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Monte Carlo integration

Applications (lecture 05)

Described procedure can be used not only to calculate integrals of one-dimensional functions,
it is much more general... How to calculate volume of a given shape?

Standard procedure:
scan all dimensions using dense point grid and
sum cells with centers inside the volume

Monte Carlo integration:
Generate random points in the considered
space and count points inside the volume

A.F.Żarnecki Statictical analysis 14 January 25, 2024 3 / 49



Monte Carlo integration

General case
Examples presented considered the special case: input random variables had uniform
distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a function h(x) of random
variable vector x described by f (x) pdf:

µh ≡ Ef [h(x)] =

∫
dx h(x) f (x)

Monte Carlo determination of µh assumes we can generate random variables from f (x).
We can then calculate:

µMC = lim
N→∞

1

N

∑
i

h(xi )

where xi , i = 1, . . . ,N are random (input) variables generated from f (x)
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Monte Carlo integration

Weighted Monte Carlo

General method for generating random points in multi-dimensional space using
acceptance–rejection technique can have very low efficiency, if probability distribution function
f (x) varies a lot, eg. has sharp peaks.

Assume we know how to generate random numbers from g(x).
We can then apply the following procedure:

generate xi distributed according to g(x)
accept all generated value xi ,
but consider them with additional weight: wi = f (x)/g(x)

For example, when calculating the expectation value of h(x):

µMC → µwMC =

∑
i wi h(xi )∑

i wi

“unweighted” samples considered previously correspond to wi ≡ 1
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Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to unweighted sample of:

Neq =
N2
w

V(Nw )
=

(
∑

i wi )
2∑

i w
2
i

For Poisson distributed random number V(N) = N
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Maximum Likelihood Method

General problem

Presented above was a simple example of a more general problem: how to estimate parameters
of the probability distribution function from the results of the experiment (measurements).

In many cases, parameter value can not be directly extracted from the measurement results.

In the general case, shape of the probability density function for measurement result x:

x = (x1, . . . , xn)

depends on a set of pdf parameters:

λ = (λ1, . . . , λp)

so the probability density should be written as:

f (x;λ)
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Maximum Likelihood Method

Maximum Likelihood Method

The product:

L =
N∏
j=1

f (x(j);λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set λ we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

` = ln L =
N∑
j=1

ln f (x(j);λ)

we can look for maximum value of ` or minimum of −2 ` = −2 ln L
A.F.Żarnecki Statictical analysis 14 January 25, 2024 8 / 49



Statistical analysis of experimental data

Markov Chains

1 Markov Chains

2 Markov Chain Monte Carlo

3 Application to parameter fitting

4 Final exam
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Markov Chains

General concept (Bonamente)

Markov Chain is a stochastic process where we consider the sequence of measurements
(random variables) X (t). Measurements at fixed time intervals are a frequent case...

Outcome of the measurement (also called “state” of the chain) has to belong to the defined
“state space”. It is our sample space...

However, the probability density for different states is not given a’priori! Instead, probability of
the subsequent state (measurement at t + 1) depends only on the current state of the system:

P(X (t+1)) = P(X (t+1)|x (t))

Probability can change in time, but it depends only on the current state of the chain,
and not on any state of its earlier history!

This “short memory” property is known as the “Markovian property”.
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Markov Chains

Simple example: Ehrenfest chain (Bonamente)

Simple model of diffusion: consider two boxes with a total of N balls.

The state of the system can be defined by a number n of balls which are placed in the first
box, 0 ≤ n ≤ N. The state space of the system has N + 1 elements.

The Ehrenfest chain is defined by the following procedure. At each step:

select a ball at random from either box,
move the selected ball in the other box.

This chain can be presented in terms of the transition probabilities:

p(n(t+1)) =


n(t)

N for n(t+1) = n(t) − 1

N−n(t)
N n(t+1) = n(t) + 1

0 n(t+1) 6= n(t) ± 1
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Markov Chains

Web example Piero Paialunga in Towards Data Science

As a student you can go to the bar each Saturday.

And you need to go back home at some time...

We can consider the following “chain” of states (shown above):

you always start from Home going to Bar 1 or Bar 2.

after each drink in Bar 1 you have three choices:
go Back Home, go to Bar 2 and order another drink in Bar 1.

if you are already in Bar 2, you have only two choices after each round:
go Back Home or order another drink (not shown).

once you get Back Home, you stay there.
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Markov Chains

Web example 14 TwoBar.ipynb

Even if all transition probabilities are known, it is not always possible to obtain statistical
properties of the distribution directly...

