimum of χ^{2} using different numerical algorithms...

Linear Regression

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

$$
\mu(x ; \mathbf{a})=\sum_{k=1}^{M} a_{k} f_{k}(x)
$$

where $f_{k}(x)$ is a set of functions with arbitrary analytical form.
One of the examples is the polynomial series:

$$
f_{k}(x)=x^{k} \quad \Rightarrow \quad \mu(x ; \mathbf{a})=\sum_{k=1}^{M} a_{k} x^{k-1}
$$

but any set of functions can be used, if they are not linearly dependent. Functions ortogonal on given set of points x_{i} should work best...

Linear Regression

Parameter fit

We obtain a set of M equations for M parameters a_{i} :

$$
\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right)}{\sigma_{i}^{2}}\left(y_{i}-\sum_{k=1}^{M} a_{k} f_{k}(x)\right)=0 \quad I=1 \ldots M
$$

which can be rewritten as:

$$
\sum_{k=1}^{M}\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right) a_{k}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
$$

or in the matrix form:

$$
\mathbb{A} \cdot \mathbf{a}=\mathbf{b}
$$

where $\quad \mathbb{A}_{l k}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad$ and $\quad b_{l}=\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}$

Linear Regression

Parameter fit

Solution of this set of equations can be obtained by inverting matrix \mathbb{A}

$$
\mathbf{a}=\mathbb{A}^{-1} \cdot \mathbf{b}
$$

This also gives us the estimate of parameter covariance matrix:

$$
\mathbb{C}_{\mathbf{a}}=\left(-\frac{\partial^{2} \ell}{\partial a_{l} \partial a_{k}}\right)^{-1}=\left(\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{l} \partial a_{k}}\right)^{-1}=\mathbb{A}^{-1}
$$

One can write

$$
\mathbb{C}_{\mathbf{a}}=\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right)^{-1}
$$

Expected uncertainties of the extracted parameter values depend on the choice of measurement points x_{i} but, surprisingly, do not depend on the actual results y_{i} \Rightarrow very useful when planning the experiment...

Linear Regression

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to $k, I=0 \ldots M$ (for polynomial fit of order $M, M+1$ parameters).

$$
\mathbb{A}_{l k}=\sum_{i=1}^{N} \frac{x_{i}^{(I+k)}}{\sigma_{i}^{2}} \quad \text { and } \quad b_{l}=\sum_{i=1}^{N} \frac{x_{i}^{\prime} y_{i}}{\sigma_{i}^{2}}
$$

For uniform uncertainties it is then:

$$
\mathbb{A}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{cccc}
1 & x_{i} & \ldots & x_{i}^{M} \\
x_{i} & x_{i}^{2} & \ldots & x_{i}^{M+1} \\
\vdots & & & \vdots \\
x_{i}^{M} & x_{i}^{M+1} & \ldots & x_{i}^{2 M}
\end{array}\right) \quad \mathbf{b}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(\begin{array}{c}
y_{i} \\
y_{i} x_{i} \\
\vdots \\
y_{i} x_{i}^{M}
\end{array}\right)
$$

quite simple to implement...

Statistical analysis of experimental data

Least-squares method (2)
(1) Non-linear fit procedure
(2) F-test
(3) Constrained fit

4 Homework

Non-linear fit procedure

General case

We consider χ^{2} in a general form:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where in general different σ_{i} are allowed for each of N measurements y_{i}.

Non-linear fit procedure

General case

We consider χ^{2} in a general form:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where in general different σ_{i} are allowed for each of N measurements y_{i}.
Values of μ_{i} depend on some controlled variables x_{i} and a set of model parameters a:

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

We look for the best estimate of \mathbf{a}, which should correspond to the global minimum of $\chi^{2}(\mathbf{a})$ for given set of data points $\left(x_{i}, y_{i}\right)$.

Non-linear fit procedure

General case

We consider χ^{2} in a general form:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where in general different σ_{i} are allowed for each of N measurements y_{i}.
Values of μ_{i} depend on some controlled variables x_{i} and a set of model parameters a:

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

We look for the best estimate of \mathbf{a}, which should correspond to the global minimum of $\chi^{2}(\mathbf{a})$ for given set of data points $\left(x_{i}, y_{i}\right)$.

For linear problem, this minimum can be found directly...

Non-linear fit procedure

General case

We consider χ^{2} in a general form:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where in general different σ_{i} are allowed for each of N measurements y_{i}.
Values of μ_{i} depend on some controlled variables x_{i} and a set of model parameters a:

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

We look for the best estimate of \mathbf{a}, which should correspond to the global minimum of $\chi^{2}(\mathbf{a})$ for given set of data points $\left(x_{i}, y_{i}\right)$.

For linear problem, this minimum can be found directly...
For non-linear problems, we need to use iterative procedures...

Non-linear fit procedure

Iterative procedure

We start from some "initial guess" of parameter values $\mathbf{a}_{\mathbf{0}}$.
Assuming small variations of the model parameters, $\mathbf{a}=\mathbf{a}_{\mathbf{0}}+\delta \mathbf{a}$, we expand χ^{2} in a series:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{0}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{0}\right)+\ldots
$$

where vector \mathbf{b} is the negative gradient of χ^{2} :

$$
\mathbf{b}=-\frac{1}{2} \nabla \chi^{2}\left(\mathbf{a}_{0}\right) \quad b_{j}=-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{j}}=\sum_{i=1}^{N} \frac{y_{i}-\mu_{i}}{\sigma_{i}^{2}} \cdot \frac{\partial \mu_{i}}{\partial a_{j}}
$$

Non-linear fit procedure

Iterative procedure

We start from some "initial guess" of parameter values $\mathbf{a}_{\mathbf{0}}$.
Assuming small variations of the model parameters, $\mathbf{a}=\mathbf{a}_{\mathbf{0}}+\delta \mathbf{a}$, we expand χ^{2} in a series:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{\mathbf{0}}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{0}\right)+\ldots
$$

where vector \mathbf{b} is the negative gradient of χ^{2} :

$$
\mathbf{b}=-\frac{1}{2} \nabla \chi^{2}\left(\mathbf{a}_{\mathbf{0}}\right) \quad b_{j}=-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{j}}=\sum_{i=1}^{N} \frac{y_{i}-\mu_{i}}{\sigma_{i}^{2}} \cdot \frac{\partial \mu_{i}}{\partial a_{j}}
$$

Vector \mathbf{b} defines the direction of steepest χ^{2} descent.
One of the possible procedures is to make a step in this direction:

$$
\mathbf{a}_{1}=\mathbf{a}_{0}+\varepsilon \mathbf{b}
$$

with small $\varepsilon>0$ and then repeat the whole procedure...