But one can simulate Markov Chain state sequence many times...
Probability of visiting bars:
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Markov Chains

Web example 14 TwoBar2.ipynb

Probability density for the number of drinks:

We can not only estimate the expected number of drinks (which we could also do from the
known probabilities), but also the distribution...
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Markov Chains

Another example

The chain in the web example always ended in the single ’Back Home’ state.

Not very interesting...

γ

Consider an atom irradiated with the laser light tuned to the
excitation energy:

when in ground state, atom has certain probability (per time unit
≡ simulation step) to get excited

when in the excited state, atom can radiate photon and go back
to the ground state or, with lower probability, radiate softer
photon and go to intermediate meta-stable state.

when in the meta-stable state, probability of radiation (per unit
of time) is very low.
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Markov Chains

Another example 14 atom.ipynb

Example simulation results starting from ground state, 1000 time steps:

Fast oscillations between ground and excited state, longer stays in meta-stable...
A.F.Żarnecki Statictical analysis 14 January 25, 2024 16 / 49

https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/14_Markov_Chains/14_atom.ipynb


Markov Chains

Another example 14 atom2.ipynb

Example simulation results starting from ground state, 10000 time steps:

After increasing meta-stable state lifetime:

System “forgets” about the initial state fast. We can get distributions for different parameters...
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A.F.Żarnecki Statictical analysis 14 January 25, 2024 17 / 49

https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/14_Markov_Chains/14_atom2.ipynb


Markov Chains

Transition probability

Assume that the state space consists of N states: s(1), . . . , s(N).
Then, for each state s(i) on can define a set of on-step transition probabilities:

pij = p(X (t+1) = s(j)|X (t) = s(i))

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).

If we now describe state of the system by a N-component vector:

(s(i))j = δij e.g.

then probabilities for different states to proceed after state s(i) can be written as:

p = s(i) · T where T = (pij)

is the transition matrix
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Markov Chains

Chain properties (Bonamente)

Probabilities of states after n time steps are then given by:

p(n) = s(i) · Tn

Let uk denote the probability that the system returns to the initial state s(i) in
exactly k time steps. We can define the total probability for returning to the initial state:

u =
∞∑
k=1

uk

States can be classified according to this probability:

if u = 1 state s(i) is recurrent,

if u < 1 state s(i) is transient.

If state is recurrent, it will certainly be observed again (even, if we have to wait very long),
and the system will return to this state infinitely often.
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Markov Chains

Chain properties (Bonamente)

State s(j) is accessible from the initial state s(i), if there is a non-zero probability of reaching
this state from the initial state in finite number of time steps:(

p(m)
)
j

=
(
s(i) · Tm

)
j
> 0

for some natural number m.

If a state s(j) is accessible from a recurrent state s(i),
then s(j) is also recurrent, and s(i) is accessible from s(j).

If a Markov chain has a finite number of states and each state is accessible from any other
state, then all states are recurrent.
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A.F.Żarnecki Statictical analysis 14 January 25, 2024 20 / 49



Markov Chains

Chain properties (Bonamente)

A chain is said to be irreducible if all states are accessible from others.
Possible states of reducible Markov Chain can be divided into two or more classes, which do
not communicate with each other.

A state s(i) is said to be periodic with period T if system can return to this state only at times
t divisible by T :

(
p(t)
)
j

=

{
p > 0 for t%T = 0

0 t%T ! = 0

All states of irreducible chain share the same period.

A chain is said to be aperiodic, if return to a given state can occur at any time
(corresponding to T = 1 in definition above).
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A.F.Żarnecki Statictical analysis 14 January 25, 2024 21 / 49



Markov Chains

Chain properties (Bonamente)

A chain is said to be irreducible if all states are accessible from others.
Possible states of reducible Markov Chain can be divided into two or more classes, which do
not communicate with each other.

A state s(i) is said to be periodic with period T if system can return to this state only at times
t divisible by T :

(
p(t)
)
j

=

{
p > 0 for t%T = 0

0 t%T ! = 0

All states of irreducible chain share the same period.

A chain is said to be aperiodic, if return to a given state can occur at any time
(corresponding to T = 1 in definition above).

A.F.Żarnecki Statictical analysis 14 January 25, 2024 21 / 49



Markov Chains

Stationary distribution

In most cases, we do not care about the initial system state, we want to calculate the set of
probabilities for a system after a large number n of steps:

p∞ = lim
n→∞

p(n)

This probabilities are called limiting probabilities.