Non-linear fit procedure

Iterative procedure

We can try to be "smarter". Expanding χ^{2} to quadratic term:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{0}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{0}\right)+\left(\mathbf{a}-\mathbf{a}_{0}\right)^{\top} \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{0}\right)+\ldots
$$

where \mathbb{A} is the so called Hessian matrix of second derivatives:

$$
\mathbb{A}_{j k}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}\right|_{\mathbf{a}=\mathbf{a}_{0}}
$$

Non-linear fit procedure

Iterative procedure

We can try to be "smarter". Expanding χ^{2} to quadratic term:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{\mathbf{0}}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\left(\mathbf{a}-\mathbf{a}_{0}\right)^{\top} \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\ldots
$$

where \mathbb{A} is the so called Hessian matrix of second derivatives:

$$
\left.\mathbb{A}_{j k}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}\right|_{\mathbf{a}=\mathbf{a}_{0}} \approx \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \cdot \frac{\partial \mu_{i}}{\partial a_{j}} \cdot \frac{\partial \mu_{i}}{\partial a_{k}} \quad \text { (neglecting } \frac{\partial^{2} \mu_{i}}{\partial a_{j} \partial a_{k}}\right)
$$

Non-linear fit procedure

Iterative procedure

We can try to be "smarter". Expanding χ^{2} to quadratic term:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{\mathbf{0}}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)^{\top} \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\ldots
$$

where \mathbb{A} is the so called Hessian matrix of second derivatives:

$$
\left.\mathbb{A}_{j k}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}\right|_{\mathbf{a}=\mathbf{a}_{0}} \approx \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \cdot \frac{\partial \mu_{i}}{\partial a_{j}} \cdot \frac{\partial \mu_{i}}{\partial a_{k}} \quad \text { (neglecting } \frac{\partial^{2} \mu_{i}}{\partial a_{j} \partial a_{k}}\right)
$$

In this approximation, we can calculate the expected position of the χ^{2} minimum:

$$
\nabla \chi^{2}(\mathbf{a})=-2 \mathbf{b}+2 \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{0}\right)
$$

Non-linear fit procedure

Iterative procedure

We can try to be "smarter". Expanding χ^{2} to quadratic term:

$$
\chi^{2}(\mathbf{a})=\chi^{2}\left(\mathbf{a}_{\mathbf{0}}\right)-2 \mathbf{b} \cdot\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)^{\top} \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)+\ldots
$$

where \mathbb{A} is the so called Hessian matrix of second derivatives:

$$
\left.\mathbb{A}_{j k}=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}\right|_{\mathbf{a}=\mathrm{a}_{0}} \approx \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \cdot \frac{\partial \mu_{i}}{\partial a_{j}} \cdot \frac{\partial \mu_{i}}{\partial a_{k}} \quad \text { (neglecting } \frac{\partial^{2} \mu_{i}}{\partial a_{j} \partial a_{k}}\right)
$$

In this approximation, we can calculate the expected position of the χ^{2} minimum:

$$
\begin{aligned}
\nabla \chi^{2}(\mathbf{a}) & =-2 \mathbf{b}+2 \mathbb{A}\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)=0 \\
& \Rightarrow \mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{0}}+\mathbb{A}^{-1} \mathbf{b}
\end{aligned}
$$

and we can try to "jump" directly to the minimum...

Non-linear fit procedure

Iterative procedure

Efficiency of the iterative procedure depends strongly on the model and the data used, but also on the initial choice of model parameters a_{0}.

Non-linear fit procedure

Iterative procedure

Efficiency of the iterative procedure depends strongly on the model and the data used, but also on the initial choice of model parameters a_{0}.

If our "initial guess" is close to the true (global) minimum, procedure based on the Hessian matrix inversion is very efficient and converges fast.
However, it can be unstable, if we start too far from the actual minimum...

Non-linear fit procedure

Iterative procedure

Efficiency of the iterative procedure depends strongly on the model and the data used, but also on the initial choice of model parameters a_{0}.

If our "initial guess" is close to the true (global) minimum, procedure based on the Hessian matrix inversion is very efficient and converges fast.
However, it can be unstable, if we start too far from the actual minimum...
Iterative procedure based on the gradient calculation is much slower, but it much more robust. It finds the minimum even when starting from a parameter space point far away from it.

Non-linear fit procedure

Iterative procedure

Efficiency of the iterative procedure depends strongly on the model and the data used, but also on the initial choice of model parameters a_{0}.

If our "initial guess" is close to the true (global) minimum, procedure based on the Hessian matrix inversion is very efficient and converges fast.
However, it can be unstable, if we start too far from the actual minimum...
Iterative procedure based on the gradient calculation is much slower, but it much more robust. It finds the minimum even when starting from a parameter space point far away from it.

There are many different numerical algorithms for solving this problem, and there is no universal "best choice"...

One of the main problems in minimization is that finding the minimum does not guarantee that it is a global minimum...

Non-linear fit procedure

Marquardt Minimization

One of the popular approaches, combining the two previously discussed:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+\lambda^{-1} \mathbf{b} \quad(\lambda \equiv 1 / \varepsilon) \quad \mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+\mathbb{A}^{-1} \mathbf{b}
$$

Non-linear fit procedure

Marquardt Minimization

One of the popular approaches, combining the two previously discussed:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+(\mathbb{A}+\lambda \cdot \mathbb{I})^{-1} \mathbf{b}
$$

where the value of λ determines the performance of the algorithm:

- for $\lambda \gg 1$ we make a small step along the gradient direction which corresponds to the gradient minimization with $\varepsilon \approx \frac{1}{\lambda}$
- for $\lambda \ll 1$ we try to "jump" directly to the minimum position Hessian matrix solution is reproduced for $\lambda \rightarrow 0$

Non-linear fit procedure

Marquardt Minimization

One of the popular approaches, combining the two previously discussed:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+(\mathbb{A}+\lambda \cdot \mathbb{I})^{-1} \mathbf{b}
$$

where the value of λ determines the performance of the algorithm:

- for $\lambda \gg 1$ we make a small step along the gradient direction which corresponds to the gradient minimization with $\varepsilon \approx \frac{1}{\lambda}$
- for $\lambda \ll 1$ we try to "jump" directly to the minimum position Hessian matrix solution is reproduced for $\lambda \rightarrow 0$

The key element proposed by D.W.Marquardt (1963) was to use variable λ parameter, adjusting its value to the results of the previous step...

Non-linear fit procedure

Marquardt Minimization

The following algorithm can be used:
(1) Take initial parameter values \mathbf{a}_{0} resulting in χ^{2} value of χ_{0}^{2}. Assume $\lambda_{0}=0.01$.

Non-linear fit procedure

Marquardt Minimization

The following algorithm can be used:
(1) Take initial parameter values \mathbf{a}_{0} resulting in χ^{2} value of χ_{0}^{2}. Assume $\lambda_{0}=0.01$.
(2) Calculate matrix \mathbb{A} and vector \mathbf{b} for current $\mathbf{a}_{\mathbf{i}}$.

Non-linear fit procedure

Marquardt Minimization

The following algorithm can be used:
(1) Take initial parameter values \mathbf{a}_{0} resulting in χ^{2} value of χ_{0}^{2}. Assume $\lambda_{0}=0.01$.
(2) Calculate matrix \mathbb{A} and vector \mathbf{b} for current $\mathbf{a}_{\mathbf{i}}$.
(3) Calculate new parameter vector:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+\left(\mathbb{A}+\lambda_{i} \cdot \mathbb{I}\right)^{-1} \mathbf{b}
$$

and calculate the corresponding value of χ_{i+1}^{2}

Non-linear fit procedure

Marquardt Minimization

The following algorithm can be used:
(1) Take initial parameter values \mathbf{a}_{0} resulting in χ^{2} value of χ_{0}^{2}. Assume $\lambda_{0}=0.01$.
(2) Calculate matrix \mathbb{A} and vector \mathbf{b} for current $\mathbf{a}_{\mathbf{i}}$.
(3) Calculate new parameter vector:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+\left(\mathbb{A}+\lambda_{i} \cdot \mathbb{I}\right)^{-1} \mathbf{b}
$$

and calculate the corresponding value of χ_{i+1}^{2}
(9) Compare with the previous iteration:

- If $\chi_{i+1}^{2}<\chi_{i}^{2}$:
\Rightarrow accept the new parameter set and decrease λ by factor 10
- If $\chi_{i+1}^{2} \geq \chi_{i}^{2}$:
\Rightarrow keep old parameter values $\left(\mathrm{a}_{\mathbf{i}+1}=\mathrm{a}_{\mathrm{i}}\right)$ and increase λ by factor 10

Non-linear fit procedure

Marquardt Minimization

The following algorithm can be used:
(1) Take initial parameter values \mathbf{a}_{0} resulting in χ^{2} value of χ_{0}^{2}. Assume $\lambda_{0}=0.01$.
(2) Calculate matrix \mathbb{A} and vector \mathbf{b} for current $\mathbf{a}_{\mathbf{i}}$.
(3) Calculate new parameter vector:

$$
\mathbf{a}_{\mathbf{i}+\mathbf{1}}=\mathbf{a}_{\mathbf{i}}+\left(\mathbb{A}+\lambda_{i} \cdot \mathbb{I}\right)^{-1} \mathbf{b}
$$

and calculate the corresponding value of χ_{i+1}^{2}
(9) Compare with the previous iteration:

- If $\chi_{i+1}^{2}<\chi_{i}^{2}$:
\Rightarrow accept the new parameter set and decrease λ by factor 10
- If $\chi_{i+1}^{2} \geq \chi_{i}^{2}$:
\Rightarrow keep old parameter values ($\mathrm{a}_{\mathrm{i}+1}=\mathrm{a}_{\mathrm{i}}$) and increase λ by factor 10
(5) Iterate points 2-4 until required precision reached

Non-linear fit procedure

Marquardt Minimization example

Fitting Fourier series to example data set

$$
\text { General fit Npar }=4 \quad \chi^{2}=40.84 / 15
$$

$$
y(x)=a_{1}+a_{2} \sin \left(a_{0} x\right)+a_{3} \cos \left(a_{0} x\right)
$$

Non-linear fit procedure

Marquardt Minimization example

Fitting Fourier series to example data set

$$
\text { General fit Npar }=6 \quad \chi^{2}=36.21 / 13
$$

$$
y(x)=a_{1}+\sum_{n=1}^{M} a_{2 n} \sin \left(n a_{0} x\right)+a_{2 n+1} \cos \left(n a_{0} x\right) \quad \begin{aligned}
& x \\
& M=2
\end{aligned}
$$

Non-linear fit procedure

Marquardt Minimization example

Fitting Fourier series to example data set

$$
\text { General fit Npar = } 8 \quad \chi^{2}=15.94 / 11
$$

$$
y(x)=a_{1}+\sum_{n=1}^{M} a_{2 n} \sin \left(n a_{0} x\right)+a_{2 n+1} \cos \left(n a_{0} x\right) \quad \begin{aligned}
& \mathrm{x} \\
& M=3
\end{aligned}
$$

Non-linear fit procedure

Marquardt Minimization example

Fitting Fourier series to example data set

$$
\text { General fit Npar }=10 \quad \chi^{2}=14.69 / 9
$$

xample

Non-linear fit procedure

Marquardt Minimization example

Fitting Fourier series to example data set

$$
\text { General fit Npar }=12 \quad \chi^{2}=10.52 / 7
$$

$$
y(x)=a_{1}+\sum_{n=1}^{M} a_{2 n} \sin \left(n a_{0} x\right)+a_{2 n+1} \cos \left(n a_{0} x\right) \quad \begin{aligned}
& x \\
& M=5
\end{aligned}
$$

Non-linear fit procedure

Marquardt Minimization example

Fit converges fast when the initial values are "correct" $\quad\left(a_{0}=3\right)$
Fit history for parameters 0 and 2

Non-linear fit procedure

Marquardt Minimization example

09_fit2.ipynb
Much slower convergence when the initial values are "wrong"

$$
\left(a_{0}=6\right)
$$

Fit history for parameters 0 and 2

Non-linear fit procedure

Marquardt Minimization example
"Wrong" initial values can result in incorrect result $\quad\left(a_{0}=6\right)$
Fit history for parameters 0 and 2

Non-linear fit procedure

Marquardt Minimization example
"Wrong" initial values can result in incorrect result $\quad\left(a_{0}=6\right)$
Fit history for parameters 0 and 4

Non-linear fit procedure

Marquardt Minimization example
"Wrong" initial values can result in incorrect result $\quad\left(a_{0}=6\right)$
General fit Npar $=6 \quad \chi^{2}=43.78 / 13$

Non-linear fit procedure

Marquardt Minimization example

Result of the same fit with "correct" initial values $\left(a_{0}=3\right)$
General fit Npar $=6 \quad \chi^{2}=38.37 / 13$

Non-linear fit procedure

Using derivatives

There are many different algorithms with multiple implementations (libraries and programs) for least-square fits of model parameters.