For a irreducible aperiodic Markov Chain with recurrent states, limiting probabilities
correspond to the stationary distribution:

π = π · T

and this distribution is unique. Regardless of the starting point of the chain, the same
stationary distribution will eventually be reached.
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Markov Chains

Stationary distribution 14 atom3.ipynb

Evolution of state probabilities for system starting at ’Ground’ state at t = 0

Stationary state reached for t ∼ 1000 Note logarithmic time scale!A.F.Żarnecki Statictical analysis 14 January 25, 2024 23 / 49
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Markov Chains

Stationary distribution this is what we look for in most cases

There are three possible approaches to finding a stationary solution:

by running multiple Markov Chain instances and looking at final state distribution,
simple but time consuming

applying the transfer matrix many times, starting for arbitrary initial state vector

by looking for analytic solution to the problem:

πj =
∑
j

πi pij stationary distribution

∑
i

πi = 1 normalization constrain

πi ≥ 0
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Markov Chains

Stationary distribution Herman Scheepers on Towards Data Science

In the analytic approach the problem can be presented as a set of equations: Tᵀ − I

1 . . . 1

 · π =


0
...
0

1


A · π = b

which are, however, not independent (the problem is over-constrained).

The simple solution is to multiply both sides by Aᵀ:

AᵀA · π = Aᵀ b

which can now be solved with standard linear algebra procedures...
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Markov Chain Monte Carlo

General concept arXiv:0905.1629

We introduced Monte Carlo as an alternative
method for integrating an arbitrary function.

Arbitrary parameter space can be considered.

b

a

Rejection technique
Generate uniformly distributed random points, select those in the considered parameter space...

Efficiency can be low...
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Markov Chain Monte Carlo

Standard approach example

Generation of random points from the surface considered in lecture 05
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Standard approach example 14 mcmc.ipynb

Generation of random points from the surface considered in lecture 05

N=1 000
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Markov Chain Monte Carlo

General concept arXiv:0905.1629

We do not want to reject events!

Random move procedure: subsequent points
generated by random variations of previous ones

a

b
Markov Chain Monte Carlo procedure

If the new point is outside the considered parameter space, do not reject it,
but take the last point again (!)

Can this procedure work ?
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Markov Chain Monte Carlo

Markov Chain MC example 14 mcmc.ipynb

Using maximum step size: ∆x = ∆y = 1

N=100
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A.F.Żarnecki Statictical analysis 14 January 25, 2024 30 / 49

https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/14_Markov_Chains/14_mcmc.ipynb


Markov Chain Monte Carlo

Markov Chain MC example 14 mcmc.ipynb

Using maximum step size: ∆x = ∆y = 1

N=1 000 000 But “duplicates” not relevant for N →∞
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: ∆x = ∆y = 0.2

N=100 Significant bias, depending on the starting point...
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: ∆x = ∆y = 0.2

N=100 000 Distribution still not uniform...
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: ∆x = ∆y = 0.2

N=1 000 000 But gets uniform for N →∞
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Markov Chain Monte Carlo

More general case 14 mcmc2.ipynb

Gaussian probability distribution in the considered parameter space

N=1 000
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Markov Chain Monte Carlo

More general case 14 mcmc2.ipynb

Gaussian probability distribution in the considered parameter space

N=100 000 generated in 2 335 937 tries, 4.3% efficiency
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Markov Chain Monte Carlo

Metropolis–Hastings algorithm (Givens)

Consider chain described by on-step transition probability p(X (t+1)|X (t))

To generate points distributed according to f (X ), for each step t:

generate candidate point X ? from p(X ?|X (t))

compute the Metropolis–Hastings ratio:

R =
f (X ?) p(X (t)|X ?)

f (X (t)) p(X ?|X (t))

for the next step take

X (t+1) =

{
X ? with probability p? = min{R, 1}

X (t) otherwise. with probability 1− p?
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Markov Chain Monte Carlo

Markov Chain MC example (2) 14 mcmc3.ipynb

Using maximum step size: ∆x = ∆y = 1

N=1 000 Large step ⇒ large fluctuations
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Markov Chain Monte Carlo

Markov Chain MC example (2) 14 mcmc3.ipynb

Using maximum step size: ∆x = ∆y = 0.05

N=1 000 Small step ⇒ large bias
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Markov Chain Monte Carlo

Markov Chain MC example (2) 14 mcmc3.ipynb

Using maximum step size: ∆x = ∆y = 0.2

N=1 000 Optimal step ⇒ ∼ Poisson fluctuations, minimum bias
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Markov Chain Monte Carlo

Markov Chain MC example (2) 14 mcmc3.ipynb

Using maximum step size: ∆x = ∆y = 0.2

N=100 000 Converges fast to the expected distribution
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Markov Chain Monte Carlo