However, general algorithms need to be based on numerical calculation of model function derivatives.

Using dedicated code, with analytical derivative calculation (as in the presented examples) has advantages:

- number of calls to model function significantly reduced (speed)
- better precision of derivatives/numerical stability
- possibility to tune fit performance to particular needs to further improve fit efficiency

Non-linear fit procedure

Using derivatives

There are many different algorithms with multiple implementations (libraries and programs) for least-square fits of model parameters.

However, general algorithms need to be based on numerical calculation of model function derivatives.

Using dedicated code, with analytical derivative calculation (as in the presented examples) has advantages:

- number of calls to model function significantly reduced (speed)
- better precision of derivatives/numerical stability
- possibility to tune fit performance to particular needs to further improve fit efficiency

When large number of fits is to be performed to similar sets of data, one should consider implementing his/hers own fit procedure...

Statistical analysis of experimental data

Least-squares method (2)
(1) Non-linear fit procedure
(2) F-test
(3) Constrained fit

4 Homework

F-test

Comparison of variances

If the precision of the measurement is known, we can calculate the χ^{2} value resulting from the fit (or arithmetic averaging in the simplest case) to verify the consistency of the procedure (measurement uncertainty estimate in particular).

However, we can also compare two independent series of measurements to check, if they are consistent. We can do it even, if our estimate of experimental uncertainties is not very reliable.

One can consider it as a procedure to compare two different estimates of the variance of the measurement, and check if they are compatible.

Comparison of variances

If the precision of the measurement is known, we can calculate the χ^{2} value resulting from the fit (or arithmetic averaging in the simplest case) to verify the consistency of the procedure (measurement uncertainty estimate in particular).

However, we can also compare two independent series of measurements to check, if they are consistent. We can do it even, if our estimate of experimental uncertainties is not very reliable.

One can consider it as a procedure to compare two different estimates of the variance of the measurement, and check if they are compatible.

We define the random variable F as:

$$
F=\frac{\chi_{1}^{2} / N_{1}}{\chi_{2}^{2} / N_{2}}
$$

where χ_{1}^{2} and χ_{2}^{2} are χ^{2} values (or sample variances, if we set $\sigma \equiv 1$) of the two independent measurements with N_{1} and N_{2} degrees of freedom.

F variable distribution

Distribution of the Fisher's F variable is given by:

$$
f\left(F ; N_{1}, N_{2}\right)=A\left(N_{1}, N_{2}\right) F^{\frac{N_{1}}{2}-1}\left(1+\frac{N_{1}}{N_{2}} F\right)^{-\frac{N_{1}+N_{2}}{2}}
$$

F variable distribution

Distribution of the Fisher's F variable is given by:

$$
f\left(F ; N_{1}, N_{2}\right)=A\left(N_{1}, N_{2}\right) F^{\frac{N_{1}}{2}-1}\left(1+\frac{N_{1}}{N_{2}} F\right)^{-\frac{N_{1}+N_{2}}{2}}
$$

Expected (mean) value of F is slightly above one:

$$
\langle F\rangle=\frac{N_{2}}{N_{2}-2} \quad N_{2}>2
$$

and the variance is:

$$
\mathbb{V}(F)=\frac{2}{N_{1}} \cdot \frac{N_{2}^{2}\left(N_{1}+N_{2}-2\right)}{\left(N_{2}-2\right)^{2}\left(N_{2}-4\right)}
$$

F variable distribution

Distribution of the Fisher's F variable is given by:

$$
f\left(F ; N_{1}, N_{2}\right)=A\left(N_{1}, N_{2}\right) F^{\frac{N_{1}}{2}-1}\left(1+\frac{N_{1}}{N_{2}} F\right)^{-\frac{N_{1}+N_{2}}{2}}
$$

Expected (mean) value of F is slightly above one:

$$
\langle F\rangle=\frac{N_{2}}{N_{2}-2} \quad N_{2}>2
$$

and the variance is:

$$
\mathbb{V}(F) \approx \frac{2}{N_{1}}
$$

(for $N_{2} \gg N_{1}$; ratio variance is deominated by the variance of the reduced χ^{2} with N_{1} d.o.f.)

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=\mathbf{1}, \mathrm{N}_{\mathbf{2}}=\mathbf{2 0}$

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=1, \mathrm{~N}_{2}=\mathbf{2 0}$

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=\mathbf{3}, \mathrm{N}_{\mathbf{2}}=\mathbf{2 0}$

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=\mathbf{3}, \mathrm{N}_{2}=\mathbf{2 0}$

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=10, \mathrm{~N}_{2}=\mathbf{2 0}$

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=\mathbf{1 0}, \mathrm{N}_{\mathbf{2}}=\mathbf{2 0}$

Significant tail of high values, even for relatively large N_{1}, N_{2}. F-test value

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=20, \mathrm{~N}_{2}=\mathbf{2 0}$

Significant tail of high values, even for relatively large N_{1}, N_{2}. F-test value

F variable distribution

Example distributions of the Fisher's F variable
F-test distribution for $\mathrm{N}_{1}=\mathbf{2 0}, \mathrm{N}_{\mathbf{2}}=\mathbf{2 0}$

Significant tail of high values, even for relatively large N_{1}, N_{2}. F-test value

F-test

When the calculated value of F is large, $F \gg 1$, we can conclude that the two considered data sets are not consistent...

However, we need to be careful, as large fluctuations possible!
Conclusion can depend on the assumed confidence level for F, i.e. the maximum probability we allow for given (or higher) value to result from the statistical fluctuations in the (consistent) data sets.

F-test

When the calculated value of F is large, $F \gg 1$, we can conclude that the two considered data sets are not consistent...

However, we need to be careful, as large fluctuations possible!
Conclusion can depend on the assumed confidence level for F, i.e. the maximum probability we allow for given (or higher) value to result from the statistical fluctuations in the (consistent) data sets.

We can define critical value of $F, F_{\text {crit }}$, corresponding the the frequentist upper limit for given confidence level CL:

$$
\int_{0}^{F_{\text {crit }}} d F f(F)=\mathrm{CL} \quad \int_{F_{\text {crit }}}^{+\infty} d F f(F)=1-\mathrm{CL}=p
$$

F-test

(Brandt)
"Critical values" of F for small numbers of degrees of freedom N_{1} and N_{2}

$\mathrm{CL}=0.950=P=\int_{0}^{F_{P}} f\left(F ; f_{1}, f_{2}\right) \mathrm{d} F$												
N	$N_{1} f_{1}$											
f_{2}	1	2	3	3	5	6	7	7	8	8	9	10
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8		238.9	240.5		41.9
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35		9.37	719.38		9.40
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887		8.845	88.812		8.786
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094		6.041	15.999		. 964
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876		. 818	84.772		735
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207		4.147	74.099		. 060
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787		3.726	63.677		3.637
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500		3.438	3.388		3.347
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293		3.230	03.179		3.137
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135		3.072	23.020		2.978

Plot of "critical values" of F for $N_{2}=10$ Critical F-test curves for $\mathrm{N}_{2}=\mathbf{1 0}$

Plot of "critical values" of F for $N_{2}=20$

Critical F-test curves for $\mathbf{N}_{\mathbf{2}}=\mathbf{2 0}$

F-test

F-test for fit model

It turns out that the F variable can also be used to test our fit model.
Let us assume we have a model with m adjustable (free) parameters, which we apply to the set of N data points. Are all model parameters relevant?

F-test for fit model

It turns out that the F variable can also be used to test our fit model.
Let us assume we have a model with m adjustable (free) parameters, which we apply to the set of N data points. Are all model parameters relevant?

We can consider "reduced" version of model with $m-\Delta m$ parameters.
It is clear that the resulting χ^{2} value will be larger:

$$
\chi_{(m-\Delta m)}^{2}=\chi_{(m)}^{2}+\Delta \chi^{2}
$$

F-test for fit model

It turns out that the F variable can also be used to test our fit model.
Let us assume we have a model with m adjustable (free) parameters, which we apply to the set of N data points. Are all model parameters relevant?

We can consider "reduced" version of model with $m-\Delta m$ parameters.
It is clear that the resulting χ^{2} value will be larger:

$$
\chi_{(m-\Delta m)}^{2}=\chi_{(m)}^{2}+\Delta \chi^{2}
$$

If reduced model is equivalent to the "full" one, distribution of $\Delta \chi^{2}$ is given by the χ^{2} distribution with Δm degrees of freedom. We can test this hypothesis by considering:

$$
F=\frac{\Delta \chi^{2} / \Delta m}{\chi_{(m)}^{2} /(N-m)}
$$

where we need to note that $\chi_{(m)}^{2}$ and $\Delta \chi^{2}$ are independent.

F-test for fit model

Example of F-test application. We can try to fit the data with polynomial background (3 parameters) and two Gaussian peaks (3+3 parameters).

F-test for fit model

Example of F-test application. Is the second signal component really needed?! Fit with one peak gives a reasonable description of the data as well.

$$
\text { General fit Npar = } 6 \quad \chi^{2}=28.53 / 14
$$

F－test

F－test for fit model
Example of F－test application．

$$
\begin{aligned}
N=20 \quad m= & 9 \\
& \chi_{(m)}^{2} \approx 14.23 \quad \chi_{(m)}^{2} /(N-m) \approx 1.294
\end{aligned}
$$

F-test

F-test for fit model

Example of F-test application.

$$
\begin{array}{rll}
N=20 \quad m= & \Delta m=3 & \\
& \chi_{(m)}^{2} \approx 14.23 & \chi_{(m)}^{2} /(N-m) \approx 1.294 \\
& \Delta \chi^{2} \approx 14.33 & \Delta \chi^{2} / \Delta m \approx 4.777
\end{array}
$$

F-test for fit model

Example of F-test application.

$$
\begin{aligned}
& N=20 \quad m=9 \quad \Delta m=3 \\
& \chi_{(m)}^{2} \approx 14.23 \chi_{(m)}^{2} /(N-m) \approx 1.294 \\
& \Delta \chi^{2} \approx 14.33 \Delta \chi^{2} / \Delta m \approx 4.777 \\
& F \approx 3.69 \\
& p \approx 0.047
\end{aligned}
$$

There is about 5% chance that the improvement in the fit result, when adding the second signal component, was only due to the statistical fluctuations in the data...

F-test for fit model

Example of F-test application.

$$
\begin{aligned}
& N=20 \quad m=9 \quad \Delta m=3 \\
& \chi_{(m)}^{2} \approx 14.23 \chi_{(m)}^{2} /(N-m) \approx 1.294 \\
& \Delta \chi^{2} \approx 14.33 \Delta \chi^{2} / \Delta m \approx 4.777 \\
& F \approx 3.69 \\
& p \approx 0.047
\end{aligned}
$$

There is about 5% chance that the improvement in the fit result, when adding the second signal component, was only due to the statistical fluctuations in the data... Second component fit result misleading: $A_{2}=4.950 \pm 1.523(3.25 \sigma)$

F-test for fit model

Example (2). Significantly reduced measurement errors. Fit with one signal component.

F-test for fit model

Example (2). Significantly reduced measurement errors. Fit with two signal components.

F-test for fit model

Example (2) of F-test application.

$$
\begin{aligned}
& N=20 \quad m=9 \quad \Delta m=3 \\
& \chi_{(m)}^{2} \approx 9.34 \\
& \Delta \chi^{2} \approx 85.97 \\
& \quad \Delta \chi_{(m)}^{2} /(N-m) \approx 0.849 \\
& F
\end{aligned} \begin{aligned}
2 & \approx 33.75 \\
p & \approx 8 \cdot 10^{-6}
\end{aligned}
$$

corresponding to about 4.3σ deviation...
Can not yet be claimed as discovery, but significant enough to be shown...

Statistical analysis of experimental data

Least-squares method (2)
(1) Non-linear fit procedure
(2) F-test
(3) Constrained fit

4 Homework

Constrained fit

Model constraints

Different quantities measured in our experiment can be related.
Relations, which are usually given in form of equations, can be due to theoretical predictions, model assumptions or experimental constraints.
For example:

- measurements of energy and momentum of the particle, are related by the invariant mass formula $E^{2}=p^{2}+m^{2}$
- contribution of different channels to the particle decays are related by the total branching ration of 100%

Constrained fit

Model constraints

Different quantities measured in our experiment can be related.
Relations, which are usually given in form of equations, can be due to theoretical predictions, model assumptions or experimental constraints.
For example:

- measurements of energy and momentum of the particle, are related by the invariant mass formula $E^{2}=p^{2}+m^{2}$
- contribution of different channels to the particle decays are related by the total branching ration of 100%
- contribution of different components to the measured distribution can be constrained by the total normalization of the sample
- distributions can be constrained by the acceptance of the detector

Constrained fit

Model constraints

Different quantities measured in our experiment can be related.
Relations, which are usually given in form of equations, can be due to theoretical predictions, model assumptions or experimental constraints.
For example:

- measurements of energy and momentum of the particle, are related by the invariant mass formula $E^{2}=p^{2}+m^{2}$
- contribution of different channels to the particle decays are related by the total branching ration of 100%
- contribution of different components to the measured distribution can be constrained by the total normalization of the sample
- distributions can be constrained by the acceptance of the detector
- we can make additional assumptions regarding eg. symmetry of the distribution or asymptotic behavior

Constrained fit

Model constraints

We consider set of N measurement points $\left(x_{i}, y_{i}\right)$, which can be compared to model predictions depending on parameters \mathbf{a} in terms of the χ^{2} value:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu\left(x_{i}, \mathbf{a}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

Best estimate of a should correspond to the minimum of $\chi^{2}(\mathbf{a})$.