Markov Chain MC example (2) 14 mcmc3.ipynb

Using maximum step size: ∆x = ∆y = 0.2

N=1 000 000 No rejection! Much larger samples with the same CPU
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Application to parameter fitting

Bayesian approach (lecture 01)
Bayes theorem can be used to generalize the concept of probability.
In particular, one can consider “probability” of given hypothesis H (theoretical model or model
parameter, eg. Hubble constant) when taking into known outcome D (data) of the experiment

P(H|D) =
P(D|H)

P(D)
· P(H)

There are two problems with this approach:

H can not be considered an event, sampling space can not be properly defined

we need to make a subjective assumption about the “prior” P(H)
describing our initial belief in hypothesis H

For these reasons I try to avoid it, and do not refer to P(H|D) as “probability”.
Rather use “degree of belief” for results of the procedure applied to non random events
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Application to parameter fitting

Maximum Likelihood Method (lecture 06)

The likelihood function:

L(λ, x) =
N∏
j=1

f (x(j);λ)

describes the probability of a given measurement results x for the selected parameter values λ.

In the bayesian approach we can refer it to “probability distribution” for the parameters λ:

f (λ) ∼ L(λ, x) · p(λ)

where p(λ) is the assumed prior distribution for parameters λ. (usually flat)

If we know f (λ), we can construct Markov Chain in λ space.

With Metropolis–Hastings algorithm, starting from arbitrary λ(0) point, the chain should
converge to f (λ) distribution for N →∞.
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Application to parameter fitting

Example (Homework 11)

1000 events were collected in the muon lifetime measurement. Distribution can be described
by the formula:

dN

dt
=

Nsig

τ
e−

t
τ +

dNbg

dt

with flat background level known to be
dNbg

dt = 10±∆ µs−1
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Application to parameter fitting

Example (data from homework 11)

Histogram can be fitted using iterative χ2 minimization procedure (without bg constraint)

Fit results:

τ = 2.316± 0.113 µs

Nsig = 430.773± 16.611

Nbg = 4.399± 0.424

χ2 = 22.460/27

Corr =

 1. 0.279 −0.392
0.279 1. −0.309
−0.392 −0.309 1.


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Application to parameter fitting

Example 14 mcfit3.ipynb

Parameter evolution in the Markov Chain

Stable distribution obtained already after about 100 iterations
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Application to parameter fitting

Example 14 mcfit2.ipynb

Parameter distributions after N = 10 000 iterations (skipping first 100)

Including background level constraint

We can extract expected parameter values with uncertainties...
but also identify problems, e.g. find multiple solutions...
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Application to parameter fitting

Example
Nominal solution from Markov Chain (mean values of parameters)

Without background constraint
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Application to parameter fitting

Example 14 mcfit.ipynb

But we can also get the probability distribution of the fit results:

Last 100 chain elements

A.F.Żarnecki Statictical analysis 14 January 25, 2024 45 / 49

https://colab.research.google.com/github/zarnecki/SAED/blob/2023_2024/14_Markov_Chains/14_mcfit.ipynb


Application to parameter fitting

Example 14 mcfit.ipynb

But we can also get the probability distribution of the fit results:

Last 1000 chain elements
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Application to parameter fitting

Example 14 mcfit.ipynb

But we can also get the probability distribution of the fit results:

After adding background constraint
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box”

It converges fast with the proper choice of parameter variation steps
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box”

Convergence can be very slow, if parameter steps too small...
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box”

Fluctuations significantly increased, if steps are too large...
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Markov Chain Monte Carlo

Final remarks

Markov Chains are powerful tools to solve many problems that are difficult to approach
“directly”, using other numerical techniques

However, it is crucial to make sure they converge, before using their output for the analysis.
Algorithm tuning may be required...

Only the simplest approach was presented, many more advanced algorithms exist for more
effective step generation. Probability p(X (t+1)|X (t)) does not need to be uniform!

Events generated with Markov Chain MC are not independent!
One should not use subsequent events together in the analysis (eg. for background estimates)
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Statistical Analysis of Experimental Data

Final exam

As described in the syllabus, assessment will be based on home exercises and the written exam.
50% of points collected from exercises and exam (with same weights) required to pass.

For the written exam, you will have to solve five problems similar to those in homeworks
(maybe a little bit more complex, as you get 13 points for each).

Problems will be put on Kampus on Friday, February 2nd, and you should upload solutions to
Kampus (each one as a separate file) within one (extended) week, till Sunday, February 11th
(23:55).

By uploading the solutions to Kampus you declare that they resulted from your own work and
that you have not shared nor discussed them with anyone.
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