Constrained fit

Model constraints

We consider set of N measurement points $\left(x_{i}, y_{i}\right)$, which can be compared to model predictions depending on parameters \mathbf{a} in terms of the χ^{2} value:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu\left(x_{i}, \mathbf{a}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

Best estimate of a should correspond to the minimum of $\chi^{2}(\mathbf{a})$.
However, we now need to look for this minimum taking additional constraints into account:

$$
w_{k}(\mathbf{a})=0 \quad k=1 \ldots K
$$

where number of constraints K should be lower than number of parameters M.

Constrained fit

Model constraints

We consider set of N measurement points $\left(x_{i}, y_{i}\right)$, which can be compared to model predictions depending on parameters \mathbf{a} in terms of the χ^{2} value:

$$
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu\left(x_{i}, \mathbf{a}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

Best estimate of a should correspond to the minimum of $\chi^{2}(\mathbf{a})$.
However, we now need to look for this minimum taking additional constraints into account:

$$
w_{k}(\mathbf{a})=0 \quad k=1 \ldots K
$$

where number of constraints K should be lower than number of parameters M.
How can we find the best parameter values in this case?

Constrained fit

Model reduction

The first approach is to reduce number of model parameters, using constraints to eliminate some of the independent model variables. \Rightarrow We thus reduce the problem with M model parameters to problem with $M^{\prime}=M-K$ independent parameters. (method of elements)

Constrained fit

Model reduction

The first approach is to reduce number of model parameters, using constraints to eliminate some of the independent model variables. \Rightarrow We thus reduce the problem with M model parameters to problem with $M^{\prime}=M-K$ independent parameters. (method of elements)

Example

We would like to fit polynomial model to a series of measurements where the azimuthal angle $\theta \in[-\pi,+\pi]$ is the controlled variable:

$$
\mu(x ; \mathbf{a})=\sum_{k=0}^{M-1} a_{k}\left(\frac{\theta}{\pi}\right)^{k}=\sum_{k} a_{k} x^{k}
$$

where we introduced $x=\frac{\theta}{\pi}$ for simplicity, $w \in[-1,+1]$.
And we expect that the distribution should vanish for $\theta \rightarrow \pm \pi$:

$$
\mu(-1 ; \mathbf{a})=\mu(+1 ; \mathbf{a})=0 \quad K=2
$$

Constrained fit

Model reduction example

Our constraints give us direct relations between model parameters:

$$
\begin{aligned}
& \mu(+1 ; \mathbf{a})=\sum_{k} a_{k}(+1)^{k}=0 \\
& \mu(-1 ; \mathbf{a})=\sum_{k} a_{k}(-1)^{k}=0
\end{aligned}
$$

Constrained fit

Model reduction example

Our constraints give us direct relations between model parameters:

$$
\begin{aligned}
& \mu(+1 ; \mathbf{a})=\sum_{k} a_{k}(+1)^{k}=0 \\
& \mu(-1 ; \mathbf{a})=\sum_{k} a_{k}(-1)^{k}=0
\end{aligned}
$$

We can add and subtract these two equations to obtain:

$$
\sum_{k=0,2,4 \ldots} a_{k}=0 \quad \text { and } \quad \sum_{k=1,3,5 \ldots} a_{k}=0
$$

\Rightarrow we have independent constrains on even and odd parameters.

Constrained fit

Model reduction example

Our constraints give us direct relations between model parameters:

$$
\begin{aligned}
& \mu(+1 ; \mathbf{a})=\sum_{k} a_{k}(+1)^{k}=0 \\
& \mu(-1 ; \mathbf{a})=\sum_{k} a_{k}(-1)^{k}=0
\end{aligned}
$$

We can add and subtract these two equations to obtain:

$$
\sum_{k=0,2,4 \ldots} a_{k}=0 \quad \text { and } \quad \sum_{k=1,3,5 \ldots} a_{k}=0
$$

\Rightarrow we have independent constrains on even and odd parameters.
We can reduce number of parameters to $M^{\prime}=M-2$ by writing parameters for the two highest terms (for even M) as:

$$
a_{M-2}=-\sum_{k=0,2,4 \ldots}^{M-4} a_{k} \quad \text { and } \quad a_{M-1}=-\sum_{k=1,3,5 \ldots}^{M-3} a_{k}
$$

Constrained fit

Model reduction example

Example polynomial fit without and with model constraints

09_reduce.ipynb Co Open in Colab

$$
\mu(-1)=\mu(+1)=0
$$

$3^{\text {rd }}$ order polynomial not describing data at all

Constrained fit

Model reduction example

Example polynomial fit without and with model constraints

09_reduce.ipynb Co Open in Colab

$$
\mu(-1)=\mu(+1)=0
$$

$$
\text { Linear fit Npar }=5 \quad \chi^{2}=35.97 / 15 \quad \text { red.: } \chi^{2}=90.5 / 17 \quad p=0.00099
$$

$4^{\text {th }}$ order polynomial fit still not satisfactory...

Constrained fit

Model reduction example

Example polynomial fit without and with model constraints

09_reduce.ipynb Co Open in Colab

$$
\mu(-1)=\mu(+1)=0
$$

Reasonable description of the data.

Constrained fit

Model reduction example

Example polynomial fit without and with model constraints

09_reduce.ipynb Co Open in Colab

$$
\mu(-1)=\mu(+1)=0
$$

Even better description of the data. Constraints hardly affect the fit...

Constrained fit

Model reduction example

Example polynomial fit without and with model constraints

09 _reduce.ipynb Open in Colab

$$
\mu(-1)=\mu(+1)=0
$$

Even better description of the data. Constraints hardly affect the fit...

Constrained fit

Model reduction test

We can use F-test to verify, if data are consistent with constraints.
We follow the procedure described previously: we have a model with m free parameters and Δm constraints, which we test on the set of N data points

Constrained ("reduced") model has $m-\Delta m$ parameters and results in higher χ^{2} :

$$
\Delta \chi^{2}=\chi_{\text {reduced }}^{2}-\chi_{\text {full }}^{2} \geq 0
$$

To test if the reduced model is equivalent to the "full" one, we consider:

$$
F=\frac{\Delta \chi^{2} / \Delta m}{\chi_{\text {full }}^{2} /(N-m)} \quad \text { and } \quad p=\int_{F}^{+\infty} d F^{\prime} f\left(F^{\prime}\right)
$$

p value (indicated in the plots) describe the probability of given χ^{2} change (when imposing constraints) due to statistical fluctuations only.

Constrained fit

Model reduction example (2)

$$
\text { (generated with } \mu(-1)=\mu(+1)=0.05)
$$

Example polynomial fit without and with model constraints, to inconsistent data set

$3^{\text {rd }}$ order polynomial not describing data at all

Constrained fit

Model reduction example (2)

Example polynomial fit without and with model constraints, to inconsistent data set

$4^{\text {th }}$ order polynomial fit still not satisfactory...

Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints, to inconsistent data set

Reasonable description of the data only without constraints...

Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints, to inconsistent data set

p value indicates that data is not consistent with constraints...

Constrained fit

Model reduction example (2)
Example polynomial fit without and with model constraints, to inconsistent data set

p value indicates that data is not consistent with constraints...

Constrained fit

Model reduction

After fitting the reduced model, constraints can be used to extract values of eliminated parameters and their uncertainties can be calculated from standard error propagation...

Constrained fit

Model reduction

After fitting the reduced model, constraints can be used to extract values of eliminated parameters and their uncertainties can be calculated from standard error propagation...

When trying to reduce the number of parameters, one should consider redefining the parameter basis in such a way that constraints depend only on selected parameters. Can be essential for numerical stability...

Constrained fit

Model reduction

After fitting the reduced model, constraints can be used to extract values of eliminated parameters and their uncertainties can be calculated from standard error propagation...

When trying to reduce the number of parameters, one should consider redefining the parameter basis in such a way that constraints depend only on selected parameters. Can be essential for numerical stability...

However, elimination of variables is not always possible or can result in problems with minimization / numerical instabilities.

Also, when iterative fit procedure is to be used, initial parameter values should be "guessed", but imposing constraints "by hand" can be difficult.
\Rightarrow while model reduction is a preferred solution, resulting in higher fit efficiency in most cases, we need an alternative...

Constrained fit

Method of Lagrange Multipliers

The method, invented by J.L.Lagrange in 1788, applies to general minimization problem with additional constraints imposed.

Problem of finding minimum of $\chi^{2}(\mathbf{a})$ with constraints $w_{k}(\mathbf{a})=0$ is equivalent to finding a stationary point (point with all first derivatives at zero) of the Lagrange function:

$$
\mathcal{L}(\mathbf{a}, \boldsymbol{\lambda})=\chi^{2}(\mathbf{a})+\sum_{k} 2 \lambda_{k} w_{k}(\mathbf{a})
$$

where we introduce additional K parameters λ_{k} - Lagrange multipliers

Constrained fit

Method of Lagrange Multipliers

The method, invented by J.L.Lagrange in 1788, applies to general minimization problem with additional constraints imposed.

Problem of finding minimum of $\chi^{2}(\mathbf{a})$ with constraints $w_{k}(\mathbf{a})=0$ is equivalent to finding a stationary point (point with all first derivatives at zero) of the Lagrange function:

$$
\mathcal{L}(\mathbf{a}, \boldsymbol{\lambda})=\chi^{2}(\mathbf{a})+\sum_{k} 2 \lambda_{k} w_{k}(\mathbf{a})
$$

where we introduce additional K parameters λ_{k} - Lagrange multipliers
Our problem is now reduced to finding parameters a and $\boldsymbol{\lambda}$ fulfilling

$$
\frac{\partial \mathcal{L}}{\partial a_{j}}=0 \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial \lambda_{k}}=0
$$

(without any additional constraints)

Constrained fit

Method of Lagrange Multipliers

Writing the full formula for \mathcal{L} :

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

$$
\mathcal{L}(\mathbf{a}, \boldsymbol{\lambda})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}+\sum_{k=1}^{K} 2 \lambda_{k} w_{k}(\mathbf{a})
$$

We obtain a set of $M+K$ equations for the same number of parameters:

$$
\frac{\partial \mathcal{L}}{\partial a_{j}}=-2 \sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\sigma_{i}^{2}} \frac{\partial \mu_{i}}{\partial a_{j}}+2 \sum_{k=1}^{K} \lambda_{k} \frac{\partial w_{k}}{\partial a_{j}} \quad j=1 \ldots M
$$

Constrained fit

Method of Lagrange Multipliers

Writing the full formula for \mathcal{L} :

$$
\mu_{i}=\mu\left(x_{i} ; \mathbf{a}\right)
$$

$$
\mathcal{L}(\mathbf{a}, \boldsymbol{\lambda})=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}+\sum_{k=1}^{K} 2 \lambda_{k} w_{k}(\mathbf{a})
$$

We obtain a set of $M+K$ equations for the same number of parameters:

$$
\begin{array}{rlr}
\frac{\partial \mathcal{L}}{\partial a_{j}}=-2 \sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\sigma_{i}^{2}} \frac{\partial \mu_{i}}{\partial a_{j}}+2 \sum_{k=1}^{K} \lambda_{k} \frac{\partial w_{k}}{\partial a_{j}} & j=1 \ldots M \\
\frac{\partial \mathcal{L}}{\partial \lambda_{k}}=2 w_{k}(\mathbf{a})=0 & k=1 \ldots K
\end{array}
$$

Adding constraints modifies the resulting system of equation for $\mathbf{a} . .$.

Constrained fit

Method of Lagrange Multipliers

Let us consider the linear problem (linear in a):

$$
\mu(x ; \mathbf{a})=\sum_{j=1}^{M} a_{j} f_{j}(x) \quad \text { and } \quad w_{k}(\mathbf{a})=\sum_{j=1}^{M} d_{k, j} a_{j}-c_{k}
$$

Our set of equations can be now presented as:

$$
\begin{array}{rlrl}
\sum_{j=1}^{M}\left(\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right) a_{j}+\sum_{k=1}^{K} d_{k, I} \lambda_{k} & =\sum_{i=1}^{N} \frac{f_{l}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}} & I & =1 \ldots M \\
\sum_{j=1}^{M} d_{k, j} a_{j} & =c_{k} & k=1 \ldots K
\end{array}
$$

Constrained fit

Method of Lagrange Multipliers

We can write these equations the matrix form:

$$
\begin{gathered}
\left(\begin{array}{c|c}
\mathbb{A}^{2} & \mathbb{D} \\
\hline \mathbb{D}^{\top} & 0
\end{array}\right) \cdot\binom{\mathbf{a}}{\bar{\lambda}}=\binom{\mathbf{b}}{\overline{\mathbf{c}}} \\
\text { where: } \mathbb{A}_{j k}=\sum_{i=1}^{N} \frac{f_{j}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}, \quad \mathbb{D}_{j k}=d_{k, j} \quad \text { and } \quad b_{j}=\sum_{i=1}^{N} \frac{f_{j}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
\end{gathered}
$$ and the problem can be solved by inverting matrix $\tilde{\mathbb{A}}$.

Constrained fit

Method of Lagrange Multipliers

We can write these equations the matrix form:

$$
\begin{gathered}
\left(\begin{array}{c|c}
\mathbb{A} & \mathbb{D} \\
\hline \mathbb{D}^{\top} & 0
\end{array}\right) \cdot\binom{\mathbf{a}}{\overline{\boldsymbol{\lambda}}}=\binom{\mathbf{b}}{\overline{\mathbf{c}}} \\
\text { where: } \mathbb{A}_{j k}=\sum_{i=1}^{N} \frac{f_{j}\left(x_{i}\right) f_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}, \quad \mathbb{D}_{j k}=d_{k, j} \quad \text { and } \quad b_{j}=\sum_{i=1}^{N} \frac{f_{j}\left(x_{i}\right) y_{i}}{\sigma_{i}^{2}}
\end{gathered}
$$ and the problem can be solved by inverting matrix $\tilde{\mathbb{A}}$.

Covariance matrix for a can be extracted as:
(seems to work for linear problems)

$$
\left(\mathbb{C}_{\mathbf{a}}\right)_{i j}=\left(\tilde{\mathbb{A}}^{-1}\right)_{i j} \quad i, j=1 \ldots M
$$

Constrained fit

Lagrange Multipliers example

Fitting $\sin (\pi x)$ with polynomial. Constraints: $\mu(-1)=\mu(0)=\mu(+1)=0$.

Constrained fit

Lagrange Multipliers example

Fitting $\sin (\pi x)$ with polynomial. Constraints: $\mu(-1)=\mu(0)=\mu(+1)=0$.

Constrained fit

Lagrange Multipliers example

Fitting $\sin (\pi x)$ with polynomial. Constraints: $\mu(-1)=\mu(0)=\mu(+1)=0$.

Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction
Linear fit Npar $=4 \quad \chi^{2}=295.24 / 16 \quad$ const. $: \chi^{2}=675.16 / 18$ red. $: \chi^{2}=675.16 / 18$

Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

With x^{4} term Perfect agreement between two constrain approaches x

Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Good description for $5^{\text {th }}$ order polynomial...

Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Constraints hardly affecting the fit for $7^{\text {th }}$ order polynomial...

Constrained fit

Lagrange Multipliers example (2)
Comparing two approaches to polynomial fit with constraints.
Fit approach: unconstrained Lagrange multipliers model reduction

Unconstrained fit more sensitive to statistical fluctuations...

Statistical analysis of experimental data

Least-squares method (2)
(1) Non-linear fit procedure
(2) F-test
(3) Constrained fit
(4) Homework

Homework

Homework

Solutions to be uploaded by December 21.
Consider outcome of the experiment, as illustrated in the figure.
$N=8$ measurements generated from uniform background model $(\mu=5, \sigma=0.1)$
Results can be compared to background only model and to background+signal:

$$
\mu_{b}=A \quad \text { and } \quad \mu_{b+s}=B+C \cdot \sin (\pi x)
$$

- Estimate probability of fitted C value deviating from zero by more than 3σ
- Verify estimate with simulation

Hint: \mathbb{A} and \mathbb{C}_{a} do not depend on y_{i}

Homework

Homework

Solutions to be uploaded by December 21.
Consider outcome of the experiment, as illustrated in the figure.
$N=8$ measurements generated from uniform background model $(\mu=5, \sigma=0.1)$
Results can be compared to background only model and to background+signal:

$$
\mu_{b}=A \quad \text { and } \quad \mu_{b+s}=B+C \cdot \sin (\pi x)
$$

- Estimate probability of fitted C value deviating from zero by more than 3σ
- Verify estimate with simulation

Hint: \mathbb{A} and \mathbb{C}_{a} do not depend on y_{i}

Homework

Homework

Solutions to be uploaded by December 21.
Consider outcome of the experiment, as illustrated in the figure.
$N=8$ measurements generated from uniform background model $(\mu=5, \sigma=0.1)$
Results can be compared to background only model and to background+signal:

$$
\mu_{b}=A \quad \text { and } \quad \mu_{b+s}=B+C \cdot \sin (\pi x)
$$

- Estimate probability of fitted C value deviating from zero by more than 3σ
- Verify estimate with simulation

Hint: \mathbb{A} and \mathbb{C}_{a} do not depend on y_{i}

Homework

Homework

Solutions to be uploaded by December 21.
Consider outcome of the experiment, as illustrated in the figure. $N=8$ measurements generated from uniform background model $(\mu=5, \sigma=0.1)$

Results can be compared to background only model and to background+signal:

$$
\mu_{b}=A \quad \text { and } \quad \mu_{b+s}=B+C \cdot \sin (\pi x)
$$

- Estimate probability of fitted C value deviating from zero by more than 3σ
- Verify estimate with simulation

Hint: \mathbb{A} and \mathbb{C}_{a} do not depend on y_{i}

Linear fits: $\quad \chi^{2}=4.81 / 6$ vs $15.41 / 7$

Homework

Homework

Solutions to be uploaded by December 21.
Consider outcome of the experiment, as illustrated in the figure.
$N=8$ measurements generated from uniform background model $(\mu=5, \sigma=0.1)$
Results can be compared to background only model and to background+signal:

$$
\mu_{b}=A \quad \text { and } \quad \mu_{b+s}=B+C \cdot \sin (\pi x)
$$

- Estimate probability of fitted C value deviating from zero by more than 3σ
- Verify estimate with simulation

Hint: \mathbb{A} and \mathbb{C}_{a} do not depend on y_{i}

Linear fits: $\chi^{2}=3.03 / 6$ vs $14.36 / 7$

